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Abstract

Using the generalized Campbell theorem, a functional (distributional) version of Little’s law
is obtained for general FIFO systems with non-anticipating arrivals. Our approach generalizes
existing results and, in particular, points out the intimate relation between the Palm-Khintchine
equations and the distributional law of Little. A multidimensional version of the Palm - Khintchine
equations and the related version of Little’s law for multiclass systems is also given, as well as
an ordinal version for distributions. (€ 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The distributional version of Little’s law is a relation connecting the customer-
stationary system time distribution with the stationary distribution of the number of
customers in a queueing system. Such a relation will hold for a class of customers
provided that (i) the customers of that class depart in the order they arrive (FIFO
property) and (ii) they satisfy a certain “lack of anticipation™ property (on which we
will elaborate in Section 3). Early results on the distributional law of Little (for systems
with Poisson arrivals) can be found in Haji and Newell (1971) and Brumelle (1972).
For more recent work see Franken et al. (1982) (pp. 110-111), Miyazawa (1979),
Keilson and Servi (1988) (for applications in the analysis of multiclass and vacation
systems with Poisson arrivals), and Bertsimas and Mourtzinou (1993) where the dis-
tributional law is proposed as a tool for the analysis of a number of systems including
multiclass queues.

In this paper we present a new, significantly shorter and more general proof of the
functional (distributional) version of Little’s law based on the generalized Campbell
theorem which highlights the intimate connection between the Palm—Khintchine equa-
tions and the functional law which so far had been overlooked. Also, an ‘“ordinal”
(Halfin and Whitt, 1988) version of Little’s law for distributions is given connecting
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the Palm distribution of the number of customers an arriving customer sees in the
system to the Palm distribution of the number of arrivals during that customer’s stay
in the system.

2. The Palm-Khintchine equations

Suppose that on the probability space (£2,.7,P), endowed with a measurable flow
{0,; t€R}, a real-valued simple point process 4 has been defined. We will assume
that P is invariant under 6, i.e. PO;' =P and that 4 is compatible with the flow,
Le. A(B,0,w)=A(B + t,) for all Borel sets B of the real line, and thus stationary.
{T,; ne Z} denotes the points of 4, P’ the Palm transformation of P with respect to A,
and E the expectation with respect to P’. The connection between the stationary and
Palm distributions of the number of points in an interval (0, ] is given by the following
relations, known as the Palm-Khintchine equations, where A denotes the rate of A:

P(A(O,t]>j):)t/ PYUA, 4] = j)du, j=0,1,2,... . (1)
(4]

For a proof we refer the reader to Khintchine’s own account (Khintchine, 1955) and
to Baccelli and Brémaud (1994). Define the probability generating functions @(z,t) =
EzA00, @0(z,1) = E°z#01). By virtue of Eq. (1) the above probability generating func-
tions are related as follows:

!
D t)=1-1-2) | ®°%zu)du (2)

0
The above result can be extended easily to a “multidimensional” point process, i.e. a
marked point process {7, ¢,} with the mark sequence, {c,}, taking values in a finite set
which without loss of generality, we will identify with the set of standard unit vectors
in RY, {ej,e,,...,e;}. Denote by {T/} the ith stream of points (with mark e;) and
by 0</; <oo, its rate. We assume that the marks have the “shadowing property”, i.e.
¢, = ¢pobr, so that, under probability measure P, the marked point process is stationary
and we will denote by P the Palm transformation of P with respect to {I'}. Also,
Ai(B)= Znezl(ﬂ €B,c,=¢;). and E? denotes expectation with respect to EO. At the
heart of our treatment of the multidimensional Palm-Khintchine equations lies the
following elementary algebraic identity: Let n=(n,,.. nd)E Z4, z=(z1,...,24) € CY,
and define the monomial z":=z{" ---z)". Let N =n, + - -+ ng, & = {e, e3,. ..,eg} be
the set of d standard unit vectors of Rd, and {/,} be a sequence of elements of &

such that f; + .- + fy =n. Set

n(0)=0,  n())=h+--+f, wWN)=fi+ - +fu=n

With the above definitions one can easily check then the telescopic identity

N

__1_2 7" =1 Z — 1Jg"U=), (3)

J=1

where, 7/ =z; iff Jf; is the unit vector in the kth direction.
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Let A=(A,...,Ay) and define the probability generating functions @(z,1) ;= Ez4(®1

~E[z4‘(0’ ”zjd(oyt]]’ (pio(z’ e EO A(0,¢] —EO[ A1(0,1] .'z:d((),d]’ i=1,2.....d. Then

Theorem 1. The joint probability generating function of the number of points of the
d substreams under the stationary probabilitv measure P and under the Palm mea-
sures P, i=1,...,d, are connected by the relationship

d v
D(,t)=1~— Z(l — Zi Vi / (P?(z,u)du. (4)
pap Jo

Proof. The following device will be useful in explaining the idea on which our proof
is based. Suppose that the points 7, constitute arrival epochs of customers to an infinite
capacity “delay box” in which each customer stays precisely 7 seconds and then leaves.
The mark ¢, associated with 7, designates the class of this customer. Let X;(s) designate
the number of customers of class / in the system at time s and X (s) the total number
of customers of all classes. Consider the right-continuous versions of these processes
given by Xi(s)=4,(s ~ t,s], X(s)= Zj’,}l Ai(s — t,5], and define the process

Y(s)= / 100<s — u<t)[(z — 1)z 0 0, A(du)
Jr

=Y NI, <s<T+ 1)z — Dzl (5)

n€Z

where by convention (u, v]:= 0 when u>v. When all the indicators in Eq. (6) vanish we
have of course Y (s)=X(s)=0. Suppose now that X(s)>0 and let M(s)=inf{n: T, <
s<T,+t}, Ma(s)=sup{n: T,<s<T,+t}, be respectively, the indices of the “oldest”
and “youngest” customer in the system (we have of course X(s)= M>(s)~ M(s)+1).
Now let f; = ea(sy41--4» /== 1.2,....M\(s), be the class of the jth youngest customer
present in the system and apply the algebraic identity (3) established above to conclude
that

Y(s) =z,
Taking expectations we obtain
EY(O):EZA(_“J] - :E~z.4(().f] . l, (6)

the last equation following by stationarity. On the other hand. from Eq. (5) and the
generalized Campbell Theorem (see Baccelli and Brémaud, 1994) we obtain

9 l!
EY(0)= /E® / 10<u<t) (Zz,l(,c()ei) - 1) A0 gy
JR

ia]

d

_Z/ (z; I)EO/ ‘”"“'du—z iz — 1)/ @ (z.u)du. (7)

i=1

Comparing Egs. (7) and (8) completes the proof. [
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As we will see presently, functional versions of Little’s law can be obtained both for
single and for multiclass systems by a straightforward extension of the above ideas. The
reader will notice in particular that the above technique extends readily to countable
mark spaces.

3. Functional versions of Little’s law

Suppose that the point process considered in the previous section constitutes the
arrival process of customers to a queueing system. Denote the system time of the
nth customer by W, and let X(s)= ) ., (T, <s<T, + W,) denote the number of
customers in the system at time 5. We will make the following two assumptions on
the behavior of the queueing system in question without specifying in any other way
its structure.

Assumption A.1 [FIFO). The sequence of system times satisfies: T, + W, <T,+W,P’-a.s.
when k <n.

Assumption A.2 [Lack of anticipation). Future arrivals neither affect the system time
of customers already in the system nor provide any information about it, i.e., ¥, and
{A(0,u]; u>0} are P°-independent.

Theorem 2. Under the above assumptions the stationary number of customers in

the system, X(0), and the distribution of the system time of a typical customer,
FO(x):=P%(Wy <x), are related via

B0 1 _ 1 - Z)/OO Fo(u)®°(z,u) du, (8)
0

where ®°(z,u):= E%z404 qnd FO=1 - FO,
Proof. Consider the process Y(s):=3_, W7, <s<T, + W,)z — 1)z47~]. Because
of the FIFO assumption this sum is equal to 1(X(s)>0)3 1 (z — 1)z*~! which

telescopes to give Y(s)=z*") — 1. Using the generalized Campbell theorem we
have

W
EzXO — 1 =EY(0)=iE° / (z — D" ay
0
=z — 1)/ E°[(Wy > 1)z ¥ du
0

=Nz — 1)/oc FO>u)®°(z,u) du,
0

where, in the last equation we have used the lack of anticipation Assumption A.2. [
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In paricular, if Wo=¢ w.p.l then ﬁ(u):l(u<r), X(0)=A4(-10], and Eq. (9)
reduces to Eq. (2). We also point out that starting with Eq. (9) and using integration
by parts in conjunction with Eq. (2) we obtain the following alternative statement of
the distributional law: EzX(") = ]UX @ (z,u)FO(du).

The distributional law can be readily extended to multiclass systems (assuming strict
FIFO discipline across classes). Using the notation of Section 2, let in addition X;(s)
be the number of customers of class i at time s, F°(x) the waiting time distribution
for a typical customer of class i=1,2,...,d, and X(s)=(Xi(s),...,Xu(5)). Then an
analysis paralleling that of Section 2 shows that

d d G d )
E {[‘[ z?‘(())jl =1-> Al - z,v)(/o E? {1(% >u)Hz,f*(0~“J} du.

=1 i== | k=1

From the above, together with the lack of anticipation assumption we obtain

d oo
EZ¥0 =13kl —z) / FO(u)®](z,u) du.
ie1 SO

4. A ordinal version of Little’s law for distributions

Halfin and Whitt (1989) established the following ordinal version of Little’s law:
E°X(0-)=E A0, W] %)

which states that, in steady state, the average number of customers that are present
in a queueing system just before the arrival of a typical customer is equal to the
average number of arrivals during his system time. In this section we will show that,
under additional assumptions, a distributional version of Eq. (10) holds as well, ie.
the (Palm) distribution of the number of customers in the system just before an arrival
and the distribution of arrivals during a typical customer’s stay in the system are the
same.

Theorem 3. Under the Assumption A.l,

E0ZY(0) = gO A0 W), (10)
If in addition, Assumption A.2 also holds, then E®z*(0) = [> @°(z,u)F(du).
Proof. Define the process

Y(s):=(z—1) / 1(0<s — t <Wp o 0,)z4=0°0 4(dr)
JR

= (2= DY WT<s<T, + Wz, (11)

ne
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Note that this is the one-dimensional, left-continuous version of Eq. (6). As in
Section 3, in view of the FIFO assumption, the sum in Eq. (12) telescopes to
give

Y(s)=z¥¢" - 1. (12)

From Mecke’s definition of the Palm expectation (with respect to the arrival measure A)

AEOY(O):E/ 1(0<s<1)Y(0) 0 H,4(ds)
R

=E [ N0<s<1L.0<s—t<Wyo0,)(z— 1)z 4(ds)A(dr), (13)
J R

where in the last expression we have taken into account that Y(0) o 6, = ¥(s). Write
the right-hand side of the above equation as E fR f(1,6,)A(dt) where

f(1,0,)= / 10<s<1L,0<s — t<Wy00,)(z — 1)z 4(ds),
JR
and hence,
1, 90):/ 1(0<s<1,0<s — t< W)z — 1)z 46 0_(ds).
it

Following Schmidt and Serfozo (1995) apply the generalized Campbell theorem to
obtain AE®Yy = AEC [, (t,0)dt or

EY(0)= EO/ 10<s<1,0<s — 1<)z — D)z 4 0 0_,(ds)dt
RZ
:EO/ 10<s 4+ 1<1,0<s <H)(z — 1)z 4(ds) ds
RZ

— E° / 100 <s < W)z — 1)z 4(ds).
R

The left-hand side of the above string of equations is equal to (E%2¥(0-) — 1) (see
Eq. (13)). On the other hand, the integral on the right-hand side above is

(z—1) 24OV A(ds)=(z — 1)(1 +z 4 - -- 4 AOHI-Ty
(0.W5]

which in turn telescopes to z#%“"] — 1. Formula (10) follows then directly from the
above considerations. [J

The extension to multiclass systems (always under the FIFO assumption) is straight-
forward. As before E°z¥(07) = E740 %), or equivalently E0z¥(0) =5 4 [ D(z,u)
FO(du). '
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