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Abstract

We consider a collection of queues operating in parallel and sharing a common server
via a “randomized” service priority sharing rule. We assume that the service times
of the customers (cells) are all constant and identical. This paper is concerned with
estimating the sensitivity of the tail of the distribution of the typical sojourn time
through these queues to the fraction of server bandwidth given to them by randomized
service sharing. Two approaches are considered: “smoothed” perturbation analysis and
stochastic intensity-based estimators.

1 Introduction

In future high-speed, integrated networks, different kinds of traffic will have different per-

formance requirements from the network. For instance, a voice call may require a small

end-to-end delay (delay sensitive) and may tolerate significant packet loss1. A data call,

however, may require an extremely small packet loss probability (loss sensitive) and may

tolerate significant delay. A highly compressed, real-time video call and network signaling

traffic may be both loss and delay sensitive. Finally, a “casual” electronic mail message may

be neither loss nor delay sensitive (see [9]). To achieve these different requirements, some

kind of sharing rule for the buffers and servers in the network could be implemented so that

certain calls receive priority for service and/or buffers. In this paper, we focus on the buffer

design wherein each traffic class occupies a separate buffer and the buffers share a server
∗Supported by NSERC of Canada and NSF Research Initiation Award NCR-9211343
1Voice is actually an isochronous traffic stream requiring small delay jitter, but by reducing the maximum

end-to-end delay, jitter can be eliminated by a small buffer at the destination.
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via the “randomized” service priority sharing rule [10]. We also assume that the cells all

require service times that are constant and identical. In the following, we will use the words

“queue” and “buffer” interchangeably.

We now describe the operation of the randomized service sharing on a group of K

queues with independent, stationary and ergodic sources. In “simple” (or “state - indepen-

dent”) randomized service, the server is assigned to a queue; when it finishes serving a single

cell, the server is then assigned to possibly another queue. If the server is assigned to an

empty queue, it waits there for an amount of time equal to the service time of one cell; so,

simple randomized service is not work conserving. The assignment process is determined

by i.i.d. random variables {γn} that are uniformly distributed over [0, 1]. The interval [0, 1]

is partitioned into K smaller intervals {Ai}K
i=1 so that if γn ∈ Ai, then the server will be

assigned to the ith queue in the nth service epoch.

Note that the generation of the sequence {γn} can be done in parallel with the

operation of the buffers. Also note that randomized service sharing is a way to share the

bandwidth of the output link without the use of frames [5] (thus saving the overhead of

framing). Finally, simple randomized service lends itself to circuit-switched style admission

control in the sense that an effective bandwidth result has been obtained in [2] for it. All of

these qualities make randomized service sharing appealing to ATM networks [3].

Consider the ith queue sharing the link bandwidth. Let θ = P (γn ∈ Ai) be the

fraction of service bandwidth this queue receives on average. In this paper, we are concerned

with estimating the sensitivity

η :=
d

dθ
P (T (θ) ≥ B) (1)

where T (θ) is the sojourn time of a typical cell in this particular queue. (To ease the notation

we omit the index i.) The choice of θ clearly depends on performance requirements of the

traffic using this queue. For reliable network design, the choice of θ should depend on η as

well. Possibly η could also be used by the network to dynamically change the parameter θ

in reaction to observed excessive accumulation of voice packets.

This note is organized as follows. In Section 2, we describe the smoothed perturbation

analysis estimator of the sensitivity in equation (1). In Section 3, we describe a recursive

update formula for the estimate of the sensitivity to be used in a simulation. In Section 4,

we present a method based on the updating of the stochastic intensity of the arrival process.

In Section 5, simulation results are described. Finally, conclusions are drawn in Section 6.
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2 Smoothed Perturbation Analysis

Consider a “G/D/RS” queue; i.e., a queue with discrete-time stationary and ergodic arrivals,

each arrival (called a “cell”) requires one unit of time of service, and this queue shares the

server with other queues according to the randomized service priority discipline. Let θ be

the fraction of service bandwidth this queue receives on average. We want to find

d

dθ
P (T (θ) ≥ B)

where T (θ) is the sojourn time of a typical cell.

Assume that this queue is simulated for N cell departures and to the nth arrival

(n = 1, ..., N) associate an infinite sequence of i.i.d. uniform [0, 1] random variables {ξn
i }∞i=1.

The amount of “virtual service” required by the nth cell is

σn(θ) = inf{i : ξn
i ≤ θ}. (2)

Note that σn(θ) has a geometric distribution. Define the random vector

σ(θ) := (σ1(θ), . . . , σN (θ)).

Now consider two simulations of the G/D/RS queue: one using the parameter θ and the

other using θ −∆θ where 0 < ∆θ << 1. Only the θ-simulation will actually be conducted.

Below we describe how to estimate dP (T (θ) ≥ B)/dθ given the results of the θ-simulation

alone.

Using the notation of Suri [11], for the θ-simulation of length N cell departures

define:

BPj = the jth busy period

tj = the starting time of BPj

= the jth arrival time of a cell to an empty queue

sj = the ending time of BPj

= the jth departure time of a cell leaving the queue empty

M = the number of BP ’s for the N arrivals simulated

kj+1 = the index of the last cell of BPj with k0 = 0

δj = tj − sj−1

∆i
j =

{ ∑i
k=j+1 δk for i > j

0 for i = j
.
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Let A = {x ∈ RN | x = kej , k = 0, 1, 2, ..., j = 1, 2, 3, ...} where ej is the unit

vector whose jth entry is 1 and all other entries are 0. Note that:

P (σ(θ −∆θ)− σ(θ) = 0 | σ(θ)) = (1−∆θ/θ)N = 1 + o(∆θ),

P (σ(θ −∆θ)− σ(θ) = kej | σ(θ)) = (θ −∆θ)(1− θ + ∆θ)k−1 ∆θ

θ
(1− ∆θ

θ
)N−1

= (1− θ)k−1∆θ + o(∆θ),

P (σ(θ −∆θ)− σ(θ) 6∈ A | σ(θ)) = o(∆θ).

Thus to find an expression for an estimate of
d

dθ
P (T (θ) ≥ B) = lim

∆θ↓0

P (T (θ) ≥ B)− P (T (θ −∆θ) ≥ B)
∆θ

= lim
∆θ↓0

E (E [1{T (θ) ≥ B} − 1{T (θ −∆θ) ≥ B} | σ(θ),Arrivals])
∆θ

,

we need only consider the case where a single cell’s virtual service extends when θ → θ−∆θ.

Note that E(1{T (θ) ≥ B} | σ(θ),Arrivals) = E(1{T (θ) ≥ B}) = P (T (θ) ≥ B).

By an argument similar to that in [11], section VI.B (the “smoothed perturbation

analysis” of Gong and Ho [4]) an estimate of dP (T (θ) ≥ B)/dθ is

η̂(N) := − 1
N

M∑
j=1

kj+1∑
n=kj+1

∞∑
a=1

(1− θ)a−1R(j, n, a) (3)

where

R(j, n, a) :=
M∑
b=j

kb+1∑
m=max{n,kb+1}

1{B − [a−∆b
j ]

+ ≤ Tm < B} (4)

where Tm is the sojourn time of the mth cell in the θ-simulation.

Explanation of equations (3) and (4):

Cell n residing in BPj has its virtual service time extended by a units when θ → θ − ∆θ.

Consequently, some busy periods, beginning with BPj , may coalesce. The result is that the

sojourn times of some cells will increase when θ → θ −∆θ:

for m = n, ..., kj+1, Tm(θ −∆θ)− Tm(θ) = a,

for m = kj+1 + 1, ..., kj+2, Tm(θ −∆θ)− Tm(θ) = [a− δj+1]+ = [a−∆j+1
j ]+,

for m = kj+2 + 1, ..., kj+3, Tm(θ −∆θ)− Tm(θ) = [a−∆j+2
j ]+,

etc.

Equation (4) then follows from

1{Tm(θ) ≥ B} − 1{Tm(θ −∆θ) ≥ B} = 1{Tm(θ) ≥ B} − 1{Tm(θ) + [a−∆b
j ]

+ ≥ B}

= −1{B − [a−∆b
j ]

+ ≤ Tm(θ) < B}
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3 Recursive Update Formula for the Estimate

In this section we find a simple formula for δ(N +1) := η̂(N +1)− η̂(N). This formula can be

used to update our estimate of the sensitivity after every cell departure of the θ-simulation.

In the following we assume that the random quantities kj and M are evaluated for

first N departed cells. Consider two cases for the cell N + 1:

Case 1) Cell N + 1 is a member of BPM . In this case we get that

δ(N + 1) = −
∞∑

a=1

(1− θ)a−11{B − a ≤ TN+1 < B}

−
M∑

j=1

kj+1∑
n=kj+1

∞∑
a=1

(1− θ)a−11{B − [a−∆M
j ]+ ≤ TN+1 < B}

= −1{TN+1 < B}
θ

(1− θ)B−TN+1−1 +
M∑

j=1

(kj+1 − kj)(1− θ)B−TN+1+∆M
j −1

 .

Note that the first term in the equations above is due to the virtual service time of cell N +1

increasing by a. The second term is due to the virtual service time of one of the first N cells

increasing by a causing the queueing time of cell N + 1 to increase.

Case 2) Cell N + 1 is not a member of BPM ; i.e., cell N + 1 begins the new busy

period BPM+1. In this case we get that

δ(N + 1) = −
M+1∑
j=1

kj+1∑
n=kj+1

∞∑
a=1

(1− θ)a−11{B − [a−∆M+1
j ]+ ≤ TN+1 < B}

= −1{TN+1 < B}
θ

M+1∑
j=1

(kj+1 − kj)(1− θ)B−TN+1+∆M+1
j −1

 .

Note that kM+2 − kM+1 = 1 and the two cases yield very similar expressions.

4 An Alternative SPA Estimator

An alternative estimator can be obtained if in the above SPA analysis the perturbation ∆θ is

taken in the opposite direction. Denote by Wt(θ) the workload process when the parameter

value is equal to θ (the nominal sample path. From (2) it follows that σ(θ + ∆θ) ≤ σ(θ)

w.p.1 and hence that the “lucky customers” of the process in the nominal path will remain

“lucky” in the perturbed path as well. P 0 designates the Palm probability w.r.t. the arrival
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process while P ∗ Palm probability w.r.t. the lucky arrivals with parameter value θ. The

cycle formula between these two measures gives

1
∆θ

[P 0(T0(θ+∆θ) > B)−P 0(T0(θ) > B)] =
1

E∗Q
E∗[

Q−1∑
i=0

1(Ti(θ+∆θ) > B)−1(Ti(θ) > B)],

(5)

where Q is the number of customers in the first busy period of the nominal sample path. In

general terms the difference between this approach and that of §2 is that we now need only

worry about a single busy period breaking up instead of several busy periods coalescing. To

implement the SPA algorithm we will condition w.r.t F , the whole history of the nominal

sample path. An analysis similar to that of §2 gives

d

dθ
P 0(T0(θ) > B) =

1
(1− θ)E∗Q

E∗[
Q−1∑
i=0

Q−1∑
j=i

σi(θ)−1∑
k=1

1(B < Ti(θ) ≤ B + Lij ∧ k)], (6)

where

Lij = min{Wi+1, . . . ,Wj}, j ≥ i,

with the convention that the minimum element of the empty set is +∞.

5 Stochastic Intensity Based Estimators

Consider again a G/D/RS queue but assume that the server has nonzero setup times. This

means that it takes the server a nonzero amount of time to switch from one queue to another.

This situation may be encountered in practice. The setup times are small compared to the

service times (still taken to be of unit duration) but random. Let fs(x) denote their common

density, supported on the interval [0, ε], where ε < 1. The virtual service time σn(θ) of the

nth cell is now seen to have density

g(θ, x) =
∞∑

k=1

θ(1− θ)k−1f (k)(x), (7)

where f(x) = fs(1 + x), and f (k)(x) is the k-fold convolution of f with itself. Let G(θ, x) =∫ x
0 g(θ, y)dy be corresponding distribution function. The random variable σn(θ) is now

generated by the formula σn(θ) = G−1(θ, ξn), where G−1 is the inverse function of G with

respect to the second variable, and ξn is a sequence of i.i.d. random variables, uniformly

distributed in the interval [0, 1]. Finally, we let

σ′n(θ) =
d

dθ
G−1(θ, ξn). (8)
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It can be seen that this derivative is defined (i.e., it is finite) for all ξn outside an interval of

size of the order of 1− (1− θ)1/ε. This is due to the nature of the the density g defined in

(7) as the sum of convolutions of a density f supported on an interval of size ε. It is natural

to require that this size be small so that the error in the algorithm to follow is negligible.

We thus need (1 − θ)1/ε ≈ 1. This is for instance the case if ε is large or if θ is small. It is

thus conjectured that the algorithm works well for low priority classes.

These assumptions, namely in cases where one can afford an additional randomiza-

tion for the service times, lead to a considerable simplification of the perturbation analysis

estimator. Indeed, it is shown in [8], that an infinitesimal perturbation analysis estimator

can be constructed. The construction is based on knowledge of the stochastic intensity,

say αt, of the arrival process of the queue under consideration. Recall that the stochastic

intensity of a point process, c.f. [1], with respect to a σ-field Ft of observations (here taken

to be the information of the simulated sample path of the queue under consideration up to

time t), is defined by

αt = lim
δ→0

1
δ
E[N(t, t + δ)|Ft],

where N(t, t + δ) is the number of arrivals between t and t + δ. Note that not every point

process has a stochastic intensity, but almost all models encountered in practice do. For

instance, a renewal process has stochastic intensity (with respect to the σ-field of the sample

path up to time t) zero when the queue is empty, and h(at) otherwise. Here h is the hazard

rate of the interarrival time (h(x) defined as f(x)/(
∫∞
x f(y)dy), with f being the density

of the interarrival time), and at is the distance between time t and the previously observed

arrival. Likewise, simple formulas for the stochastic intensity can be found for most models

used in practice (e.g., Markov modulated Poisson processes).

Let Wt(θ) be the total work in the queue at time t, as accounted for by the (re-

maining) virtual service times of the cells in the queue. Let now W (θ) be the total queue-

ing delay of a typical cell in steady state. This is related to the sojourn time T (θ) by

T (θ) = W (θ) + σ0(θ), where σ0(θ) is a typical virtual service time with density g as above.

We now simulate the queue for a total of N cell arrivals (say TN is the time of the N th

arrival) and define the following quantities. Let Dt(θ) be the sum of the derivatives of the

service times, given by (8), of all cells from the start of the busy period that contains t, up

to the last cell arriving before t. If t is in an idle period then Dt(θ) is taken to be zero. We

are interested in estimating the derivative of P (W (θ) > x). The queue is simulated for N

cell arrivals, and observations are made at times at which the total work Wt(θ) downcrosses
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level x. Call Sj these times. It is shown in [8] that an estimator for d
dθP (W (θ) ≥ x) is given

by the quantity

ζ(N) :=
1
N

∑
j≥1, Sj<TN

DSj (θ)αSj .

In other words, at each downcrossing time Sj , j = 1, 2, . . ., the stochastic intensity αSj

is computed and multiplied by the accumulated perturbation DSj (θ). The sum of these

products up to the N th arrival divided by N gives a simple expression for the sensitivity

estimator. The reader is referred to [8] for the relevant details and proofs.

6 Simulations

Results of the following simulations are pending: A discrete-time Markov source described in

[6] is used. We compare the result of the smoothed perturbation analysis estimators to that

obtained by running two simulations (one using parameter θ and the other using θ − ∆θ)

and estimating the sensitivity by a difference quotient. Finally, we apply the algorithm of

the previous section to estimated sensitivities associated with low priority classes.

7 Conclusions

We have described perturbation analysis estimators for the sensitivity of tail of the queuing

delay distribution for a queue sharing a server via simple randomized service. We assumed

a stationary and ergodic source of customers (cells) all requiring the same deterministic

amount of service. Currently, we are working on this problem for state-dependent (in par-

ticular, work conserving) randomized service disciplines.
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