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Abstract

Starting with some mild assumptions on the parametrization of the service process, per-
turbation analysis (PA) estimates are obtained for stationary and ergodic single server queues.
Besides relaxing the stochastic assumptions, our approach solves some problems associated with
the traditional regenerative approach taken in most of the previous work in this area. First, it
avoids problems caused by perturbations interfering with the regenerative structure of the sys-
tem. Second, given that the major interest is in steady-state performance measures, it examines
directly the stationary version of the system, instead of considering performance measures ex-
pressed as Cesaro limits. Finally, it provides new estimators for general (possibly discontinuous)
functions of the workload and other steady-state quantities.

KEYWORDS: STATIONARY PROCESSES, PERFORMANCE EVALUATION AND QUEUEING,

NON-MARKOVIAN PROCESSES ESTIMATION.

1 Introduction

The increasing importance of sensitivity analysis in communications networks and manufacturing

systems makes it desirable to construct reasonable estimators whose asymptotic behavior does not

depend on the renewal character of the arrival or service processes. More specifically, consider a

node in a queueing network that is assumed to be stable. Consider also a parameter, say θ, of

the distribution of the service process at this node. The sensitivity of the mean delay is defined

as the derivative of the mean delay with respect to θ. The question is whether, by operating (or
∗Current address: EECS Department, University of California, Berkeley CA 94720
†Supported in part by N.S.F. Grants ECS-88110033 and DDM-8905638
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simulating) the system at the nominal value θ and by real time measurements, one can obtain an

estimate for the sensitivity at θ.

In this paper we obtain strongly consistent perturbation analysis estimators for general (average)

performance criteria for a queue with stationary and ergodic input. Also, we give some new proofs,

distinct from the existing ones, that not only simplify the underlying ideas, but also generalize

them to the stationary and ergodic context. For an overview of the area and further references see

[11] and [7].

Consider a queue with stationary and ergodic arrival {tn} and service {σn} processes. Let θ be

a parameter (in a sense to be made precise later) of the service process such that the queue under

consideration is stable for all allowable values of θ. Let J(θ) be an average steady-state performance

measure of the system. For instance, J(θ) can be the variance of the workload in steady-state, with

respect to the parameter θ.

We will develop direct estimators for ∂
∂θJ(θ) of the form

1
t

∫ t

0
Yt(θ)dt, (1)

or
1
n

n∑
k=1

Ytk(θ), (2)

where Yt(θ) is a process constructed on the same probability space on which our original data {tn}

and {σn} are defined.

Strong consistency of an estimator of the above form means convergence, as t →∞ or n →∞,

to ∂
∂θJ(θ). Our method for constructing these estimators is the following: We will assume that

the system is in steady state (meaning that a suitable process like the queue length is stationary)

and construct a stationary and ergodic process Yt such that ∂
∂θJ(θ) = EY0(θ), where E denotes

expectation under the stationary measure P or a Palm transformation of it (e.g., conditioning).

Indeed, we shall be freely using the ideas and formulas for Palm measures. The fact that we

assume that the system is in steady state is only for reasons of constructing the estimators. Strong
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consistency is guaranteed by the ergodic theorem for any initial condition.

In a renewal context, i.e. when interarrival times are i.i.d. and independent of the service

times, also i.i.d. with common distribution Gθ, one can construct the service time processes on the

same probability space by doing the obvious thing; namely by choosing i.i.d. numbers ξn uniformly

distributed on [0, 1] and by letting σn(θ) = G−1
θ (ξn), where G−1

θ is a version of the inverse of the

function Gθ. This way, one has constructed all processes associated with the evolution of the queue

on the same probability space. Consider, for instance, the resulting workload process, denoted

by Wt(θ). It has been shown (see [15] and [17]) that a perturbation analysis estimator for the

derivative of the expected waiting time in steady-state is given by (2) where Yt(θ) is the pathwise

right derivative of Wt(θ) with respect to θ. These steady-state results have been obtained by

considering Cesaro limits of the form

lim
δ→0

lim
t→∞

1
t

∫ t

0
δ−1 [Ws(θ + δ)−Ws(θ)] ds , (3)

and showing that it is indeed possible to interchange the order in which the two limits are taken

in (3). This was also the approach taken in [5] and [6] for Markovian networks and in [8] for

GSMP’s with a special type of regenerative structure. A problem that arises in this case is that the

regeneration points are in general not the same for the two processes, Wt(θ) and Wt(θ + δ). This

was pointed out in [10]. An alternative approach requiring convexity of the sample performance

measures with respect to θ was taken in [12].

In this paper we extend the results on strong consistency of PA estimators to stationary and er-

godic queues. This extension achieves the following goals: First, it shows that renewal assumptions

and the existence of special regenerative structure are not necessary. Second, it allows one to apply

our results to any node of a stationary and ergodic network, provided the node does not belong to a

feedback loop. Third, it presents a new construction which allows us to analyze the system directly

in steady-state thus eliminating the need to examine Cesaro limits and to justify the interchange

of two limits as in (3). Finally, in this paper we consider general (possibly discontinuous) functions

of the workload and obtain interesting new expressions.
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Some assumptions on the parametrization of the service times are given in the sequel. Con-

sider two jointly stationary and ergodic sequences {τn} and {ξn} under a probability measure that

will be denoted by P 0 in order to conform with the notation used in the rest of the paper. The

first one is the sequence of interarrival times while the latter is the sequence of random variables

from which the service times are generated in the following way: There is a deterministic function

(ξ, θ) → h(ξ, θ) such that σn(θ) = h(ξn, θ). The parameter θ ranges over a finite interval [a, b] and

E0σn(θ) < E0τn := λ−1 for all θ. Moreover:

(i) θ → h(ξ, θ) is differentiable and Lipschitz, i.e., |h(ξ, θ1)− h(ξ, θ2)| ≤ K(ξ)|θ1 − θ2|. (Of course,

differentiability automatically implies that the function is Lipschitz on [a, b].)

(ii) h(ξ, θ) ≤ h(ξ, b).

(iii) ξ → h(ξ, θ) is one-to-one.

We note at this point that the problem of putting the data on a common probability space, so

that θ is a parameter of the random variables and not of the probability measure, is an important

one that can be crucial in the behavior of the estimators. Our approach here simply mimics the

usual one. One can also see that the above conditions are not too restrictive. This is best seen

by an example: Let σn be i.i.d. with common exponential distribution with rate θ. Consider the

function h(ξ, θ) = −θ−1 log ξ. Let ξn be i.i.d. and uniform in the interval (0, 1). Then σn = h(ξn, θ)

has the required exponential distribution. Since we are interested in the derivative of a performance

measure at a specific value, say θ0, of the parameter, it suffices to consider the function θ → h(ξ, θ)

defined on an interval [a, b] that contains θ0 in its interior. In this case clearly h(ξ, θ) = −θ−1 log ξ

satisfies the above conditions.

In Section 2 we present an outline of the method and the main ideas behind it. Under conditions
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(i), (ii) and (iii) (which are not necessarily the minimal ones) plus some extra moment conditions

we construct estimators for the derivatives of functions of the workload and prove their strong

consistency in Sections 3 and 4. A sketch of these proofs can also be found in [13]. In Section 5 we

consider other performance measures. Finally in Section 6 we discuss what happens in the classical

cases and also some simulation applications.

2 Sketch of the method

In this section we will give an outline of the basic ideas. Let W̃ (θ) be a random variable distributed

like the steady-state workload when the parameter of the service process has the value θ. Let f

be a function of bounded variation such that Ef(W̃ (θ)) < ∞. The questions that we want to deal

with are:

• Does the derivative of Ef(W̃ (θ)) exist?

• If yes, is there a perturbation analysis estimator for this derivative?

To construct a perturbation analysis estimator one should start by constructing stationary versions

of the processes W·(θ), θ ∈ [a, b] on a common probability space. Recall that we work in a non-

renewal/regenerative framework and so the initial condition may play a role. Let us first introduce

some terminology. We denote by P the distribution of the stationary version of the marked point

process [tn, ξn] (the n-th point tn is the n-th arrival time and has ξn as a mark, with the convention

t0 ≤ 0 < t1—this convention will be used throughout the paper). A superscript or a subscript to P

will denote a Palm transformation of P with respect to some stationary point process (i.e., loosely

speaking, conditioning on the event that there is a point on the origin of time). For instance,

P 0 is in fact the Palm transformation of P with respect to the stationary arrival process. Since

E0σn(b) < E0τn, there is a stationary workload process Wt(b) under the probability measure P .

For more details see [3] and [16], Chapter 7. Because of assumption (iii) of Section 1, knowledge

of the sequence σn(b) implies knowledge of σn(θ) for all θ ∈ [a, b]. Now assumption (ii) allows
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us to construct each realization of Wt(θ) from the realization of Wt(b) by keeping the so-called

construction points (times of arrival of customers that find the b-system empty) and then by re-

placing the σn(b)’s by the σn(θ)’s in each busy cycle of the b-system. This may introduce additional

construction points for the θ-system resulting from the possible breaking of the busy cycles of the

b-system. Denote by Tn(θ) the arrival times of customers that find the θ-system empty. We just

said that {Tn(θ)} ⊇ {Tn(b)}.

Suppose for the moment that the function f is smooth and nice. One would then like to prove

that a PA estimator of ∂EW0(θ)/∂θ is given by (1) where Yt = f ′(Wt(θ))W ′(θ), with W ′(θ) being

the right derivative of W (θ) with respect to θ (see below for the definition). This is tantamount to

showing that
∂

∂θ
Ef(W0(θ)) = E

∂

∂θ
f(W0(θ)). (4)

The standard approach that would mimic the one of [17] would consist in looking at busy cycles of

the θ-system and essentially trying to establish that

∂

∂θ

1
E∗

θ (T1(θ)− T0(θ))
E∗

θ

∫ T1(θ)

T0(θ)
f(Wt(θ))dt =

1
E∗

θ (T1(θ)− T0(θ))
E∗

θ

∫ T1(θ)

T0(θ)

∂

∂θ
f(Wt(θ))dt (5)

(Here P ∗
θ denotes the Palm transformation of P with respect to the point process {Tn(θ)} and E∗

θ

the corresponding expectation.) Indeed, the left hand sides and the right hand sides of (4) and (5)

are the same. Observe now that we might as well write

Ef(W0(θ)) =
1

E∗
b (T1(b)− T0(b))

E∗
b

∫ T1(b)

T0(b)
f(Wt(θ))dt, (6)

since by construction Wt(θ) and Tn(b) are jointly stationary. This way the integration limits no

longer depend on θ. In other words, we avoid problems caused by the fact that when the value of θ

is changed to θ + δ, some of the busy periods in the original sample path will split into smaller ones

and others will coalesce. The remaining of the argument, i.e. the justification of differentiating

inside the expectation is purely analytical and depends on the way the service processes have been

defined on the common probability space.
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Our goal is to consider more general functions f , for instance f(w) = 1(w > x). In that case

there is no obvious guess for the process Yt that would lead to the construction of the PA estimator.

The following section deals with this problem in the spirit of the above discussion.

3 Derivatives for indicator functions

Consider f(w) = 1(w > x) and the problem of finding a PA estimator for Ef(W0(θ)) = P (W0(θ) >

x), the time stationary probability that the workload exceeds a level x. Before proceeding further

let us define the process W ′
t(θ), the derivative of the workload at nominal value θ. It is not difficult

to see that this is a right continuous, piecewise constant process given by

W ′
t(θ) = (W ′

tn−(θ) + σ′n(θ))1(Wt(θ) > 0) , tn ≤ t < tn+1 . (7)

Thus it jumps by an amount equal to σ′n(θ) at each arrival tn and is set to zero as soon as the

system empties. In the analysis that follows it is important to bear in mind that Wt(θ) has right

continuous paths.

We need some extra notation: We will denote by Px the Palm transformation of P with respect

to the point process of the downcrossings of Wt(θ) at level x. Informally speaking, this is P

conditional on having an x-downcrossing at the origin of time. Note that Px depends on θ. Let

also λx be the rate of the x-downcrossings by Wt(θ). Finally let A(I) denote the number of arrivals

in a set I.

Theorem 1 If E0A[T0(b), T1(b))2 < ∞ and E0K(ξ0)2 < ∞ then

∂

∂θ
P (W0(θ) > x) = λxExW ′

0(θ). (8)

Proof Using the Palm inversion formula (e.g. see [3]) we get

P (W0(θ) > x) = λ∗bE
∗
b

∫ T1(b)

T0(b)
1(Wt(θ) > x)dt, (9)
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where λ∗b is the rate of the point process {Tn(b)}. As mentioned earlier, this particular point process

plays a key role in our proof. The basic observation here is that Wt(θ) ≤ Wt(b) for all θ ∈ [a, b]

(due to the assumption that σn(b) dominates σn(θ) for all θ) and hence the customers that find the

b-system empty also find the θ-system empty, for all θ ∈ [a, b]. Thus in the right hand side of (9)

the dependence on θ is only inside the integrand and not in the integration limits. We now have

1
δ
{P (W0(θ + δ) > x)−P (W0(θ) > x)} = λ∗bE

∗
b

∫ T1(b)

T0(b)

1
δ
{1(Wt(θ + δ) > x)−1(Wt(θ) > x)}dt. (10)

Observe that the quantity inside the expectation of (10) converges pathwise as δ → 0 to

∑
T0(b)≤dn<T1(b)

W ′
dn

(θ),

where dn is the sequence of downcrossings of the level x by the process Wt(θ) (and hence depends

on θ). This is a direct consequence of the definition of W ′
t(θ) (see formula (7)). It can also be easily

seen that the quantity inside the expectation of (10) is bounded by

1
δ

∑
T0(b)≤tn<T1(b)

n∑
i=0

|σi(θ + δ)− σi(θ)| =: Z(δ).

To show existence of the derivative of P (W0(θ) > x) it now suffices to show that Z(δ) is bounded

above by an E∗
b -integrable random variable (dominated convergence theorem). To this end, use the

Lipschitz property to get

Z(δ) ≤
∑

T0(b)≤tn<T1(b)

n∑
i=0

K(ξi).

This is further bounded above by

N
N−1∑
i=0

K(ξi),

where N = A[T0(b), T1(b)). It remains to show that E∗
b N

∑N−1
i=0 K(ξi) < ∞. The cycle formula

(see [14]—for a short proof see [4]) between P ∗
b and P 0 gives

E∗
b N

N−1∑
i=0

K(ξi) =
λ

λ∗
E0NK(ξ0).
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A straightforward application of the Cauchy-Schwarz inequality shows that

E0NK(ξ0) ≤
λ

λ∗b

√
E0N2

√
E0K(ξ0)2, (11)

which is finite by the assumptions. Thus the conditions for the dominated convergence theorem

hold and so we can interchange limit and expectation in (10). We conclude that ∂
∂θP (W0(θ) > x)

exists and
∂

∂θ
P (W0(θ) > x) = λ∗bE

∗
b

∑
T0(b)≤dn<T1(b)

W ′
dn

(θ) = λxExW ′
0(θ).

The latter equality above is obtained by another application of the cycle formula. This concludes

the proof of the theorem. 2

Corollary Under the conditions of Theorem 1 we also have

∂

∂θ
P (W0(θ) > x) = λE0W ′

0(θ)[1(W0(θ) > x)− 1(Wt1−(θ) > x)]. (12)

Proof This follows by yet another application of the cycle formula, this time between measures Px

and P 0. Indeed, observe that the difference of the two indicator functions of (12) is one if and only

if there is a downcrossing of the level x by the process Wt(θ) on the interarrival interval [t0, t1). 2

Note The Cauchy-Schwarz inequality and the conditions of Theorem 1 in (11) were used to show

that E0NK(ξ0) is finite. Using Hölder’s inequality we could trade off the existence of lower moments

of N for higher moments of K(ξ0). In particular, if K(ξ0) is constant which is the case if for instance

θ is a location parameter of the service times (i.e. if σn(θ) = ξn + θ), only E0N needs to be finite.

4 Derivatives for general functions

We now extend the result of Theorem 1 to more general functions f . That is, we want to obtain an

estimator for ∂
∂θEf(W0(θ)). Recall that for f = indicator function we have two formulas (8) and

(12).

We confine ourselves to the class of functions that are of bounded variation on bounded intervals

(locally bounded variation). In this general case we will need the following set of assumptions:
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A1 E0K(ξ0)4 < ∞,

A2 E0A[T0(b), T1(b))4 < ∞,

A3 E0 supθ f(W0(θ))2 < ∞,

A4 E0 supθ f(W0−(θ))2 < ∞.

Note that these are stronger than the assumptions of Theorem 1, but this is not surprising in

view of the generality of the function f . We should also note that these assumptions can be relaxed

depending on the specific nature of f . When f is increasing, both A3 and A4 can be replaced by:

A3′ E0[f(W0(b))2] < ∞.

See also the remarks on special cases at the end of the section and Section 6 for the renewal

case. We are now ready to state and prove the following theorem:

Theorem 2 Consider a function f that is locally of bounded variation. Then under the assump-

tions A1–A4 we have
∂

∂θ
Ef(W0(θ)) =

∫ ∞

0
λxExW ′

0(θ)f(dx) (13)

= λE0W ′
0(θ)[f(W0(θ))− f(Wt1−(θ)]. (14)

Proof Suppose first that f is an elementary function, that is, a finite linear combination of indicator

functions: f(w) =
∑k

i=1 αi1(w > xi). Then (13) follows directly from (8) of Theorem 1 and (14)

from (12) of the Corollary.
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For a general f of locally bounded variation, there is no loss of generality if we assume that it

is nonnegative and increasing. We can then approximate f from below by an increasing sequence

of elementary functions fn that converge to f uniformly over compact sets. We shall establish (14)

first and then (13) will follow form an application of the cycle formula. Let

gn(θ) = Efn(W0(θ)), g(θ) = Ef(W0(θ)).

The derivative of gn exists and

g′n(θ) = λE0W ′
0(θ)[fn(W0(θ))− fn(Wt1−(θ))].

To show that the derivative of g exists and is equal to (14) it suffices to show that gn converges to

g for some θ0 in [a, b], and that g′n converges uniformly in θ (e.g., see [2]). In other words, it suffices

to show that

sup
θ
|E0W ′

0(θ)[f(W0(θ))− fn(W0(θ))]| →n→∞ 0 (15)

and that

sup
θ
|E0W ′

0(θ)[f(Wt1−(θ))− fn(Wt1−(θ))]| →n→∞ 0. (16)

We show (15) and then (16) will follow by the same token. The expression in (15) is bounded

above by

E0 sup
θ
|W ′

0(θ)| sup
θ
|f(W0(θ))− fn(W0(θ))|. (17)

Since 0 ≤ . . . ≤ fn ≤ fn+1 ≤ . . . ≤ f , the quantity inside the expectation of (17) is bounded above

by supθ |W ′
0(θ)| supθ |f(W0(θ))−f1(W0(θ))| We next show that this has finite expectation. Clearly,

E0 sup
θ
|W ′

0(θ)| sup
θ
|f(W0(θ))− f1(W0(θ))| ≤

√
E0 sup

θ
W ′

0(θ)2
√

E0 sup
θ

f(W0(θ))2.

The latter term is finite by A3. For the proof of the finiteness of the first term we refer the reader

to the Appendix.

Let now Xn = supθ |f(W0(θ)) − fn(W0(θ))|. If we show that Xn converges to zero P 0-almost

surely then we are done (dominated convergence theorem). Equivalently, it suffices to show that

E0Xn → 0.

11



To this end, given an ε > 0, choose a constant K such that

E0f(W0(b))1(W0(b) > K) ≤ ε.

As mentioned above, the approximating sequence fn can be chosen so that it converges uniformly

over the interval [0,K]. Write

E0Xn = E0Xn1(W0(b) ≤ K) + E0Xn1(W0(b) > K). (18)

For the first term of (18) we have the bound

sup
0≤w≤K

|f(w)− fn(w)|P 0(W0(b) ≤ K),

which goes to zero by the uniform convergence of fn. Using the inequalities fn ≤ f and W0(θ) ≤

W0(b) we see that the second term of (18) is bounded above by

2E0f(W0(b))1(W0(b) > K) ≤ 2ε.

This readily shows that E0Xn → 0 and hence (15). The proof of (16) is similar. 2

Let us now examine some special cases and see how assumptions A1–A4 can be relaxed.

The case of a bounded f .

From the proof of Theorem 2 it is clear that in this case we only need to have assumptions that

ensure E0 supθ |W ′
0(θ)| < ∞. Repeating the proof of the Appendix, we can readily see that as-

sumptions A1–A4 can be replaced by the assumptions of Theorem 1.

The case of a smooth f .

Here one is typically able to differentiate not only inside the expectation of the right hand side of

(6), but also inside the integral, to obtain

∂

∂θ
E[f(W0(θ))] = E[f ′(W0(θ))W ′

0(θ)] , (19)
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or equivalently (5). The moment conditions necessary for this depend of course on f . When f

is a polynomial of degree r, an analysis similar to that in the Appendix shows that A1,A2, and

A3′ (that is, the same conditions for an increasing function) are sufficient to guarantee (5). We

point out that, in the case of smooth f , 19 is equivalent to 14. Indeed, applying the Palm inversion

formula to the right hand side of 19 we get

E[f ′(W0(θ))W ′
0(θ)] = λE0

∫ t1

0
f ′(Ws(θ))W ′

s(θ)ds

which, since W ′
s(θ) is constant and equal to W ′

0(θ) on [0, t1), can be written as

λE0W ′
0(θ)

∫ t1

0
f ′(Ws(θ))ds.

This is easily seen to be equal to the right hand side of 12.

5 Other performance measures

5.1 Queue length

We now consider briefly the queue length process Qt(θ). In contrast to the workload process, the

pointwise derivative of Qt(θ) with respect to θ is equal to 0 for almost all t. Let D(θ) be the

departure process, Sn(θ) the n’th departure epoch, and Yt(θ) the derivative of the last departure

time before t with respect to θ. Dropping the dependence on θ for simplicity, Yt is constant in

[Si, Si+1), and given by the following recursion on departure epochs:

YSn+1 = σ′n+1 + 1(QSn > 0)YSn .

As usual, these processes are defined to be right continuous. Finally Nk is the point process of the

k-downcrossings of Qt(θ) (downcrossings from k to k−1, i.e. departures that leave the system with

k − 1 customers), λk is the intensity of Nk, and Ek is the expectation with respect to the Palm

probability of k-downcrossings. Then an analysis similar in every respect to the one in the proof

of Theorem 1 gives
∂

∂θ
P (Q0 ≤ k) = λkEk[Y0]. (20)
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To obtain the counterpart of (13) consider a function f : N → R. Write f as
∑∞

i=1 αi1(k ≥ i) and

approximate it by below by fn(k) = 1(k ≤ n)f(k). Then, by (20) and the linearity of expectation,

∂

∂θ
E[fn(Q0)] =

n∑
i=1

αiλiEi[Y0].

A uniform convergence argument allows us to pass in the limit:

∂

∂θ
E[f(Q0)] =

∞∑
i=1

αiλiEi[Y0]. (21)

Let E1 denote the expectation with respect to the Palm probability corresponding to departures.

We now use the cycle formula in order to get another expression for (21):

λiEi[Y0] = λE1
∫
[S0,S1)

YsNi(ds) = λE1YS01(QS0 = k − 1),

where we have used the fact that Ys is constant on [S0, S1) and that there is a k-downcrossing at

S0 if and only if QS0 = k − 1. Writing 1(QS0 = k − 1) = 1(QS0 ≥ k − 1)− 1(QS0 ≥ k) we obtain

∂

∂θ
Ef(Q0) = λE1YS0 [f(QS0−)− f(QS0)].

In the above expression QS0− = QS0 + 1 is the number of customers in the system just before a

departure.

5.2 Sojourn time

Up to this point we have considered only “time stationary” performance measures (to use standard

queueing theoretic terminology). “Customer stationary” performance measures (such as the ex-

pected sojourn time in steady state) can be treated as in Section 4, with the exception of additional

smoothness requirements on f . One starts by using a formula similar to (6) in discrete time:

E0f(W0(θ)) =
1

E∗
b N

∑
T0(b)≤tn<T1(b)

f(Wtn(θ)).

By using arguments similar to those of Theorems 1 and 2, one can show that, under appropriate

conditions,
∂

∂θ
E0f(W0(θ)) =

1
E∗

b N

∑
T0(b)≤tn<T1(b)

∂

∂θ
f(Wtn(θ))
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= E0f ′(W0(θ))W ′
0(θ).

It is exactly this case that has been studied in [17] under renewal assumptions on the arrival and

service processes.

5.3 Joint distributions

Fix an s > 0 and consider P (W0(θ) > x,Ws(θ) > y). A procedure similar to that of Theorem (1)

will give us the formula

∂

∂θ
P (W0(θ) > x, Ws(θ) > y) = λxEx[W ′

0(θ)1(Ws(θ) > y)] + λyEy[W ′
0(θ)1(W−s(θ) > x)],

which can also be easily translated into a formula of the form (12).

6 The renewal case—final remarks

Explicit conditions involving only the interarrival and service distributions can be given in the

renewal case. In fact it is well known (e.g. see [9]) that the existence of E0[σ(b)r] implies that

of E0A[T0(b), T1(b))r for r ≥ 1. For example, A2 can be replaced with E0σ(b)4 < ∞. If f is

polynomial of degree r, then it is enough to show that A3′ holds and for this E0σ(b)2r+1 < ∞ is

sufficient (see [1]).

From a simulation point of view, the results in this paper are important since they justify

isolating a single server node not belonging to any feedback loop and using the estimators developed

above. The proposed estimators would be strongly consistent for performance criteria of the type

described here. Theorem 2 is particularly useful in this context. If {tn} is the sequence of customer

arrival times with the convention t0 ≤ 0 < t1 and we simulate (or observe) the system in the interval

(0, t), Theorem 2 suggests

1
t

∑
{n:0<tn+1<t}

W ′
tn [f(Wtn)− f(Wtn+1)],
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as a strongly consistent estimator for ∂
∂θE[f(W0)] which can be used whether f is differentiable

or not. Unlike the estimator based on level crossings the above estimator does not require the

introduction of crossing events which presents an advantage in simulation.

7 Appendix

In this appendix we prove that assumptions A1 and A2 imply that

E0 sup
θ

W ′
0(θ)

2 < ∞.

From the definition of the process W ′
t(θ) we have

W ′
0(θ) =

∑
T0(θ)≤tn<0

σ′n(θ).

Using the Lipschitz condition we get

|W ′
0(θ)| ≤

∑
T0(θ)≤tn<0

K(ξn).

Since T0(θ) ≥ T0(b) (by the way the processes have been constructed),

sup
θ
|W ′

0(θ)| ≤
∑

T0(b)≤tn<0

K(ξn)

Let N = A[T0(b), T1(b)) and use the inequality (x1 + . . . + xn)2 ≤ n(x2
1 + . . . + x2

n) to obtain

E0 sup
θ

(W ′
0(θ))

2 ≤ E0N
∑

T0(b)≤tn<0

K(ξn)2.

Now use the cycle formula between P 0 and P ∗
b to obtain the relation

E0N
∑

T0(b)≤tn<0

K(ξn)2 =
λ∗b
λ

E∗
b N

∑
T0(b)≤tn<T1(b)

n∑
i=0

K(ξi)2.

This is smaller than

≤ λ∗b
λ

E∗
b N2

∑
T0(b)≤tn<T1(b)

K(ξn)2.
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A second application of the cycle formula gives

λ∗b
λ

E∗
b N2

∑
T0(b)≤tn<T1(b)

K(ξn)2 = E0N2K(ξ0)2.

Finally, a Cauchy-Schwarz inequality applied to the latter bound gives

E0 sup
θ

(W ′
0(θ))

2 ≤
√

E0K(ξ0)4
√

E0N4,

which is finite by assumptions A1 and A2. 2
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