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Concerns about American manufacturing competitiveness compel new interest in alternative production control
strategies. In this paper, we examine the behavior of push and pull production systems in an attempt to explain the
apparent superior performance of pull systems. We consider three conjectures: that pull systems have less congestion;
that pull systems are inherently easier to control; and that the benefits of a pull environment owe more to the fact that
WIP is bounded than to the practice of “pulling” everywhere. We examine these conjectures for analytically tractable
models. In doing so, we not only find supporting evidence for our surmises but also identify a control strategy that has
push and pull characteristics and appears to outperform both pure push and pure pull systems. This hybrid system also
appears to be more general in its applicability than traditional pull systems such as Kanban.

Increased foreign competition has intensified the
need for more effective manufacturing. However,
the means to accomplish this task has become a
subject of controversy. On one hand, much of the
practitioner literature suggests that the implementa-
tion of Computer Integrated Manufacturing (CIM) is
the only means available to regain our position of
manufacturing leadership, see, e.g., Vollum (1984)
and Berger (1986). Other authors cite the Japanese as
having achieved an extremely competitive position
while employing limited automation and using simple
and decentralized management techniques, e.g.,
Schonberger (1986).

This debate stems from the clash of two diametrical
viewpoints. In one vein, CIM represents the culmi-
nation of manufacturing computer involvement that
began with material requirements planning (MRP), a
suggested improvement over the older reorder point
(ROP) system, in the early 1970s. In the opposing
vein, the so-called Japanese manufacturing techniques
such as just-in-time (JIT) or zero inventories (ZI),
make little use of computers and instead place greater
responsibility for schedule compliance and quality on
the production worker. However, the techniques used
to implement JIT and ZI are, in many ways, identical
to those found in the “out-dated” ROP systems. Plus
¢a change, plus c’est la méme chose.

The terms push and pull refer to the means for
releasing jobs into the production facility. In a push
system, a job is started on a start date that is computed
by subtracting an established /lead time from the

date the material is required, either for shipping or
for assembly. A pull system is characterized by the
practice of downstream work centers pulling stock
from previous operations, as needed. All operations
then perform work only to replenish outgoing stock.
Work is coordinated by using some sort of signal (or
Kanban) represented by a card or sign.

One problem with comparing pull and push systems
is that terms like JIT have come to mean more than
a way to schedule production. JIT includes other
features such as short setup times, perfect quality,
stockless production, and increased worker involve-
ment. To a certain extent, JIT has come to refer to all
that is good in manufacturing. As such, it is difficult
to understand when and why push and pull systems
are effective. This paper seeks to address this problem
by studying the essence of push and pull in several
simple and analytically tractable situations. In partic-
ular, we will:

1. address the issues associated with push and pull
systems and devise a set of pertinent measures;

2. conjecture reasons for the improved performance
of pull systems over push systems;

3. test these conjectures with theoretical comparisons
of push and pull systems.

We believe this research has led to a better under-
standing of how pull systems work. As a result, we are
able to propose a system that has characteristics of
both push and pull that appears to outperform both
pure push and pure pull systems.
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1. LITERATURE REVIEW

Because of increased concerns about American man-
ufacturing competitiveness, there is new interest in
alternative production control systems. Much of the
discussion in the literature focuses on the relative
merits of push (e.g., MRP) and pull (e.g., Kanban)
systems. However, most of the literature dealing with
Kanban and other pull systems is descriptive in that
few mathematical models have been developed. This
fact is noted by Bitran and Chang (1987) and Zangwill
(1987).

Hall (1983) provides a good description of how
Kanban works and gives some important implemen-
tation details. Schonberger suggests that the “variabil-
ity reduction” found in pull systems is extremely
important to overall system effectiveness. This is re-
iterated by Chen et al. (1988) in a study using queueing
networks. Finally, Karmarkar (1986) points out that
the number of cards (Kanbans) in the system creates
an upper limit on work-in-process (WIP).

The few papers that have provided mathematical
models concentrate on deterministic settings. These
include work by Kimura and Terada (1981) who
develop some basic equations for a Kanban system,
and Bitran and Chang (1987) who provide a mathe-
matical programming approach for optimizing a
deterministic Kanban system.

One way to avoid the analytic difficulties of mod-
eling Kanban systems is to use simulation and to
compare effectiveness in specific instances. An early
study by Kimura and Terada compares the effect of
fluctuations in demand in push and pull systems and
concludes that Kanban tends to dampen these fluc-
tuations. On the other hand, Ritzman and Krajewski
(1983) were able to demonstrate that MRP is more
effective than ROP in systems having many levels in
the bill of material structure and larger lot sizes. More
recently, Krajewski et al. (1987) performed an
extremely detailed study using a simulation model
that has been validated extensively with industry expe-
rience. This study involved a great many factors,
including customer influences such as forecast error
and “specials,” vendor influence, buffer mechanisms,
product structure, facility design, scrap loss, equip-
ment failures, worker flexibility, inventory accuracy,
and lot sizing rules. The principal measures used were
percent of past due demand and total inventory. Some
of the conclusions of this study were:

... uniform workflows and flexibility to adjust to changing
capacity requirements is the key to improving performance.
The Kanban system, by itself, is not crucial to improving
performance (emphasis added).

An important result of this study is the realization
that the manufacturing environment itself may have
a greater impact on system performance than the type
of control strategy used. In light of these conclusions,
it is important to separate environmental factors from
those related to production control strategies.

Another reason it is difficult to compare push and
pull systems is that their basic modes of operation are
radically different. Push systems control throughput
by establishing a Master Production Schedule (MPS)
and measure WIP (e.g., input/output control; see
Wight 1970) to detect problems in meeting a schedule.
Pull systems, on the other hand, control WIP and
must measure throughput against required demand.
This is typically accomplished using some sort of
quota system that represents the amount of produc-
tion required for each time period. If the quota is
always met, no due dates will be missed. However,
models that will predict quota shortfalls before the
end of a period in a stochastic production facility are
rare. Fortunately, Kanban systems offer production
foremen great visibility to the status of backlogs
(Karmarkar).

1.1. The Contribution of this Paper

The purpose of this paper is not simply to compare
Kanban and MRP, but to offer theoretical motivations
for the apparent superior performance of pull systems.
Along with a general heightened awareness of environ-
mental issues given by Krajewski et al. (1987)
and Karmarkar (1986), we submit the following
conjectures:

1. There is less congestion in pull systems.

2. Pull systems are inherently easier to control than
push systems.

3. The benefits of a pull environment owe more to
the fact that WIP is bounded than to the practice
of “pulling” everywhere.

To examine these conjectures we first identify basic
issues regarding the operation of push and pull sys-
tems, particularly, controls and performance mea-
sures. We then compare these performance measures
in simple models for push and pull systems for which
analytic results are available.

The first conjecture regarding congestion is tested
using an open queueing network of tandem exponen-
tial queues with Poisson arrivals to represent the push
system and an “equivalent” closed queueing network
(CQN) to represent the pull system. These networks
are equivalent in that they have the same stations with
the same throughput. In the closed system, jobs are



pulled into the production facility whenever an earlier
job is completed and are then pushed between sta-
tions. In a Kanban system, jobs are pulled by each
station from the previous station. The closed system
thus represents a production facility operating under,
what we call, a constant work-in-process (CONWIP)
strategy. The performance of this system sheds light
on why pull systems work well and presents an exciting
area for further research. Although our results are
exact only for exponential processing times and
Poisson arrivals, we believe they provide needed
insight into other, more realistic, systems.

Our controllability conjecture deals with both prac-
tical control considerations and control robustness. In
this case, we ignore the improved performance of pull
systems implied by the first conjecture and compare
instead, the robustness of controlling WIP (as in the
pull system) with controlling throughput (as in a push
system). For these comparisons, the assumptions are
substantially weaker.

To test the last conjecture we compare the per-
formance of Kanban, which pulls everywhere, with
CONWIP, which pulls only at the front of the line.
Again, these systems involve exponential processing
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Figure 1. Pure push, pure pull, and constant WIP
systems.
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times. Figure 1 presents the three networks used for
comparison.

2. CONGESTION IN PRODUCTION SYSTEMS

We first address the issues related to macroscopic
performance measures of production systems. Before
comparing push and pull systems, however, it is nec-
essary to describe the nature of the production settings
for which our comparisons are valid and to generalize
the production control problem in order to establish
relationships between pertinent measures.

2.1, Issues

To be sufficiently general, we do not assume the
presence of a stationary demand process. Instead, we
allow the demand that is seen by the shop floor to be
the result of an exogenous demand process combined
with a feedback process generated within the firm.
Between the actual customer and the shop floor we
assume there is some sort of buffer. In many cases,
this buffer is the master production schedule. Thus,
our results may not hold for situations where jobs are
released to the shop as soon as they are received (e.g.,
a copy shop). However, in many cases, we believe our
assumption to be more realistic than assuming a sta-
tionary demand process that feeds directly to the shop.
In both the build-to-order and the build-to-stock cases,
management will usually work to maintain a com-
fortable level of demand in the MPS. Thus, when the
MPS for a given product is filled many weeks out, the
sales force will concentrate on other, less popular,
products. Likewise, if it appears that the plant will
soon catch up with all demand on the MPS, manage-
ment will respond in one of a variety of ways. It can
either “push sales” with discounts or other mecha-
nisms, build anticipation inventory, or reduce produc-
tion capacity by eliminating shifts or reducing the
workforce. In any case, the outside demand process
has less impact on the utilization of the individual
stations than if jobs arrived independently and pro-
ceeded directly to the shop floor.

For these reasons, we assume that there is always
demand for the shop. This is important to both push
and pull systems. In the push system, we assume that
there is always a complete release of work at the start
of each period (day, shift, etc.). The decision variables
in these systems are how much to release and how
often. In the pull system, the decision variable is how
much WIP to maintain between various stations.
Since the throughput of a pull system is a result of
this WIP configuration, the presence of the MPS
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buffer means that the pull system will always be able
to start work when authorized. Thus, although the
firm is subject to a nonstationary demand process, the
production facility itself is assumed to operate in
steady state with a constant Poisson arrival rate in the
push system and unlimited product availability in
the pull system.

We further generalize the production control prob-
lem by considering the production of a part between
two adjacent levels within a product structure. This
“line” could represent fabrication of a part needed for
an assembly operation (in a multilevel bill of material)
or the completion of an entire job from raw materials
to finished goods (as in a steel mill). All machines in
this line are assumed to have independent processing
times. We realize that these are ideal conditions for
both the push and the pull systems. However, in this
section, we are only interested in the relative perfor-
mance of the two systems and not in robustness of
control, which is addressed in the next section.

We will assume that the part is needed some time /
(the lead time) after it is requested. The service level
for the line, s, is defined as the probability that the
time to complete the part is less than or equal to .
We further assume that any parts arriving before /
time units have elapsed will wait in inventory. This is
not unusual because in an assembly operation all parts
must be present before the assembly can be completed.
Likewise, in a single level operation, production is
typically coordinated to a shipping schedule (see
Kanet and Christy 1984 for a discussion of forbidden
early-order departure). We represent the average of
this waiting inventory as I,,. Finally, we let n, 6, ur,
and o designate, respectively, the average work-in-
process, the throughput of the line, and the mean and
variance of the cycle time in steady state.

We further assume that for »n (and, hence, 0) in
some range of interest, there exists a distribution func-
tion & for the cycle time, T, such that

F({)=P{T<tl=a (t—_—”>
or

We believe that this assumption is satisfied approxi-
mately for many systems. Hence, the expression for
the average waiting inventory that follows is approxi-
mate as well. For further discussion see the Appendix.
Define z, = inf{u: ®(«) = s}. Then for fixed values of
throughput 6, and service s, we see that:

1. From Little’s law:
h=pur 0’

so that WIP depends only on mean cycle time.

2. The average waiting inventory, 7, will be

!
I,=0E[max(0,/— T)] =4 fo (- t)dF(t)

=070J:x<1>(z)a’z, (1)

so that 7,, depends only on the variance of cycle
time.
3. The necessary lead time will be,

l= o7z, + pr,

so that / is a linear function of both the mean and
standard deviation of cycle time.

Thus, for fixed values of throughput and service we
conclude that it is important for cycle time to have
both a small mean and a small variance, in that:

1. Smaller mean cycle times allow for:
* more competitive lead times;
» smaller reorder points;
» shorter MPS frozen zone, and thereby, more
flexibility;
« less WIP, and thereby, less exposure to changes
and damage;
* less WIP, and thereby, less inventory investment.
2. Smaller cycle time variance allows for:
* more competitive lead times;
» smaller buffers between stages;
+ less waiting (finished) inventory, and thereby, less
inventory investment.

2.2. Comparisons

We are able to obtain a comparison of mean cycle
time directly by comparing the performance of an
open queueing network with an “equivalent” closed
queueing network. Consider a closed tandem system
made up of K stations with z customers in which each
station is composed of a single exponential server
with rate w;. The throughput, 8(n), can be written as
G(n — 1)/G(n), where G(n) is the normalization con-
stant found in Buzen (1973). Consider an “equivalent”
open network with Poisson input rate, A(n) = 6(n).
Let EN? and EN¢ be the expected number of jobs
at the /th station of the open and closed systems,
respectively.

Theorem 1. For all K and n, EN¢ > EN¢.

(M)j (2)
1 Mi

Proof. Clearly

)/ ui _
1 = Mn)/pi |

M 8

EN} =

It



On the other hand,
EN¢

_ g Gn—)) (1)
= G \w

_w_G(n=)Gn—j+1) G(n—l)(l)j 3)
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But, for all m > 0,

Gn—m _Gn-1
Gn—m+1) G
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with equality holding for m = 1. Hence, from (3) we
have

v (G =Y (1Y
EN"\Z< G )(u)

J=1
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Corollary 1. Two results immediately follow from the
above theorem.

i. If EN° is the expected total number of customers
in the system, then EN° > n.

ii. If ET° is the expected cycle time in the open
system and ET¢ is the expected cycle time in the closed
system, then ET° > ET".

2.3. Discussion

The implications of these results are clear—there is
less congestion in a closed queueing network than in
an equivalent open network. Obviously, a CONWIP
system will have less WIP than an equivalent push
system operating under these conditions. If the cycle
time distributions for the push and CONWIP systems
can be approximated by distributions from a family
having the aforementioned characteristics, CONWIP
has better performance on the measures related to
mean cycle time. If the cycle time variance in the
closed system is less than that in the open system, we
obtain the other competitiveness results. We conjec-
ture that this is true because the number of customers
at different servers is negatively correlated in the
closed network and is not correlated at all in the open.
This notion of “negative dependence” has been
formalized by Whitt (1984).

Equally clear is the fact that CONWIP, and indeed
all pull systems, require a “better” production envi-
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ronment than do push systems. For instance, in the
above example we require the existence of unlimited
availability of product and the management of the
MPS that allows “work ahead.” This more pristine
environment is what Krajewski et al. attribute the
improved effectiveness of Kanban over MRP.

However, it is important to note that there are many
ways that the production environment can be
improved and that pull systems are better equipped
to exploit these improvements than push systems. For
example, as discussed above, most firms do have some
control over due dates (someone must agree to them)
and have some control over production rates. The
ability of pull systems to work ahead allows them to
take advantage of this improved environment. Of
course, push systems could also work ahead but this
would require a manual override of the installed
release mechanism and some sort of indicator based
on shop conditions. However, as we modify the push
to take advantage of downstream information it begins
to take on characteristics of a pull system.

We point out, however, that in the absence of the
ability to work ahead, the CONWIP system may have
more WIP, on average, than the push system. Consider
a system subject to external Poisson demands with no
MPS or other buffering mechanism, i.e., all demands
go directly to the shop floor. A CONWIP-like system
would hold jobs in a buffer outside the shop if the
WIP level for the shop was at the desired level. The
push system, on the other hand, would always allow
arriving jobs into the shop. It is clear then that cycle
times in the push system would be less than in the
pull system because work is never started later, and
would therefore have less average WIP.

This example highlights the importance of the buff-
ering mechanism that separates the external demand
process from the shop floor and the ability of pull
systems to exploit the opportunity to work ahead.
Given these environmental conditions, CONWIP
lines tend to have shorter and more predictable cycle
times that push lines. Consequently, CONWIP lines
can make better use of these additional controls than
push systems. We now further develop this issue of
controllability.

3. CONTROLLABILITY

As stated earlier, a push system controls throughput
and measures WIP while a pull system controls WIP
and measures throughput. We will discuss the issues
surrounding controllability and then compare the two
systems.
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3.1. Issues

There are two issues related to controllability. The
first deals with practical implementation considera-
tions while the second deals with robustness, i.e., the
sensitivity of an optimal strategy to errors in control.
Regarding the first issue, the pull system is clearly
superior for three reasons:

1. WIP is easier to control than throughput because
it can be observed directly.

2. Throughput is typically controlled with respect to
capacity. As such, capacity must be estimated and
such estimates must include details, such as process
time, setup time, random outages, worker effi-
ciency, and rework.

3. Throughput is controlled by specifying an input
rate. If the input rate is less than the capacity of
the line, then throughput is equal to input. If not,
throughput is equal to capacity and WIP builds
without bound. By incorrectly estimating capacity,
input can easily exceed the true capacity. This is
particularly true when seeking high utilization
rates.

In addition to the practical control issues just dis-
cussed, we now show that it is inherently easier to
control WIP than to control throughput. First note
that by using an appropriate function relating the
specified WIP (throughput) to the resulting through-
put (WIP), we can control a pull (push) system by
specifying a throughput rate (WIP level) and then
computing and setting the corresponding WIP level
(throughput rate). Our point here is not so much that
pull systems are easier to control, but that controlling
WIP is more robust than controlling throughput. The
fact that it is natural to control WIP in pull systems
leads to the conclusion that such systems are easier to
control.

3.2. Comparisons

The robustness comparison comes from computing
the sensitivity of an optimal strategy to errors in setting
control levels. Our comparison involves a simple static
optimization problem where the control variable is set
to an optimal value. Of course, not allowing for feed-
back and a “closed loop” control policy is an over-
simplification of the real situations. However, we
believe that even this naive model sheds some light
on the robustness issues that arise when controlling
push and pull systems.

We consider the optimization problem of balancing
the cost of lost production with the cost of added WIP.
Lost production costs take the form of missed sales

opportunities, while WIP costs include not only inven-
tory carrying costs but also the cost of longer lead
times and less flexibility. We denote the (average) WIP
by n and the steady-state throughput by # and assume
that there exists a twice continuously differentiable
function, f, such that 6 = f(n). We further assume fto
be nondecreasing and strictly concave everywhere and
note that Shanthikumar and Yao (1988) have shown
that this is true for Jackson-like networks in which
the service rate at each station is a nondecreasing
concave function of the queue length. Since this func-
tion is one-to-one,

0 = f(n)
n=f746).

If p represents the marginal profit per piece and ¢ the
associated carrying cost per period per piece, then the
profit per unit time, Z, associated with a particular
policy will be

Z(n) = pf(n) — cn controlling WIP. (5)
Z(8) = pd — ¢f~'(6) controlling throughput. 6)
Note that

2(0) = Z(f(n)) = Z(n).

We define #* and n* to be the values of § and » that
maximize Z. These values exist and are unique
because f is concave everywhere.

Robustness is related to the sensitivity of an optimal
strategy to small changes in the control. A Taylor
expansion of Z at the optimum control level shows
that this sensitivity is characterized by the second
derivative of Z. To avoid dimensional problems we
define these in terms of the optimal values themselves.
Hence we want to compare

d*Z(9) d*Z(n)
*2 *2
0 o |, versus 1 i |
Lemma 1
20) | (dzmn) | 7 _p
da? | x\ dn* |.] &

Proof. Elementary calculus is applied to the defini-
tions of Z and f (The assumption of the strict
concavity of f guarantees that d?Z/dn® is strictly
negative.)

The following theorem shows that controlling WIP
is more robust than controlling throughput.



Theorem 2
. d*Z(0) o &2
do* |, dn® | .

Proof. We assume that Z* is positive, otherwise we
would quickly go out of business, so that,

Z(n*) = pf(n*) — cn* > 0.
Then
po* > cn*

0*21)2
n*c?

> 1.
The desired result comes directly from the lemma.

3.3. Discussion

The conditions for WIP to be controlled more easily
than throughput are rather weak: 1) throughput must
be a one-to-one concave function of WIP, and 2) there
must exist a control level at which the business is
profitable.

While in theory for any system either throughput
or (average) WIP can be the control variable, in prac-
tice control policies for one of these variables are
typically more natural and more easily implemented.
Comparisons of control policies for different systems
do not fall in the framework of Theorem 2.

Consider a simple example. Both systems are com-
posed of five identical exponential servers with unit
processing times and cost coefficients of p = 100 and
¢ = 1. For one system we allow Poison arrivals, in the
other we employ CONWIP. Since these strategies are
different the function relating WIP to throughput in
the CONWIP system will not be the inverse of the
function relating throughput to average WIP in the
push system. We therefore need two functions, viz.

n .
f(n) = ! controlling WIP
5 .
g(0) = = controlling throughput.

Figure 2 compares the two profit curves as a function
of percent of optimal. Note that the difference in
congestion (implied by our first theorem) yields a
small gap at the optimal. More important is the fact
that CONWIP outperforms optimal push with WIP
levels as small as 40% too low and as large as 60% too
high. Also, since throughput is bounded by capacity,
the push profit falls sharply above the optimal and
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Figure 2. Profit functions for exponential lines with
identical stations.

becomes negative approximately 20% above optimal.
CONWIP continues to have positive profits until WIP
levels have reached 600% above optimal.

Note that this type of stationary analysis is not
always a good representation of reality. It does, how-
ever, give us an indication of why pull systems are
easier to control. In a real production system there
would be feedback under both push and pull produc-
tion scenarios. Consider the case of overestimating
capacity in the push system by more than 20%.
Although the steady-state model would predict a neg-
ative profit level, it is unlikely that the plant manage-
ment would allow conditions to become so bad.
Instead, as WIP levels and cycle times begin to rise
some emergency action, such as overtime or cancel-
lation of orders, would be taken. Although this may
not be as bad as negative profit, it is certainly not
desirable.

Also note that in a push system there is a strong
temptation to overload the MPS by optimistically
estimating capacities. Unfortunately, this is often not
recognized until WIP levels have become excessive. If
the quota used in a pull system is inflated, it will be
discovered almost immediately.

Finally, a conservative pull user will err high when
setting WIP levels. She will then gradually reduce WIP
levels until starvation of bottleneck resources occur.
Figure 2 shows the danger of erring on either side of
optimal when setting input rates in a throughput
controlled system,

4. THE MAGIC OF PULL

In this section, we motivate the conjecture that the
bounding of WIP in a pull system can be more impor-
tant than pulling at every station. We do this by
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comparing the throughput of a system in which WIP
is bounded but allows “pushing” between stations
(CONWIP) with an equivalent system which pulls at
each station (Kanban). Our comparison involves
exponential CONWIP and Kanban systems subject to
infinite demand with an infinite supply of raw mate-
rials. Before doing this, however, we discuss some of
the practical benefits associated with CONWIP.

4.1. Issues

Monden (1983) describes the basic philosophy behind
the Toyota Production System as a means to
“... produce the kind of units needed, at the time
needed, and in the quantities needed.” Kanban rep-
resents a subset of this larger system and is used to
maintain just-in-time production. However, Monden
warns that:

Unless the various prerequisites of this system are imple-
mented perfectly (i.e., design of processes, standardization
of operations and smoothing of production, etc.), then just-
in-time will be difficult to realize, even though the Kanban
system is introduced.

The conditions necessary for Kanban to work well are
(Monden, p. 4):

1. “Smooth” production involving a stable product
mix;

Short setups;

Proper machine layout;

Standardization of jobs;

Improvement activities;

Autonomation (autonomous defects control).

A o

If these conditions are met, Kanban provides “an
information system to harmoniously control the pro-
duction quantities at every process.”

We believe, however, that such harmonious control
is largely due to the fact that WIP is bounded, thereby
creating shorter and less variable cycle times, and not
from the fact that the Kanban system pulls at every
station. If we relax the pulling requirement, it appears
that we can achieve the benefits of Kanban in less
pristine production environments.

For instance, we no longer require a stable product
mix. In a CONWIP system the pull signal specifies
only a certain routing. Any part that uses that routing
can be started. Synchronization of assembly opera-
tions is accomplished by starting jobs in a predeter-
mined sequence.

Secondly, CONWIP addresses the problem of hav-
ing many part numbers on a single line. For instance,
a circuit board operation typically has a small set of
product zypes (i.e., dimensions of the boards) and a

large number of unique part numbers (i.e., different
“artwork™). In such an environment it is almost
impossible to implement a Kanban system because
some WIP is required for each active part number.
Using CONWIP, a new job is started whenever an
existing job is completed. Consequently, the new job
must share the same routing as the completed job but
does not have to be for the same part number.

Also, CONWIP is simpler to operate since only one
value of WIP must be specified for an entire line
versus a Kanban system in which the number of cards
must be specified for each station.

Finally, robust queueing models are available to
predict the performance of CONWIP systems
(Gordon and Newell 1967, Reiser and Kobayashi
1975, Denning and Buzen 1978, and Reiser and
Lavenberg 1980). On the other hand, modeling sto-
chastic Kanban systems is extremely difficult.

4.2. Comparisons

Aside from the above practical concerns, we believe
that pulling everywhere is actually less efficient than
maintaining a constant WIP level. By efficient we
mean the throughput obtained for a given number of
Kanbans. We were first led to this conclusion when
observing in simulation studies that WIP would nat-
urally accumulate before bottleneck processes in
CONWIP systems. This, of course, tends to increase
the utilization of the bottleneck and, thereby, increases
the throughput of the entire line. We can demonstrate
this effect by comparing the throughput of a CONWIP
system composed of exponential servers with that of
an equivalent (i.e., having the same number of cards)
Kanban system (see Figure 3).

For our comparison, we consider systems having K
stations, each station with an exponential machine
having a processing rate of u;,. The Kanban system
works as follows. Containers of parts with Kanbans
attached are queued at “stock points” at each station
(indicated by V in Figure 3). Authorizing Kanbans
indicating demand from the next station are stored in
a Kanban box (indicated by LI in the figure). Both
systems have unlimited raw material (shaded V) and
are subject to unlimited demand (shaded LI). Conse-
quently, the stock point at the first station a/ways has
one container of parts and the Kanban box at station
K always has one Kanban.

If station i has a container of parts at its stock point
and a Kanban 1n its Kanban box, a worker will remove
the Kanban from the container and send it back to
station / — 1 (indicating a replenishment demand) and
begin work on the parts. When finished, the worker
removes the authorizing Kanban from the box,
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attaches it to the container and then sends both to
station i + 1. (Note that in most real Kanban systems
there is an inbound and an outbound stock point and
two Kanbans, one authorizing production and one
authorizing conveyance. Our system is equivalent in
that the movement of material can, itself, be consid-
ered as a process between two stockpoints.)

The first station in the CONWIP system works in
the same fashion as the Kanban system. At the other
stations the only requirement to begin work is that a
container is available in the stock point. Kanbans flow
from station K to station 1 whenever a container is
started at K. Otherwise, Kanbans flow along with the
material from station to station.

We begin the comparison with all the Kanbans
attached to containers and #; containers at station i,
1 < i < K and no Kanbans in any box except at
station K. Because of the one Kanban at K, work will
begin immediately at all stations. We now use uni-
formization (e.g., see Ross 1983) to construct sample
paths of the two systems on the same probability space
in order to compare their outputs.

Let (¢,),-1,», .. denote the epochs in a Poisson count-
ing process with rate Y, ;. Event ¢ occurs at epoch ¢
with probability u;/Y; u; and corresponds to the poten-
tial completion of a container of parts. Completion
depends on the status of the system, i.e., whether there
is work to complete and whether there is an author-
izing Kanban. Let Y,-(lj)[f’,-(t,-)] denote the number of

Push and Pull Production Systems | 529

Kanbans in the box and X, ,-(tj)[X :(¢,)] denote the num-
ber of containers at station 7 at epoch ¢, for the Kanban
[CONWIP] system. Finally, denote the number of
containers completed and moved from station ; imme-
diately after epoch ¢; by E,-(tj)[E,-(lj)].

At t = 0, we note that

Y(0)=0,1<i<K
Y0)=0,1<i<K
X0)=X0)=m>0,1<i<K
E©)=E(0)=0,1<i<K (7)
Also,

Yi(t) = V()= 1,120

X=X =1,1t=0.

Forn=1,2,..., note the following relationships:
For event ¢;:
E\(t) = E(t;-) + I (4-1) > 0} ®)
Ei(t) = E\(t-1) + I{Yi(1-1)> 0} )
Yi(t) = E(t) — E1)

+ I{X(4) >0} {Yy(;) > 0} (10)
Yi(1) = Ex(t)) = E(1) + I{ Xi(1)) > 0}, (11)

where I{.} is the indicator function.
Forevente, 0 <i<K:

E(4)=E(ti-)

+I{Yi(ti-) >0} {Xi(t,-1) >0} (12)
E(t)=E(t-) + I{X(1-) >0} (13)
Yi(t)) = Eiri(t)) — Ei1))

+ I{Y:1(;)) > 0} {Xi11(2;) > 0} (14)
Xi(4) =ni+ Ei(4)) — Et)) (15)
Xi(t)=ni+ E (1) — E1). (16)

The following lemma is needed to obtain our
comparison.
Lemma 2. For all i and j
E,'(lj) =< E,'(lj) + it

Proof. The proof involves two cases: i = 1 and
I<is K

Case 1 (i = 1). At =0 the inequality of Lemma 2 is
true by hypothesis. Assume that is is true at z,. We
only need to examine the case where the inequality is
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not strict, namely
E\(ti-) = Et-)) + ma.
Using (10) and (11) and dropping the ¢,
V- ¥V, =Ex-E,—E,
+E +I{Xc>0 —I[{X,>0,Y,>0}.  (17)
Using (15) allows E;, to be written as,

K-1
Ey=Ex— Y (n;— X))
=3

So that (17) can be written as

. . K-1

Yl - Yl =E1(—EK+ Z (”lj"‘)(j)'*'nz
J=3

+ I{Xx> 0} = I{X,> 0} {Y>>0}.

The sum of the first two terms on the right-hand side
is positive by hypothesis, since there can be only one
event per epoch. The summation term is nonnegative
since 7n; = X;. The sum of the last three terms is
nonnegative since #, > 0. The desired result is
obtained by considering (8) and (9).

Case 2 (1 < i < K). Again, the only interesting case
is when

E(ti-) = Ei(t-1) + 1.
From (16) and (15) and again dropping ¢,
X-X=E_ -E_ —-E+E

=FEy—Ei.y + Nigy. (18)

Since the right-hand side is greater than zero by
hypothesis, the desired result is obtained by consider-
ing (12) and (13).

The following theorem provides our throughput
comparison.

Theorem 3. The throughput of an exponential Kanban
system will not exceed that of an equivalent CONWIP
system, almost surely.

Proof. This is immediate consequence of the above
lemma and the fact that ng,, = 0.

This result is not surprising because the Kanban
system is equivalent to a closed queueing network
with finite queue space and blocking. As such, one
would expect it to have less throughput than the same
system with infinite queue space.

We also note that the above analysis considers sys-
tems in which the “value-added” nature of WIP is not
considered, i.e., the cost of carrying WIP is largely the

cost of decreased responsiveness as well as the atten-
dant management overhead associated with tracking
more parts. In such systems, the WIP level as repre-
sented by the number of pieces (as opposed to cost) is
all that needs to be considered. However, in systems
where the inventory carrying costs are significant and
where value is added to the product in terms of
increased variable cost (e.g., purchased components),
the comparison is not as clear. For such cases, we
must consider the WIP value. Since, for certain card
assignments in the Kanban system, the WIP value
may be less than that under CONWIP, there could
be cases in which it is better to run Kanban than
CONWIP. This occurs when one is essentially
willing to sacrifice throughput (revenue) for the sake
of reducing inventory investment. In such cases, and
particularly when the bottleneck station is near the
end of the line, a Kanban system could provide higher
profit levels.

5. CONCLUSIONS

We have conjectured that less congestion results in
pull systems because WIP levels are limited and WIP
variability is reduced. Our demonstration of this for
the exponential case provides some theoretical justi-
fication for this supposition. We also suggest that the
effectiveness of pull systems does not result from
pulling but from limiting WIP and WIP variability.
Our comparison of a CONWIP system to a Kanban
system offers credibility to this hypothesis. Finally, we
have shown, both from a practical standpoint and
with respect to an optimal policy, that a pull system
is inherently easier to control than a push system.
We point out that there are many remaining issues
to be resolved. Our congestion result was obtained
using a push system that does not measure WIP to a
pull system that does not measure throughput. An
important area of further study is to determine ways
to track throughput in a pull system to external
demand. Other issues include defining routings in
CONWIP systems and to determine the number and
size of jobs to be used on those routings. Detailed
simulation studies are needed to determine effective
implementation strategies for CONWIP. Finally, an
industrial test site is required before CONWIP can be
considered as an alternative to Kanban or MRP.

APPENDIX

The Distribution of Cycle Times

For our comparisons regarding congestion we required
that distribution of cycle time for both the push and



the pull systems be suitably approximated by a family
of distributions whose mean is a location parameter
and whose standard deviation is a scale parameter.
This assumption affects our comparison of required
lead times and average waiting inventory but not the
comparison of WIP levels (which depends only on
Little’s law).

Note that the normal distribution fits our assump-
tion and appears to work especially well for systems
with cycle times whose mean is significantly larger
than the standard deviation. The normal is clearly
appropriate in push systems with a large number of
exponential stations because response times in each
station are independent. It also appears appropriate
for some closed systems of suitable size as indicated
by Wong (1979) and from our own simulation
experience.

When making comparisons, however, a more subtle
assumption is made; namely, that the distribution
family for the push and the pull systems is the same.
If the normal is appropriate for both systems, then
this is not a problem. Otherwise, several of our results
are not valid.

For distributions lacking the location and scaling
property of the first two central moments, we can no
longer write the required lead time as a simple linear
function of the mean and standard deviation. We can,
however, obtain bounds with these moments using
Chebyshev’s inequality,

P{T<l}=s.

Writing [ = u + zo yields

P{T_#<Z}=s.
[

Chebyshev’s inequality yields | — 1/z? as a lower
bound for service. If system A has a cycle time distri-
bution with mean u, and variance ¢%, and system
B has a cycle time mean of u? and variance of o3,
then we can compute lead times /, and /, that will
guarantee at least a service level of 1 — 1/z% If
w; >y and o, > oy, then [} > .

The robustness of the average waiting inventory
formula can be examined by comparing

c(h =D dF(D) o
g (12 - t) sz(l) a2 ’

Writing / as u + zo allows the ratio of the integrals to
be written as

w + zoy — [o t dF\(1)
M2 + Zo, — J-:)Z t sz([)’
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and we note that the service levels are no longer the
same for a given value of z. If, however, we let s — 1
by allowing z — oo, the ratio becomes, ¢,/a>.
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