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Abstract 

In this paper we derive an alternative representation for the reflection of a continuous, bounded 
variation process. Under stationarity assumptions we prove a continuous counterpart of Littlc's 
law of classical queueing theory. These results, together with fonnulas from Pahn calculus, arc 
used to explain the method for the derivation of the mean value of a buffer fed by a special 
type stochastic fluid arrival process. 
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1. Introduction 

Delay systems with stochastic fluid input processes are currently being used as mod- 

els of components of high speed communication networks. Motivated by such applica- 

tions, we derive a version of Little's law valid for reflected processes with stationary 

increments and continuous, bounded variation paths. In doing so, we find a new reprc- 

sentation of the Skorokhod reflection mapping. Using this representation together with 

a generalized Campbell 's  formula from Palm calculus we interpret Little's law as a 

conservation law for a multiclass stochastic fluid queue. As an application, we consider 

the system of Dupuis and Hajek (1994) and give a rigorous proof of the formula fi~r 

the mean buffer content. The latter system models the shared buffer in an asynchronous 

transfer mode multiplexer. 

The alternative representation for the reflected process is derived in Section 2 and is 

a result of  independent interest. We emphasize that the representation depends on the 
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continuity of the free process. Little's law is obtained from this result in Section 3. 
Finally, computations and formulas for the derivation of the mean buffer content are 
reported in Section 4. 

We note that previous work on fluid queues and Little's laws can be found in 
Rolski and Stidham (1983), Glynn and Whitt (1989), and Miyazawa (1994). The 
connection with Palm Calculus is pointed out by Miyazawa (1994). In particular, 
Miyazawa introduces the concept of  detailed Palm probability that helps to explain 
the notion of conditioning with respect to a "typical point" of  a general stationary 

measure. 

2. An integral representation for a reflected process 

Consider a buffer fed by an arrival process {A(t), t~>0) and served at rate c > 0 
in a work-conserving fashion. In communications applications we think of A(t) as the 
total number of  "bits" arriving on [0, t]. The arrival process is assumed to be right 

continuous. The buffer content (or load) Q(t) is found by reflecting the free process 

X( t )  := Q ( 0 - )  + A(t) - ct, (1) 

where Q ( 0 - )  is the load just before time 0. The notion of reflection is classical: it 

requires that Q be obtained from X by adding to it a right continuous, increasing 
process L, with L(0) = 0, such that the points of increase of  L be a subset of the zeros 
of  Q and Q(t)>~O for all t. 

Given any right continuous X with left limits process, such as, for example, ( l ) ,  
there is a unique L (and hence a unique Q = X + L )  satisfying the above requirements, 
namely, 

L ( t ) = -  inf X(s)  AO. 
O~s<~t 

The mapping X ~ Q is referred to as the Skorokhod reflection mapping, a basic 
property of  which is its causality, expressed by the fact that, for any s ~> 0, the reflection 
of {Q(s) + X(s  + t) - y ( s ) ,  t >>-O) equals {Q(s + t), t>~0}. Causality can be verified 

by the definitions above and can be explicitly expressed as 

Q(t) = sup X(u,t] v {Q(s) +X(s, t]} .  
s<~u<~t 

(2) 

Here and in what follows we shall often use the convention X(u, t] := X ( t ) -  X(u). 
Even though (2) can be taken as a definition of the reflected process, there is another 

representation (we call it integral representation), valid if X is continuous and of 
bounded variation, which is useful in connection with Palm calculus for stochastic 
fluids. The representation is given by Theorem I below, whose proof requires the 
following: 

Lemma 1. Let Q be the reflection of  a process X : ~+ --~ ~ which is right continuous 
with left limits. Suppose there is 2>~0 such that X( t )  + At is an increasing function. 
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Then, for  any tl < t2, the Jollowing sets are equal: 

F :=  (s e [tl,t2] " Q(s) > )o(t2 - s ) } ,  

G := {s e [tl,t2] " X(t2)  - AZ(s) ÷ )~(t2 -- S) <: Q(t2) }. 

Proof. Set t = t2 in (2). Observe that if s ¢ F then Q(t2)>~Q(s)+X(s ,  t2] > .~(t: - 
s) + X(s ,  t2], that is, s E G. Next assume that s ~ G. Then X(s,  t2] + ).(t2 - s) is 
strictly smaller than Q ( s ) +  X(s ,  t2], in which case ).(t2 - s )  < X(s,  t2], i.e., s c F, or 

X(s,  t2] + Z(t2 - s) is strictly smaller than X(u ,  t2] for some u C Is, t2]. But the latter 

case is impossible: Indeed, it is equivalent to [X(s,u] + ).(u - s)] + 2(t2 u) < 0; 

however, X(s,u] + 2 ( u - s ) > ~ 0  and 2(t2 - u)>~O. 

Theorem 1 (Integral relation for a reflected process). Suppose that X • ~ - -  ~ is' 
continuous with bounded variation, and X(O) = O. Let Q be the reflection O/~ X. U 
X ( t )  + )~t is increasing, for  some 2~>0, the followin9 relation holds: 

Q ( t ) =  l [ s < ~ t < s + 2 - 1 Q ( s ) ] [ X ( d s ) + ) . d s ] .  (3) 

Proof.  We will use the change of  wlriables formula 

.~o t I Y(t) g(Y (u ) )Y (du )  = .q(y) dy, (4) 
a r~0) 

valid for any integrable function (J, provided that Y is increasing and continuous 

(whence the inevitability o f  our continuity assumption). See, for instance, Br6maud 
(1981, p. 301). To arrive at the form (4), observe first that the right-hand side o f  (3) 

equals 

~ l [ s < ~ t  X ( t ) - X ( s ) +  - s )  + ).(t D < Q(t) l{X(ds)  2ds] .  (5) 

This follows from Lemma 1. Define then Y ( u ) : =  X ( t ) -  X ( t -  u ) +  2u, u ~ [0, t], 
observe that it is increasing, and apply the change of  variables formula (4) to (5): 

/0 t fO )(t) l [ r ( u )  < Q(t)]Y(du)  = l [y  < Q(t)] dy = Y(t)  A Q(t) .  

To conclude the proof, we show that Q(t)<~Y(t).  For O<<.u<~t we have O<~X(u)+ 
2u~<X(u) + Zt, and so supo<~u<~t[X(t)-X(u)]<.X(t)+ )~t : Y(t) .  But Q ( 0 ) =  0, by 

assumption, hence, from (2), Q(t) : SUpo~<~<,[X(t ) - X(u)] v x ( t )  <~ Y(t).  !~_ 

Special case. Consider now X ( t )  -- A ( t ) -  ct, as in the beginning of  the section, and 
let 2>~c. Assume that A(t)  is continuous, and that A(0) = Q(0) = 0. Then (3) holds. 

In particular, for Z -- c, we have 

Q(t) = l[s<~t < s + c - lQ(s )]A(ds) .  (6) 

The interpretation of  (6) should be clear: it expresses the load at time t as the sum 
of  all bits that have arrived before t but are still in the buffer at time t. Note that 
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we have assumed that A is a continuous function. I f  A is only fight continuous 
then (4), and hence Theorem l, may fail to hold. The following case exhibits this 
problem. 

Counterexample. Suppose A(t)  = 2tl[0~<t < 1] + l[t~> 1] and c --- I. One can check 
that the reflection o f X ( t )  = A ( t ) - c t  is given by Q(t) = tl[0~<t < 1 ] + ( 3 - t ) 1 [ 1  ~<t < 
3]. On the other hand, it is seen that this function does not satisfy (3). Indeed, the solu- 
tion to the integral equation (3) is given by Q(t) = t 1 [0 ~< t < 1 ] + (3 - t) 1 [ l ~< t < 2] + 

1 [2 ~<t < 3]. Thus the integral equation does not represent the evolution of  the fluid 
queueing model unless the arrival process is continuous. 

3. Stochastic fluid queues and conservation laws 

By stochastic fluid queue we mean a reflected stochastic process Q with the free 
process X having stationary ergodic integrable increments. Formally, as in Baccelli and 
Brfmaud (1994), let (t2, ~ , P )  be a probability space equipped with a measurable flow 
{0t, t E ~} which is invariant under P. Assume that the pair (P, {0t}) is ergodic. Given 
a process {X(t),  t E E} having fight continuous paths with left limits, increments 
compatible with the flow, i.e., X( t )  - X ( s )  = [X(t - u) - X ( s  - u)] o 0u, and such that 
E[X(t)  - X(s)]  --- ~c(t - s)  < 0, we take (2) as the definition of  the reflected process 
Q. Under the aforementioned conditions, there is only one stationary ergodic strong 
solution of  (2): 

Theorem 2 (Existence and uniqueness of  stationary load process). Under the above 

conditions, the f ixed  point equation (2) possesses a unique right continuous solution 
{Q(t),  t E 0~}, which is compatible with the flow, i.e., Q(t) o Os = Q(t + s), for  all 

t,s E ~. 

Due to space limitations we omit the proof  of  this theorem and refer the reader to [7]. 
A consequence o f  the proof  is that there are infinitely many times t at which Q(t) hits 

zero. 
Assuming now that A is a continuous stationary ergodic random measure with 

0 < c~ = EA(O, 1] < c < cxD we define X(s, t]-= A ( s , t ] -  c ( t - s )  and consider Q to be 
the unique stationary solution of  (2). Since Q(I) = 0 for some T, we can represent Q 
using our alternative integral representation formula (6): 

Q ( t ) =  l [ s < ~ t < s + c - l Q ( s ) ] A ( d s ) =  l [ s < ~ t < s + c - l O ( s ) ] A ( d s ) .  (7) 

The range of  integration was taken from - ~  to +c~  due to the fact that the integrand 
l[s<~t < s + c- lQ(s)]  is zero for all s < T. 

We pass on to the derivation of  Little 's law and the conservation law. We take the 
expectation values on both sides of  (7) and make use of  a generalized Campbel l ' s  
formula. To set up the framework, recall that the Campbell measure for the random 
measure A is defined as E[A(S)IF], where S is a Borel subset o f  ~ and F E ~ .  The 
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Palm transformation PA of  P with respect to A is defined as the value of  the Radon-- 

Niko@m derivative E[A(dt)IF]/E[A(dt)] at t : :  0. Denoting by E.4 the expectation with 

respect to the probability measure PA, we have, almost immediately from the definition, 

the .qeneralized Campbell's formula 

~E,4 j[~ Z(s )a s  : E ~ Z(s)oO,.A(ds),~ (8) 

true for any bounded measurable process Z. The reader is referred to the monograph 

of  Daley and Vere-Jones (1988), and also to the recent report of  Schmidt and Serfozo 

(1994) for a nice compact exposition of  the concepts. 

l~heorem 3 (Little's law). Suppose that ,4 is a continuous s'tationary erqodic ramh)m 
measure. Under the assumptions (?[ Theorem 2, the stationary solution Q ()/ the 
r~jtection equation (2) sati~[ies 

E[O(0)] : -~E~[Q(0)]. (9) 
C 

Proof. Let Z(s) : :  1 [s ~< 0 < s + c - i  Q(0)] in (8) and use (7). 

The terminology "Little's law" should be clear by analogy to the classical queueing 

result. One interprets (9) as: "the mean buffer load E[Q(0)] equals the bit arrival rate 

times the mean delay EA[Q(O)/c] experienced by the typical bit". The relation is 
"clear for physical reasons"; however, its mathematical proof requires the aforemen- 

tioned setup. Considering next A as the superposition of  M jointly stationary random 

m e a s u r e s  Ai, i : 1 .. . .  ,M, and using the fact that /~4 is a mixture of  p~, namely, 

,P4 = 2_,t=lt:zi, 7) 4,, we write Little's law (9) as 

M 
~t 

EO(O ) = ~ cEA, Q(O), (10) 
i--1 

and refer to this as conservation law in harmony with namesake relations fbr traditional 

multiclass queues: it does not depend on the service discipline employed tbr individual 

streams. 

4. Mean value analysis for bursty fluid sources 

We now apply the Palm-calculus-based methods to the problem considered by Dupuis 

and Hajek (1994). It concerns a multi-class fluid queue served at rate c and led by 
M independent ON/OFF sources. The ith source initiates sessions at times . .-  < T' I < 
T[, ~<0 < T( < .- .  at rate 1/mi. The time interval between two successive sessions n and 

n ~- 1 consists of  an initial active period of  duration LI, and a remaining silent period of 
duration S],. The number of  bits transmitted by the ith source on the first t time units of  

its active period is denoted by F,~(t). The random functions {F,~, n ~ Z} are assumed 
to be i.i.d, and independent of  {7;i,, n E Z} and {S,i,, ,7 c Z}. Naturally, we take 

F,i(t ) -- 0 for t < 0, and ~i( t)  = F,~(L',,) for t > LI,, and assume that F,~ is continuous. 
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Furthermore, it is assumed that a burstiness assumption is satisfied, namely, F,'(t)>>-ct 
for O<~t<~Li,. The number of  bits transmitted on the set B C  ~ by the ith source is 

thus given by At(B):= ~ ,  fB-T,~ F~'(dt). The total arrival process is A = ~ i A i .  The 
service policy is first bit-first served. 

Let ~i be the mean bit rate o f  Ai, and ~ = ~ i  ~i. It is useful to introduce the indicator 
process (i(t) taking value 0 if source i is on its silent period and 1 otherwise. Let Pi = 
P((i(t) = 1). Denote by P the underlying probability measure, constructed as outlined 
above, under which the arrival process is stationary, let PN, be the Palm transformation 

of  P with respect to the point process Ni with points {T/, n E Z}, and let PA, be the 
Palm transformation of  P with respect to the random measure Ai. Under the assumption 

< c there is a unique stationary solution Q (the load process) to the fixed point 
equation (2) with X(s,t] :=  A ( s , t ] -  c ( t -  s), constructed on the same probability 
space. 

To compute E[Q(0)]  we first condition on ( i ( 0 ) - -  1: 

E[Q(0)]  = E[Q(O)I(i(O ) = 1]pi + E[Q(O)I(i(O) = 0](1 - pi). (11) 

Due to the burstiness assumption, on the event {~i(0) = 1}, we can write Q(0) = 
Q(T~) + A ( T ~ , 0 ] -  c ( 0 -  T~). Taking expectations, we obtain 

E[Q(0)I~i(0 ) = 1] = E[Q(T~)I~i(O ) = 1] + E[A(T~, 0] + cT~l~i(O ) = 1] 

= ENi[Q( O )] + C I. (12) 

The first term follows from E[Q(T~)I(~i(O) = 1)] = E[Q(T~)]pi, by independence, 
and E[Q(T~)] = EN~ [Q(0)], by the Palm inversion fommla (19) and independence. The 
second term 

C I := E[A(T~,O] + cr~l~i(o ) = 1] (13) 

depends only on the sources'  statistics and is computed in Appendix A. 
Assume now that S~ is exponentially distributed. Then (see Appendix B), 

E[Q(O)[~i(O ) = 0]  = EN,[Q(O)]. ( 1 4 )  

Substituting (12) and (14) into (11) we have 

E[Q(0)]  = EN,[Q(O)] + piC I. (15) 

The final step is to relate PN, to PA, by an exchange formula. In Appendix A it is 
shown that 

EN,[Q(O)] -~ EA,[Q(O)] -- C~, (16) 

where C~ is a positive expression, computable from the sources'  characteristics. Sub- 
stitute now (16) into (15) and use the conservation law (10) to obtain 

~ ,  ~ c  i - p iCl )  G ck 2 E[Q(0)]  = - :  (17) 
1 - ~ / c  1 - ~ / c  

The values of  CI, C~, and C3 := ~i(ai/c)(C~ - piC I ) are computed in Appendix A, 
as formulas (A.3), (A.4), and (A,5), respectively. Substituting them in (17) we obtain 
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the explicit formula 

1 _ EN,[FO(LI) ) otiLi)]2 E[Q(O)] - 2(c ~) Z mi ' 
i 

-- Z m?IENi ~ L° t [F; (dt )  -,zci dt]. 
i 

( 1 8 )  

Appendix A. Computations involving the statistics of the sources 

Everything depends on a proper use of  the exchange formulas 

EN; ' Z(t) dt 
E [ Z ( 0 ) ]  = (A.  ~ ) 

E~,,[~I - T~] ' 

eN, Ji~,~i~ Z(t)Ai ( a t )  
EA, [Z(0)] = (A.2) 

E~,Ai( T~ - T~] 

They both follow from the integration formula (8), and hold for any integrable 
process Z, jointly stationary with the data of  the problem. 

Regarding CI, defined in (13), we use the first exchange formula (A.I )  to obtain 

C I = (pimi)-lE~¢~ [A(0, t] - ct]dt. (A.3) 

Regarding C~, appearing in (16), we relate PA, to P,¥~ using the second exchange 
formula (A.2) to obtain 

i 
L',, 

EA,[Q(O)] = (o~irni)-lEi~ Q(t)Ai(dt) 
,! 0 

afoo L ~° = (c~imi)-~EN, [Q(0) + A ( 0 ,  t] - ct]Ai(dt) 

= EN,[O(O)] + (~ims)-I E~, [A(0, t] - ct]As(dt) 

and hence, 

C~ = (:~imi)-~Ejv, [A(0, t] - ct]Ai(dt). (A.4) 
dO 

Finally, the constant C3 = ~ i  (c~i/c)(C~ - piC I ) follows by a straightfbrward sub- 
stitution and manipulation of  the integrals involved, as in [7]. We thus obtain 

• . f~'~ 
C3 =~-~ ~(C~ - piCi) = Z  (cmi)-'E~,, [A(O,t]-ct][Ai(dt) - o~idt]. (A.5) 

i i 
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Appendix B. Papangelou's theorem and exponential silent times 

A rigorous derivation of relation (14) can be provided by means of Papangelou's 
theorem (cf. Baccelli and Br~maud, 1994, p. 54, Section 3.2). Let ~ be a history for the 
point process Ni. In our case we choose ,~¢ to be the right-continuous a-field generated 
by the history of the arrival processes up to time t. According to Papangelou's theorem, 
PN, is absolutely continuous with respect to P on YS- if and only if the g-stochastic 
intensity 21 of  N: exists. But it is easy to verify that 

A t = ((1 --  p i ) m i )  - 1 1 ( ( i ( 0 )  = 0 ) .  

Indeed, silent times of  source i are exponential random variables with mean ( 1 -  pi)mi. 
We also have E2~ = 1/mi. The Radon-Nikod~,m derivative of PN, with respect to P on 
,~_  is given by 

.Z:  ' i  l dPN, --  At l (~ i (O)  = 0) .  
dP E2~ 1 -- Pi  

Note that, by the continuity of  the process Q, the random variable Q(O) is measurable 
with respect to ~0 -  and thus 

} = E[Q(O)IC,(O) = 0]. 
dPzv., E[Q(0)I(~i(0)  0)] 

EN,[Q(O)] = E Q(O) -d-fi- : 0 - J  = 1 - Pi 

This explains the relation (14). 
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