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Abstract

Let 1 be a functional of the sample path of a stochastic system driven by a Poisson
process with rate A. It is shown in a very general setting that the expectation of
¥, E;[y], is an analytic function of A under certain moment conditions. Instead of
following the straightforward approach of proving that derivatives of arbitrary order
exist and that the Taylor series converges to the correct value, a novel approach
consisting in a change of measure argument in conjunction with absolute
monotonicity is used. Functionals of non-homogeneous Poisson processes and
Wiener processes are also considered and applications to light traffic derivatives are
briefly discussed.
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1. Introduction

Quick inspection of transient and stationary expected performance indices for
simple Markovian systems (such as the state probabilities for an M/M/1 queue)
reveals that they are analytic functions of the rates of the Poisson processes that
drive them. Specific examples abound but it is not easy to show that, in a certain
sense, analyticity is a general property of Poisson-driven systems.

Suppose {X,;0=¢=t¢,} is a stochastic process and {N,;0=¢=1¢,} a Poisson
process with rate A which we assume to vary in some appropriate interval [a, b). A
finite-horizon performance index is a real, non-negative functional {(Xj, N,); 0=
s=t}— Yp({(X,, N,); 0=s5 =1,}). For instance, X, could be the workload in an
M/G/1 queue at time ¢, N, the (Poisson) arrival process and y¥({X,, N,;0=s=
fo}) = SUP;c(0.1) X;- As another example consider a network (open or closed) that
includes an exponential server with rate u. Let Q, be the queue size at the server at
time ¢. Then the departure counting process can be expressed in terms of a Poisson
process N, with rate u as D,= [(1, -0, dN,. Therefore, this would also be a
Poisson-driven system and our analyticity conclusions hold as well.

While intuitively plausible, the analyticity of expected performance indices of
systems driven by Poisson processes may be hard to establish, particularly in a
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non-Markovian context. A Cameron—Martin—Girsanov change of measure (see for
example Liptser and Shiryaev (1977), Brémaud (1981)) can be used to show that
E;[y] is a differentiable function of A under certain regularity conditions. This
approach was taken in Reiman and Weiss (1989) and Glynn (1987) for the purpose
of developing derivative estimators in simulation. However, even if one imposes
enough conditions on 1 to ensure that E,[y] is a C” function in some interval, the
problem of showing that the corresponding Taylor series converges to the correct
value E,[y] in that interval is in general hard. Our approach circumvents these
difficulties by showing that certain related functions are absolutely monotonic which,
as it turns out, is much easier to establish.

Analyticity for Poisson-driven systems is of particular interest at A =0 since it
allows one to apply without qualms the light traffic derivative formulas of Reiman
and Simon (1989). While the change of measure approach used here requires that A
be strictly positive, we are able to establish analyticity at A =0 under certain
conditions.

2. Absolutely monotonic functions

Absolutely monotonic functions are real, non-negative functions with non-
negative derivatives of all orders. They were first studied by Bernstein (1914) who
gave the following two equivalent definitions.

Definition (D). A function f:R— R™" is absolutely monotonic (D) in [a, b) iff it
has derivatives of all orders that satisfy

fOx)=z0, xe(ab), keN
Now let A, f(x)=f(x+h)—f(x) and A%f(x)=A(AL f(x)), n=2,3, - -
Definition (A). A function f :R— R™ is absolutely monotonic (A) in [a, b) iff

ALf(x) = éo (—1)""‘<Z>f(x +kh)Z0

for all non-negative integers n and for all x and h such that
a=x<x+h<---<x+nh<b.

Surprisingly, the above alternative definition of absolute monotonicity (which does
not assume existence of derivatives at all!) turns out to be equivalent to the first.

Theorem 1 (Bernstein (1914): for a proof see Widder (1946)). A function f is
absolutely monotonic (D) in [a, b) iff it is absolutely monotonic (A) there.

The following theorem guarantees that a function satisfying either definition (A) or
(D) is analytic. One need not worry about how fast the derivatives grow and
whether the Taylor series converges.
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Theorem 2 (Bernstein (1914): for a proof see Widder (1946)). If f:R—>R" is
absolutely monotonic (D) in an interval [a, b) then it is analytic there and

|
fxy=> mf(")(a)(x —-a)', a=x<b.
n=07¢-
Remark 1. An immediate consequence of the above theorem is that f can be
extended analytically to the left of a since the above power series converges for
|x —a|<|b—al.

3. Analyticity of systems driven by Poisson inputs

Consider a stochastic system driven by a Poisson process {N,},, with rate
A€la, b), a>0, and a performance index 1y obtained from the sample path of the
system. We will show that, under certain regularity conditions (which in practice
can be restrictive), the expected performance measure f(1) = E,[y] is an analytic
function of A in [a, b). Here of course we assume that the performance measure
depends on the Poisson stream only through the number and occurrence times of
the Poisson events and not directly (as a deterministic function) through A.

More formally, let (Q, %, {%}, P) be a filtered probability space. Let
(QY, F", {FN}) be a filtered space, N, a point process adapted to ¥, and
PY A€a, b) a family of measures on (Q", FV) such that N, is a (P,, FV)-Poisson
process with intensity A for all Ae[a, b). Consider the product space
(Q,F,{F},B), where Q=0xQV, F=FXF', F=FXF", and P,=P
X PY. Finally let T be an {%}-stopping time and y € ;. We assume that y =0
P-as. for all Aela, b). This restriction can be easily relaxed by considering
separately positive and negative parts as usual. Throughout, E, denotes expectation
with respect to P, and N, the number of Poisson arrivals in [0, T]. We first establish
our result for bounded stopping times.

Theorem 3. Suppose that T is a bounded stopping time, i.e. T =t, Pi-a.s. for all
A€la, b),a>0. Then, if f(A)=E;[y] is finite for all 1 ea, b) it is an analytic
function of A in the same interval.

Proof. Let Fr={Ae F:AN{T =t} e %, t=0} and denote by P, r the restric-
tion of P, on %; for A €[a, b). It is well known that P; ; is an equivalent family of
measures on %, and in particular that P, << P, ; with

dpP, r

) dP, .

(2)" e -1G-ap,

(see for example Brémaud (1981)). Using the Cameron—Martin—Girsanov change
of measure given by (1) we have

dpP;, T]

e FO =Byl =B w5
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We can rewrite this expression using (1) as

£y =exp (~(h - ayE. [ w(2) " exp (@ - eyt~ T |

Define the function

s =E[v(2) e (- a)-1)]

We will show that g(A) is an absolutely monotonic function of A in [a, b) and
therefore analytic there. It is enough to show that g satisfies definition (A). Indeed,

Nr

®) Mg =E[yai) " e (- a)to- 1)),

since we have assumed that ¢ does not depend explicitly on A, and it is enough to
show that A%g(A)= 0. For any w, the function (1/a) ™) exp ((A — a)(t, — T(w))) is
absolutely monotonic (D) since it has non-negative derivatives of any order with
respect to A. Therefore, by Theorem 2, it is also absolutely monotonic (A) on {a, b),
and in view of (3) this immediately implies that Ajg(1)=0 and hence that g(A) is
absolutely monotonic and analytic on [a, b). The analyticity of f(4) follows
immediately from the fact that it is the product of two analytic functions.

Remark 2. Note that in the above theorem it is crucial to assume that a be strictly
positive in order to have P, <P, r.

Corollary 1. Under the assumptions of Theorem 3 and the additional assumption
b >2a, f(A) is analytic at A= 0 and the Taylor expansion

fI= 3 LfOOr,  0=i<p,

n=0
has radius of convergence p no smaller than b — 2a.

Proof. From Theorem 3, f(A)=exp (—(A —a)ty)g(A), where g(A) is absolutely
monotonic in [a, b). From Theorem 2, the Taylor series Yi—, (1/n)g™(a)(A — a)"
converges for Ae€[a, b) which implies that it will converge in |[A—a|<b —a.
Therefore, if b >2a, g is analytic at 0 and the radius of convergence of the Taylor
expansion there is at least equal to b — 2a. The fact that exp (—Af, — at,) is analytic
with infinite radius of convergence there completes the proof.

Remark 3. Analyticity at A =0 is of great interest in applications to queueing
systems. Reiman and Simon (1988), (1989) developed a method for computing
derivatives of any order in light traffic (i.e. at A =0). Corollary 1 provides some
justification for using a Taylor polynomial to extrapolate the performance of such
systems for A>0. Specific conditions for doing so, as well as the radius of
convergence of such expansions, will be investigated in a future paper.



536 MICHAEL A. ZAZANIS

The above theorem asserts that finite-horizon performance indices of Poisson-
driven systems are analytic. Establishing analyticity for the steady-state case is
much harder in general, and we will do so only for regenerative systems. The first
step towards that is to extend the results of Theorem 3 to stopping times that are
finite with probability 1 but not necessarily bounded. In that case stronger
assumptions are needed.

We start with a preliminary lemma of independent interest which provides a
bound for the tails of Ny. No assumptions are made on the stopping time other than
the requirement of having exponentially bounded tails.

Lemma 1. With the above notation assume that P(T > u) = A exp (—su) for some
A>0ands>0. Then P(N;/A>u)= B exp (—uis/(2A + s5)), for some B > 0.

Proof. Let x € (0, 1). Then,
{Np/A>u} ={Np/A>u; T=ux} U{Ny/A>u; T >ux}

c{Nu>Au; T=ux} U {T >ux}
SNy > Au} U{T >ux}

from which follows that

4 P(Ny/A>u)=P(N,, > Au) + P(T > ux).

From assumptions of the lemma we have

) P(T > ux) = A exp (—sux).

On the other hand, since N,, is the number of Poisson arrivals in [0, ux], if we
denote by [Au]| the smallest integer greater than or equal to Au, we have

oy S Y ()l & Auax
(6) P(Nuw> My =exp (i) g0 5 Zexp () T ,;)(W]) '

Observe that

= [ Aux )’ -

T = 1 - x _l.
| 2 (fag) =0-9

From Stirling’s formula follows that for some A, >0, m!= A, exp ((m + 3) logm —

m) for any integer m. Using these bounds together with (6) and the inequality

Au = [Au] we get

A
P(N,,>Au) = ] —lx exp {—Aux + [Au](log x + log {Au])

™ — ([Au] +4) log [Au] + [Au]}

A
= 1 —lx exp {Au(l —x)+ Aulogx}.
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From (4), (5), and (7) it follows that

A
® P(Ny/A>u)= Aexp (—usx) + a ! ) exp (—Au(x — 1 —logx)).

—-x
Since x was arbitrary in (0, 1) we can choose it to be the unique solution x* in (0, 1)
of the equation sx =A(x —1—logx). (A(x —1—logx) is decreasing convex and
maps (0, 1) onto (0, <).) Notice also that x* = sup, (., 1y min {sx, A(x —1 —logx)}.
Hence (8) becomes

P(Ny/A>u)= B exp (—usx*),

where B is a positive constant. A more convenient expression for our purposes can
be obtained by using the inequality x* = (2 + s/A) ' which follows from the fact that
x*=sup {x:sx =A(x —1—logx)} and the easily verified inequality s/(2 +s/A) =
M@2+sA)"'—1—log(2+s/A)"". Therefore

P(N/A>u)=Bexp (—usi/(2A+5)).
We next prove a lemma that will be useful in what follows.

Lemma 2. Assume that E;[y*] < and that E;[exp (sT)] <> for some s € (0, A).
Then for any € such that 0< e <s/6, E;[y(1 + €/A)""exp (¢T)] < .

Proof. Using twice the Cauchy—-Schwarz inequality together with the elementary
inequality (1 + £/A)*" = exp (eN;/1), we obtain

Nr
©  E[9(*5) e ()| S BB exp (eTIEexp ey /1))
In view of the assumptions of the lemma, the first two terms in the right-hand side of
(9) are finite for € <s/6 and it is enough to show that E,[exp (2eNy/1)] is finite. In
fact, it is enough to show that P,(Ny/A>u)= B exp (—us/3) for some B >0. But
our assumption that E;[exp (sT)] < implies that P(T > u) < A exp (—us) for some
A >0, and from Lemma 1 it follows that

P.(Nr/A>u)=Bexp (—u )éBexp (—us/3),

2+s5/3A
which implies that E;[exp (2eN;/4)] <, in view of the fact that £ <s/6.
We now are ready to state our main result.

Theorem 4. Assume that T is an &-stopping time that is finite P;-a.s. for A € [a, c),
a >0, and suppose that for some s € (0, a), E,[y*] and E,[exp (sT)] are finite. Then
f(R) is analytic on [a, b), where b =min (c, a + 5/6).

Proof. Since T <= P;-a.s. and P,-a.s., P, r < P, r with

i’iﬂ__,r_@)m _
P, \a exp (—(A—a)T).
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Use the Cameron—Girsanov—Martin change of measure as in the proof of Theorem
3 to write

N;

W =Em=E[y(3) ew(-G-an)]

Consider now the function

s =E[v(2) " exp -1 |

This is finite in [a, b) in view of our assumptions and Lemma 2. We show that g,(1)
is an absolutely monotonic function of A in [a, b) and therefore analytic there. It is
enough to show that g, satisfies definition (A), i.e. that Ajg,(1) = 0. Indeed,

(10) i) =B wsi(2) exp (2 - )7

since we have assumed that y does not depend explicitly on A, and it is enough to
show that #(Ala) " exp (A—a)T)=0. For any , the function
(A/a)N(@ exp (A — a) T(w)) is absolutely monotonic (D) since it has non-negative
derivatives of any order with respect to A. Therefore, by Theorem 1 it is also
absolutely monotonic (A) on [a, b), and, in view of (10) this immediately implies
that Ajg,(A)=0, and hence that g,(A) is absolutely monotonic and analytic on
[a, b).
Now let g,(1) = f(A) + g,(A). Then

e =Efv(2) o0 (-G-aT) +ewp -0 T}

= 2Ea[1p(§-)[vr cosh (A — a)T].

Again, one sees that (A/a)™(“)cosh[(A—a)T(w)] is an absolutely monotonic
function of A since all derivatives with respect to A are non-negative. From the
above and Theorem 2 it follows that g,(A) is analytic on [a, b). Since f(4)=
g1(2) — g2(2) is the difference of two analytic functions on [a, b), it is analytic itself
there.

Remark 4. In the above proof we take advantage of the two alternative
definitions (D) and (A) for absolute monotonicity in order to avoid proving that the
derivatives

%E{w(%)}wexp (—(a- a)T)], n=1,2,---

exist and that the corresponding Taylor series converges to f(A).
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Remark 5. The extension to y that are not necessarily non-negative follows easily
by decomposing 1 into positive and negative parts.

Corollary 2. Suppose that for all A € [a, b) with a >0, E,[y*] < and there exists
s >0 (possibly depending on 1) such that E,[exp (sT)] <. Then f(A) is analytic on
[a, b).

Proof. Fix 6 € (0, b — a). From Theorem 4, for any rational point ; in the interval
[a, b) there exists s(r;) > 0 such that f(A) is analytic in the open interval (r;, r; + £(r;))
with &(r;) <min (b, r; + s(r;)/6). This collection of open intervals constitutes an open
cover for the closed interval [a + §, b — 8] and by the Heine—Borel theorem there
exists a finite subcover of open intervals, (r;, r; + &(r;)), j=1,2, - - -, m. A straight-
forward analytic continuation procedure shows that f is analytic on [a + 6, b — §].
Since & was arbitrary, f is analytic on (a, b). Using Theorem 4 once more at A=a
concludes the proof.

4. Steady-state results in a regenerative framework

Consider now in the above framework a stochastic process {X,;t=0} and a
renewal process {S,;n=0,1,2---}, both adapted to %, and suppose that X, is
regenerative with respect to {S,}. Let S,=0, $;=T, and y = [J ¢(X,)ds with
¢:R—R™. Suppose the family of distributions P(T =x) is spread-out, 0<
E,[T]<w, and E; [§ ¢(X,)ds < for all A€[a, b). It is well known that under
these assumptions X, 2 X.. and E,[¢(X..)] = E;[¢]/E,[T).

If, in addition to the above assumptions, for all A€ [a, b) and for some s >0
(possibly depending on A) E,[exp (sT)] <« and E;[y*] <, then f(A) = E,¢(X..) is
analytic in [a, b). Of particular interest is the case ¢(X,) =1 x, ., for some Borel set
B. Then it is easily seen that E,[e*”] < for all A € [a, b) is a sufficient condition for
the analyticity of P,[X.. € B) on [a, b).

5. Non-homogeneous Poisson processes

We use the same framework as in Section 3, except for the fact that here
{N;; 0=s =t} is a non-homogeneous Poisson process with rate A(s, 6). We assume
that for all s in [0, ] A(s, ) is an absolutely monotonic, strictly positive function of
6. This includes multiplicative (i.e. A(s, 6) = 8A(s) with A(s) >0 for s € [0, ¢]) and
additive (i.e. A(s, 8) = 6 + A(s)) parameters. Assume that 6€[a, b) and that
f(0) =Eg[y] <= in [a, b). We conclude again that f(6) is analytic on [a, ). The
argument is identical to the proof of Theorem 3:

dP,, M AT, 0) ‘
11 - a[ —’-:I - a[ _—] (_f ’ 0 - ’ )
a0 0 =Ew g | =E v 1575 exp (=] (6. 0) = as. ayyas
where N, is the total number of Poisson points in [0,¢] and T;,i=1,2,---, N, the

epochs of their occurrence. If N, =0 then the product in (11) is defined to equal 1.
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For any realization, [1%, (A(T;, 8)/A(T;, a)) is an absolutely monotonic function of 6
since it is the product of absolutely monotonic functions (Widder (1946)). The
analyticity of () follows from the arguments used in Theorem 3.

6. Functionals of the Wiener process

The above approach can be used to establish the analyticity of functionals of the
Wiener process. In this section we examine the simplest case. Let W = {W,;0=s =
t} be a Wiener process on (Q, ¥, P,)) with drift 0 and variance o°, and W — y(W) a
real, non-negative functional on the paths %'. Assume that Py(W,=0)=1 and
define a family of equivalent probability measures P,, u € [a, b), on F by

dP,
(12) d—P: = exp (Wiu/0® — 3(u/ 0)’t).

It is well known (see for example Liptser and Shiryaev (1977), Wong and Hajek
(1986)) that under P,, % is a Wiener process with drift u and variance 0. We
assume that 9 depends on u only through the sample path % and not explicitly as a
function of u. An argument similar to the proof of Theorem 3 can now be used to
show that f(u)=E,[vy] is analytic on [a, b), where E, denotes expectation with
respect to P,.

Theorem 5. Assume that E, [y] <o for all pe[a, b). Then f(u) is analytic on
[a, b).

Proof. Let — W ={—W,;0=s =t} and define the functionals ¢, and ¢, by

QU (W) =3[p(W)+p(=W)], oA W) =:[v(W)— y(—W)].

Define the functions f(u) = E,[¢:], i =1, 2, which are finite on [a, b]. We have

(13) fi(w) = Eo[ (W) exp (Wp/o")] exp (—3(u/0)t)  i=1,2.

Since ¢(W) = ¢(— W), we also have

fi(n) =E,[¢:(—= W)]=Eo[$:(— W) exp (—W,u/ )] exp (=3(u/ 0)*1)

=E[¢.(W) exp (—W,u/0?)] exp (—2(u/ 0)’t).
Similarly, from ¢,(W) = —¢,(W) it follows that

(14)

(15) f(n) = —Eo[ ¢ W) exp (— Wi/ 0”)] exp (= 3(p/ 0)*1).
From (13) and (14) it follows that
(16) filw) = Eo[¢1(W) cosh (Wu/0?)] exp (—3(u/0)’t).

Since cosh (W,u/0?) is an absolutely monotonic function of u for all w, using the
same argument as in the proof of Theorem 3 we conclude that
Eo[¢,(W) cosh (W,u/0%)] is absolutely monotonic and therefore analytic in [a, b).
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From (16) then follows that fi(u) is analytic in the same interval. Similarly from
(13) and (15) we obtain

17 fo(1) = Eo[ (W) sinh (W,u/ 0%)] exp (—3(u/ 0)*),

which is also seen to be analytic because sinh (W,u/0?) is an absolutely monotonic
function of u for all w. Since f(u) = fi(u) + f>(u), this concludes the proof.
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