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ABSTRACT

A simple theoretical framework is provided to address the problem of unbiasedness of
infinitesimal perturbation analysis estimates in steady state and some simple sufficient condi-
tions are presented. These are illustrated for the case of a GI/G/1 queue and improved condi-
tions for unbiasedness of the estimators are given.

1. Introduction

Sensitivity analysis of queueing systems is a topic that has recently received attention
from a number of authors (e.g. see [GS], [HC], [RW], [RZ]). The general idea is to provide esti-
mates for the derivative of a performance criterion of a queueing system with respect to a
parameter, from the information contained in a single sample path, without the use of finite
differences.

In this paper we will examine more specifically the question of unbiasedness of derivative
estimates given by the infinitesimal perturbation analysis (IPA) algorithm. (For background on
IPA see e.g. [HC] and [SZ]). Even though this question has already been the subject of some
papers (see [C], [SZ], and references therein) the issue of unbiasedness of the steady state esti-
mates has by no means been exhausted. In §, a simple theoretical framework is given which
enables us to provide additional sufficient conditions insuring that IPA estimates which are
unbiased for sample paths of finite length will also be unbiased in steady state.

In the second part we verify these conditions in the case of a GI/G/1 queue. The simpli-
city of this system allows us to obtain an explicit expression for the derivative of the expected
waiting time in steady state. In fact, in order to simplify the exposition in this summary, we
will restrict ourselves to the estimation of derivatives with respect to a scale parameter of the
service time distribution. The case of a general parameter, though more complicated, is not con-
ceptually different. Based on these results, a simple estimator is obtained which is shown to be
superior to classical finite difference estimators.

297



2. Unbiased IPA estimates in steady state
.. be a filtration and let W;(9), i=1,2,..., 0 € [a,b], be a sequence of ran-
dom functions on (€,F",P) adapted to {F; };—y .. Let f:(0) = E[W;(9)]. Suppose also
that

Al: for all § W;(0) converges weakly to ar.v. W(0),

A2:51}_pE | Wi(0) |? <M < ocowithp > 1.

Let f () = E[W(0)]. The above conditions then guarantee that limf,(6) = f (7). We will
i
also assume that

A3: f1(0), i=1,2,..., and f7(0) exist for all 0 € [a,b].

The above process is an appropriate model for a large class of systems of practical interest.
For instance, W;(#) might be the response time of the {* customer arriving to a tandem net-
work of queues whereas # could be a parameter of the service time distribution of one of the
servers in the network or a parameter of the arrival process. Assuming the system to be stable
for 6 € [a,b], it is then well known that W;(0) converges weakly to a r.v. W (0) representing
the delay in steady state. We are interested in estimating the derivative of & [W (8)] for sensi-
tivity analysis or optimization purposes.

Returning to our model, let us further assume that

d
Ad:

exists w.p.1 and is F; - measurable for all ¢.

(In the above example would be computed by the IPA algorithm and F;-measurability

would represent our ability to compute from the information available up to that point.

For further details see [G] and [SZ]). We will also assume that

Ab: _J—OL’ { =1, 2,..., converges weakly to some steady state r.v. % for all 0 € [a,b].

We can now state the following

Theorem 1: Let W; (0), i =1, 2,... satisfy A1-A5 and suppose that, addditionally, it satisfies
Ch i

d :
= —F | =1, 2,... .
dgi‘[W,J t =[5 O
A7: d;daE[W,-] = j:(l)) converges uniformly for all 0 € [a,b].

Then

dw,

d — ARl
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Proof: The proof follows immediately from a standard theorem on differentiation and uniform
convergence (e.g. see [R], p.152).

Remarks: (i) In the above context, suppose that the IPA algorithm provides unbiased estimates
for finite length sample paths. (This of course is assumption A6). The above theorem suggests
that additional conditions are required in order for IPA to also give unbiased estimates in steady
state. A sufficient condition is A7.

(ii) Assumption A7 in the above theorem can be replaced with the alternative Assump-
tion
A7Y f{(8), i=1,2,.., and li'{xlf,-/(O) are continuous on [a ,b] and, for all ¢, > 1
on |a,b].
Then from a theorem of Dini, ([R], p150), follows that 7£(0) converges uniformly for 0 € [a ,b].
Hence A7’implies A7 and, for a number of systems, the former may be easier to verify than the

latter, since a great deal is known about continuity and monotonicity properties of stochastic

systems.

3. Sample path derivatives for the GI/G/1 queue

In this section we illustrate the above theorem for a GI/G/1 system. We will denote by C;
the 1" customer, by W; the waiting time of C;, by 0X; his service requiréement, (depending on
a scale parameter 0) and by A; the interarrival time between C; and C; .. Also, let
P(X,<z)=F(z) and P(A,<2)=G (z). We will assume that E[A)) < o0, E[X{] < o0,
and that the system is ergodic for all 0€la,b], which is equivalent to the requirement

bE [X )< E[A]. Let us denote by W a random variable distributed according to the steady
d
do

state distribution of the waiting time. Our goal is to obtain an estimator for E[W] without

the use of finite differences.

Let us assume that at time ¢ ==0 the first customer, C', arrives to an empty system. Also,
let us designate by L; the index of the customer who initiates the busy period in which €
belongs. Bvidently, L; < i, the equality holding in the case where C; initiates a busy period.

For a First Come First Served system, the waiting time of C; is given by the relationship:

W, (6) = ma.x[ O e e e ] oy (3.1)
and

W,0) = 0 .

Under very mild assumptions it is easy to see, using for example the conditions in [Wh]| that, for
any given 0, W; (0) is differentiable with respect to § w.p.1. (For instance, for a GI/G/1 system,
the assumption that G (), or F'(') is absolutely continuous is more than enough to guarantee

this). Hence, differentiating W; (¢) with respect to 0, we get

0 if Ly=t

AW, it Ly <
do A4
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Using (3.2) iteratively we obtain

dVV‘ i-1
— = X 3.3)
a0 J.E 7 (

with ill defined sums interpreted as being equal to zero.

In terms of the model of the process of the previous paragraph, we could define F; to be
o-{Ay, A Xy, XiL), £=1, 2,..., and F, to be the trivial o—field. Then it is clear

dw;
that both W; and T i F; -measurable.

Consider now the discrete time renewal process defined by the indices of customers who
initiate busy periods, i.e. My =0, and M, = inf{s : L; > M1}, for k =1,2,- . The
increment N, = M, - M;_, is of course equal to the number of customers served in the k‘*

busy period. (Our ergodicity assumption also guarantees that & [N | <oo).

As it is well known, W;, i=1, 2,..., is a discrete time regenerative process with respect to

the renewal process My and it is not hard to see from (3.3) that is also regenerative with

respect to the same renewal process. It follows then from [CI| that, for all 0€(a,b]|, the

sequences W; and converge weakly to the r.v.’s W and —dd—vg—, and furthermore that

do
Ny dW.
E[Y s
=dil)
do E [N,
Combining (3.3) and (3.4), we get
Nyt
E[Y Y X ]
i Neli=1 (3.5)
do E [N,
Provided that one can establish that
A dWs _ d o A
Bl = —BW]; (3.6)

equation (3.5) suggests an estimator for ddﬂE [W] which as we show in §5 is superior to the

classical estimators involving finite differences.
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4. Sketch of the proof

In §3 we have argued that the sequence of waiting times W; in a GI/G/1 queue satisfies
conditions A1, A4, and A5. In this section we will briefly describe how to verify the remaining
conditions, thus establishing (3.6). To check A2, choose p = 2 and notice that the Kiefer-
Wolfovitz conditions (see [KW]) and our moment assumptions in the begining of §3 imply that
E[W?¥ < co. Since for all 1, E[W;% < E[W?, A2 is satisfied.

For the rest of the assumptions, our task becomes much easier if, instead of the sequence
of the waiting times W; defined in (3.1), we consider the sequence

wi(0) = max[ QNG AI=EA IR (i (TN g e ) i =23, (4.1)

and

Wy = 0.

It is easy to see that W; (0) and W;’(6) have the same distribution for all i . Also, according to a

standard result, W* = lix_nW’;' exists, is finite w.p.1, and is distributed according to the
t

steady state distribution, provided that the system is ergodic. In particular,
E(W'] = E(W] , (4.2)
a result that we will use in the sequel. Next, let
L6) = min{j:0 < j < i-L, (X +.+X;)0- Aj-.~A; = W;(0) } . (4.3)

Thus L;(6) is the (smallest) value of the index that maximizes the expression in (4.1). In particu-
lar notice that, when 8, < 0y, L;'(6;) < L;(6,). Also, define

L(0) = inf{j: (X1 4.+ X;)0 - (A +..4A;) = W'(0)} . (4.4)

Under the conditions mentioned in the previous section, one can easily show that, for any
.
i

given 0, e exists w.p.1 and is equal to
aw;’ L
e 3G (4.5)

The proof of (3.6) is based on the following lemmata whose proofs are straightforward and will
be described briefly.
Lemma 1:

*
i

have the same distribution and in particular

Tha #.v.% o and S
T e e
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aw; aw;’

Bl = El= o]

The proof is very simple and will be omitted.
aw;’
Lemma 2: E [—ﬁ] = ﬁE’ [W;] for all § € [a ,b] and i =1, 2,....

Proof: Let § > 0 and consider

" A L,%0)
5 W0+ - W0)] = &l }_,l (0+8)X; -A; - }Jl"f\’j—AJ‘l (4.6)
i= i=
L(0+6) 1 L,(0+8)
= U X+ 30 N 0X-4].
J=1 j=L"0)+1
L0+8)
But ‘%) 0X;-A; is either O (when Li'(0) = L;(0+96)), or negative, (when L;(0) < L;(0--6)),
i=L(0)+1
because of definition (4.3). Hence,
‘ 1 L,"(0+5) L)
0< LW - WOl < LG < DY
i=1 i=1

and an appeal to the Dominated Convergence Theorem complets the proof.

We can now state

dw;' aw;’
Lemma 3: E [ '“] = E[ l ti=],2 . and T;%E(W"] : are continu-
ous on [a,b].
2 (W] -
dW." L,'(0) L'(0+5) L)
E| d0' ] = E[LX] it is sufficient to consider £ | L X; - Y X; ], 6>0, and to

je=1 je=1
appeal to the Monotone Convergence Theorem. The case §<0 is similar.

Finally,

v .

. d dW; . AW,

lim—F [W;] = lim E = F|lix

g Ll = Ul e L o

the last equality following from the Monotone Convergence Theorem. Hence it is sufficient to
L"(0)

show that E[ )_5 XJ-] is continuous with respect to 6, and the proof for that is similar to the one
i=1

establishing the continuity of —E (W;.
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’
From the above three lemmata then, and (4.2), the remaining conditions A8, A6, and A7,
follow, and an appeal to Theorem 1 establishes (3.6). We can thus state

Theorem 2: For the class of GI/G/1 systems discussed in this section, IPA gives unbiased esti-

mates of the derivative of the expected waiting time in steady state.

5. Statistical Aspects
If a sample path consisting of M busy periods is available, the following ratio estimator

for —;%E[WI is suggested by (3.5)
(

uo
VS X
k=1 7i=M ,+1 =M  +1

]
> Ne

k=1

W(M) =

(5.1)

FFrom the Strong Law of Large Numbers follows that li;ln W(M) with pro-

d
7 (W]. It
40” ]. It

E[W]]? of this

bability 1, and hence from (3.5) that W (M) is a strongly consistent estimator of
§ £
do

estimator as a function of the number of cycles observed is asymptotically O - . (The details
! w M

is also straightforward to show that the Mean Square Error, E | W(M)

of this derivation are complicated however by the presence of ratio estimator bias). On the other

hand, classical estimates requiring finite differences can be shown to have Mean Square Errors

that are at best O (-

Mlz/a) (see [FG], [2S)). This, together with the simplicity of the estimator

given in (5.1) illustrates the effectiveness of the approach presented here, whenever it is applica~
ble.
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