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Abstract

We present a simple discrete–time model of a risk process in which primary claims
are followed by secondary claims representing after-effects. It is shown that the resulting
discrete–time process is associated. Estimates for finite and infinite horizon ruin probabili-
ties are then obtained via a diffusion approximation that is based on the classic Functional
Central Limit Theorem of Newman and Wright (1981) for sequences of associated random
variables.

1 Introduction

We consider a discrete time insurance risk process which models claims with significant after–
effects. It is assumed that the occurrence of certain events, besides possibly causing an im-
mediate claim, also generates a stream of secondary claims which occur at subsequent time
periods and which are considered after–effects of the original event (or, equivalently, of the
original claim).

More specifically, the claim process consists of two types of claims with different statis-
tical characteristics, primary and secondary claims. It is assumed that primary claims occur
independently and in each time period we have a random number of i.i.d. primary claims. A
primary claim that occurs at time n may trigger the occurrence of a stream of secondary claims
at times n + 1, n + 2, . . . , n + k, . . .. These secondary claims are assumed to be conditionally
independent random variables, given the size of the primary claim that triggers them. Streams
of secondary claims triggered by different primary claims are also assumed to be independent.
During each period, the increase of the free reserves of the company due to premium income is
constant. Our objective is to obtain diffusion approximations for the finite and infinite horizon
ruin probability.
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The model proposed can be thought of loosely as a simple, discrete time version of the
corresponding continuous time models which are typically used to describe events with after–
effects or events whose effect is spread out over a period of time. Such continuous time
processes include Poisson shot–noise processes and point processes with secondary points such
as the Neyman–Scott and the Bartlett–Lewis models (see e.g. Daley and Vere–Jones, 2003).
The proposed risk model, as it will become clear when we give a more detailed description, is
not easy to analyze directly since, under the above assumptions, is not in general markovian.
However, the total amount of claims in each period turns out to be an associated sequence
of random variables. Thus we can use the Functional Central Limit Theorem (FCLT) for
associated random variables due to Newman and Wright (1981) discussed in the next section
in order to obtain a diffusion approximation for the ruin probability in the model we propose.

We first begin with a definition of the concept of association and give a brief overview of
the relevant literature.

2 Associated Random Variables and the Central Limit Theo-

rem

Association is a type of positive dependence between random variables.

Definition 1 A finite collection of random variables Y = (Y1, . . . , Ym), is said to be associated
if, for any pair of coordinate-wise nondecreasing real functions ℎ1, ℎ2 on ℝ

m such that ℎj(Y),
j = 1, 2, has finite second moment,

Cov(ℎ1(Y), ℎ2(Y)) ≥ 0.

A countable collection of random variables {Yk; k ∈ ℕ} is said to be associated if every finite
subcollection is associated.

The above definition of association was given in Esary, Proschan, and Walkup (1967). These
authors were motivated by considerations in statistics and reliability theory. The same ideas
arose also in the context of percolation models and statistical mechanics with the work of Harris
(1960) and the seminal paper of Fortuin, Kasteleyn, and Ginibre (1971) which considered
covariance inequalities of random variables defined on lattices. These became known as the
FKG inequalities. For an overview of association we refer the reader to Szekli (1995).

Note that in the above definition, it suffices to consider functions ℎj that are coordinate–
wise increasing, bounded and continuous as one can see by means of a standard approximation
argument. We next state three theorems that will be used repeatedly in what follows.

Theorem 2 (i) If X and Y are associated random vectors of ℝ
n and ℝ

m respectively and
mutually independent then (X,Y), considered as a random vector of ℝn+m, is associated.
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(ii) If X is an associated random vector of ℝn and f1, . . . , fm : ℝn → ℝ are increasing
(decreasing) then (f1(X), . . . , fm(X)) is associated.

(This is Theorem 3.10 of Müller and Stoyan, 2002).

Theorem 3 Suppose that {Y(k); k ∈ ℕ} is a sequence of random elements of ℝm such that, for

each k, Y(k) = (Y
(k)
1 , . . . , Y

(k)
m ), is associated and Y(k) d→ Y as k → ∞. Then Y is associated.

(The proof of this theorem can be found in Esary, Proschan, and Walkup, 1967.)

Theorem 4 Let {Y(k); k ∈ ℕ} be a sequence of independent random elements of ℝ
m such

that, for each k, Y(k) := (Y
(k)
1 , . . . , Y

(k)
m ) is associated. Then

(i) Sn :=
∑n

k=1Y
(k) is associated for each n.

(ii) Suppose that N is a random variable with values in ℕ, independent of the sequence

{Y(k)}, and Sn =
∑N

k=1Y
(k). Under the additional assumption that Y

(k)
i ≥ 0 w.p. 1 for

all i, k, Sn is associated.

Proof: (i) In view of Theorem 2 (i) (Y(1),Y(2), . . . ,Y(n)), considered as a random ele-
ment of ℝmn, is associated. The function ' : ℝmn → ℝ

m defined by '(x1, x2, . . . , xmn) =(∑n−1
j=0 xjm+1,

∑n−1
j=0 xjm+2, . . . ,

∑n−1
j=0 xjm+m

)
is increasing with respect to the natural partial

orders of its domain and co–domain. Therefore, Theorem 2 (ii) implies that Sn is associated.
To establish part (ii) suppose f, g : ℝm → ℝ are increasing, bounded functions. If we set
'k := Ef(Sk) and 
k := Eg(Sk) it holds that {
k}, {'k}, are nondecreasing sequences, as a
result of the non–negativity of the components of Y(k) and the fact that f and g are increasing
functions. Conditioning on N we have

E[f(Sn)g(Sn)] =
∞∑

k=1

P (N = k)E[f(Sk)g(Sk)] ≥
∞∑

k=1

P (N = k)'k 
k

≥
(

∞∑

k=1

P (N = k)'k

)(
∞∑

k=1

P (N = k) 
k

)
= Ef(Sn) Eg(Sn)

where the first equality follows from the independence of N and {Y(k)}, and the next two
inequalities from part (i) and the fact that the sequences {
k}, {'k}, are nondecreasing. This
establishes the theorem.

It should be pointed out that without the additional non–negativity assumption part (ii)
of the above theorem would not be true.

It can be shown that two associated random variables that are also uncorrelated are nec-
essarily independent (e.g. see Szekli, 1995). This makes intuitively plausible the remarkable
Central Limit Theorem for associated random variables due to Newman (1980) and the corre-
sponding invariance principle (or FCLT) of Newman and Wright (1981) which we state below
and will use it in the sequel.
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Theorem 5 (Newman and Wright) Assume that {Yk; k ∈ ℕ} is a nondegenerate, sta-
tionary sequence of associated random variables with finite second moment EY 2

1 < ∞. Let
Sn = Y1 + ⋅ ⋅ ⋅ + Yn, suppose that

�2 = Var(Y1) + 2

∞∑

j=2

Cov(Y1, Yj) <∞ (1)

holds, and define the sequence of processes {Yn(t); 0 ≤ t ≤ T}n=1,2,... via

Yn(t) =
S[nt] + (nt− [nt])Y[nt]+1 − ntEY1

�
√
n

, for 0 ≤ t ≤ T

(where, as usual, [nt] denotes the integer part of nt). Then the sequence of processes {Yn}
converges in distribution to the standard Wiener process W .

Laws of Large Numbers for associated sequences are given in Newman (1980) and Birkel
(1989).

3 The discrete time model with after-effects

3.1 Statistics of the model

We consider a risk process in discrete time with two types of claims, primary and secondary
claims. The latter are assumed to be after–effects of the former, occur at a later time than
the primary claims that trigger them, and typically have different statistical characteristics.
In general we will assume that each primary claim triggers a whole sequence of secondary
after–effects.

More specifically, during the nth time period Nn primary claims occur, which will be
denoted by �n,1, �n,2, . . . , �n,Nn

. The processes we consider will be defined over all integers and
thus n ∈ ℤ. The jth primary claim which occurs at time n will trigger a stream of secondary
claims, �n,j1 , �n,j2 , �n,j3 , . . . which occur at times n+ 1, n+ 2, n+ 3, . . ., where j = 1, 2, . . . , Nn.
Thus as a result of the Nn primary claims that occur at time n, there will be Nn secondary
claim streams that begin at time n+ 1.

To construct our probability model we assume that on the probability space (Ω,ℱ , P )
a sequence of random variables, {Nn;n ∈ ℤ}, with values in ℕ, has been defined. The
probability space also supports the double array { n,j; n ∈ ℤ, j ∈ ℕ}, where  n,j :=

(�n,j, �
n,j
1 , �n,j2 , �n,j3 , . . .) denotes a random element of ℝ∞

+ . We will assume that { nj ; n ∈
ℤ, j ∈ ℕ} is an independent, identically distributed double array which is also independent
of the sequence {Nn}. Furthermore, the random variables �n,j1 , �n,j2 , �n,j3 , . . . are conditionally
independent, given �n,j. The corresponding distributions are denoted by

F (x) = P (�n,j ≤ x),

Gk(y∣x) = P (�n,jk ≤ y∣�n,j = x), j, k, n ∈ ℕ.
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Thus the finite–dimensional distributions of the “generic” sequence (�, �1, �2, �3, . . .) are given
by

P (� ≤ x, �1 ≤ y1, �2 ≤ y2, . . . , �k ≤ yk) =

∫ x

0

∏k
i=1Gi(yi∣u)F (du). (2)

We will further assume that

Gk(y∣x1) ≥ Gk(y∣x2) for all y ≥ 0 and 0 ≤ x1 ≤ x2, k ∈ ℕ. (3)

This last stochastic ordering assumption means that the after-effects are more serious for larger
primary claims than for smaller ones.

The overall effect of the jth primary claim that occurs at time period n and all its future
after–effects is then

Zn,j = �n,j +

∞∑

k=1

�n,jk . (4)

Of particular significance in the sequel will be the fact that, for each n, j ∈ ℕ, the sequence
(�n,j, �

n,j
1 , �n,j2 , �n,j3 , . . .) is associated. Dropping the superfluous subscripts and superscripts

this is established in the following

Lemma 6 The collection of random variables (�, �1, �2, . . .) is associated.

Proof: It is enough to show that, for all m ∈ ℕ and all bounded, increasing functions f, g :
ℝ
m+1 → ℝ,

E[f(�, �1, . . . , �m)g(�, �1, . . . , �m)] ≥ E[f(�, �1, . . . , �m)] E[g(�, �1, . . . , �m)]. (5)

Let �(x) := E[f(�, �1, . . . , �m)∣� = x], 
(x) := E[g(�, �1, . . . , �m)∣� = x] denote the conditional
expectations given � = x. As a result of (3), the implied conditional independence of the �n
from (2), and Theorem 3.3.7 of Stoyan and Müller (2002) we have (�1, �2, . . . , �m)∣�=x1

≤st

(�1, �2, . . . , �m)∣�=x2
for x1 ≤ x2. Therefore, since f , g are increasing, there exist increasing

versions of � and 
. From this (5) follows readily.

3.2 Construction of the stationary version of the claim process and moment

computation

Let M be a positive integer. Consider the process {YM
n ; n ∈ ℤ} which is defined as YM

n = 0

for all n < −M , YM
−M =

∑N−M

j=1 �−M,j, and, for n > −M, by the expression

YM
n =

Nn∑

j=1

�n,j +

n+M∑

k=1

Nn−k∑

j=1

�n−k,j
k . (6)

Thus {YM
n } can be thought of as a claim process starting at time −M . In view of the fact

that � l,jk ≥ 0, a.s. for all values of the indices, it follows that YM
n ↑ Yn as M → ∞, for all n,

w.p.1 with Yn given by

Yn =

Nn∑

j=1

�n,j +
∞∑

k=1

Nn−k∑

j=1

�n−k,j
k . (7)
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The first term in the sum above designates the primary claims that occurred at time n while
the second gives the total contribution of the after–effects of all primary claims that occurred
before time n. As we show in the next proposition, this limit is finite with probability 1 under
the finiteness of moments assumptions stated there. We also establish the stationarity of the
sequence {Yn;n ∈ ℤ} and we compute the asymptotic variance of the average of the terms of
the sequence. From this point on we will be occasionally dropping unnecessary subscripts and
superscripts when no confusion can arise.

Proposition 7 Under the assumption that EN2 < ∞, E�2 < ∞,
∑∞

k=1E�k < ∞, and∑∞
k=1E�

2
k < ∞, the process {Yn;n ∈ ℤ} as given in (7) is finite w.p.1. Furthermore it is

stationary with mean

� := EY0 = EN

(
E� +

∞∑

k=1

E�k

)
<∞, (8)

and asymptotic variance constant of the sum of the terms of the sequence given by

�2 := lim
n→∞

1

n
Var(Y0 + ⋅ ⋅ ⋅ + Yn−1)

= Var(N)

(
E� + E

∞∑

k=1

�k

)2

+ EN Var

(
� +

∞∑

k=1

�k

)
<∞. (9)

Proof. We first establish the a.s. finiteness of Yn. Note that all terms on the right hand side
of (7) are non–negative and write it as

Yn =

∞∑

j=1

�n,j1(Nn ≥ j) +

∞∑

k=1

∞∑

j=1

�n−k,j
k 1(Nn−k ≥ j)

=

∞∑

j=1

(
�n,j1(Nn ≥ j) +

∞∑

k=1

�n−k,j
k 1(Nn−k ≥ j)

)

=

∞∑

j=1

'n,j (10)

with

'n,j := �n,j1(Nn ≥ j) +
∞∑

k=1

�n−k,j
k 1(Nn−k ≥ j), n ∈ ℤ, j ∈ ℕ. (11)

Since the 'n,j are non–negative, we can use the Fubini theorem to evaluate the expectation

EYn =

∞∑

j=1

E

[
�n,j1(Nn ≥ j) +

∞∑

k=1

�n−k,j
k 1(Nn−k ≥ j)

]

=

∞∑

j=1

E[�n,j]P (Nn ≥ j) +

∞∑

j=1

∞∑

k=1

E[�n−k,j
k ]P (Nn−k ≥ j)

= E�
∞∑

j=1

P (Nn ≥ j) +
∞∑

k=1

E[�n−k,j
k ]

∞∑

j=1

P (Nn−k ≥ j)

= E�EN + EN

∞∑

k=1

E�k
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where, in the above equalities, we have taken into account the independence of Nn and �n,j
and similarly of Nn−k and �n−k,j

k . From this expression, dropping the unnecessary superscripts
and subscripts and using the fact that the number of claims {Nn} are assumed i.i.d., we obtain
the finiteness of EYn, and thus the a.s. finiteness of Yn, as well as (8).

The stationarity of {Yn;n ∈ ℤ} is also immediate from the expression Yn =
∑∞

j=1 'n,j

given in (10). Indeed, for each fixed j ∈ ℕ, the process {'n,j;n ∈ ℤ} is stationary. Also,
the family of processes {'n,j ;n ∈ ℤ}j∈ℕ is independent because of our stochastic assumptions.
This establishes the stationarity of {Yn;n ∈ ℤ}.

In view of the stationarity of {Yn;n ∈ ℤ}, to obtain (9) we start with the fact that

�2 = lim
n→∞

1

n
Var(Y0 + ⋅ ⋅ ⋅+ Yn−1) = Var(Y0) + 2

∞∑

j=1

Cov(Y0, Yj) (12)

provided that the infinite series converges. In our case we have

Var(Y0) = Var

⎛
⎝

N0∑

j=1

�0,j

⎞
⎠+ Var

⎛
⎝

∞∑

k=1

N−k∑

j=1

�−k,j
k

⎞
⎠

= EN0Var(�0,1) + Var(N0) (E�0,1)
2 + EN0

∞∑

k=1

Var(�−k,1
k ) + Var(N0)

(
E

∞∑

k=1

�−k,1
k

)2

= EN

(
Var(�) +

∞∑

k=1

Var(�k)

)
+ Var(N)

(
E� +

∞∑

k=1

E�k

)2

(13)

where in the last equality we have made use of the i.i.d. assumptions and dropped superfluous
subscripts and superscripts. A straightforward computation leads to the following expression
for the covariance

Cov(Y0, Yj) = EN

(
Cov(�, �j) +

∞∑

k=1

Cov(�k, �k+j)

)
. (14)

Substituting (13) and (14) into (12), after straightforward manipulations we obtain

�2 = ENVar(�) + Var(N)

(
E� +

∞∑

k=1

E�k

)2

+ 2ENCov

(
�,

∞∑

k=1

�k

)
+ ENVar

(
∞∑

k=1

�k

)

= Var(N)

(
E� + E

∞∑

k=1

�k

)2

+ ENVar

(
� +

∞∑

k=1

�k

)
.

This concludes the proof.

3.3 Association of the process with after–effects

We are now ready to prove our main result upon which hinges the diffusion approximation
of the next section, namely the fact that the process with after–effects introduced in 3.1 is
associated.
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Proposition 8 The claims {Yn;n ∈ ℤ} form an associated sequence of random variables.

Proof. We will show that (Y1, . . . , Ym) is associated for each fixed m ∈ ℕ. This, together
with the stationarity of the sequence, establishes the proposition. To this effect, for each
M ∈ ℕ consider the finite collection of random variables (YM

1 , . . . , YM
m ) where YM

n is given by
(6). If we set Ym := (Y1, . . . , Ym) and YM

m := (YM
1 , . . . , Y M

m ) then YM
m → Ym w.p.1 based

on the results of the previous section. This in turn implies convergence in distribution, i.e.

YM
m

d→ Ym. Thus, in view of Theorem 3, it is enough to show that YM
m is associated.

Ym admits the following decomposition:

Ym =

Nm∑

j=1

Vm
j +

Nm−1∑

j=1

Vm−1
j + ⋅ ⋅ ⋅+

N1∑

j=1

V1
j +

N0∑

j=1

V0
j +

N−1∑

j=1

V−1
j ⋅ ⋅ ⋅+

N−M∑

j=1

V−M
j + ⋅ ⋅ ⋅ (15)

where

Vm
j = (0, 0, . . . , 0, �m,j) , Vm−1

j =
(
0, 0, . . . , �m−1,j , �

1
m−1,j

)
, . . . ,

V0
j =

(
�10,j, �

2
0,j , . . . , �

m−1
0,j , �m0,j

)
, V−1

j =
(
�2−1,j, �

3
−1,j , . . . , �

m
−1,j , �

m+1
−1,j

)
, . . . ,

V−M
j =

(
�M+1
−M,j, �

M+2
−M,j, . . . , �

M+m−1
−M,j , �M+m

−M,j

)
, . . . .

Here Vk
j represents the contribution to Ym of the jth claim event occurring at time k =

m,m− 1, . . . , 0,−1, . . . either directly by means of the primary claim �k,j that occurs at time

k, or indirectly, by means of the stream of secondary claims. If we denote by Wk :=
∑Nk

j=1V
k
j ,

k = m,m − 1, . . . , 1, 0,−1,−2,−3, . . ., the overall contribution of claim events that occur at
epoch k to the claim vector vector Ym we have

Ym = Wm +Wm−1 + ⋅ ⋅ ⋅+W0 +W−1 +W−2 + ⋅ ⋅ ⋅ .

The corresponding claim vector with history truncated at time −M is then

YM
m = Wm +Wm−1 + ⋅ ⋅ ⋅ +W0 +W−1 + ⋅ ⋅ ⋅+W−M+1 +W−M .

Clearly the random vectors Wk, k = m,m − 1, . . . , 0,−1,−2, . . ., are independent in view of
our assumptions. Furthermore, each one of these random vectors is associated as can be seen
from Lemma (6) and theorem (4), part (ii). Therefore, from part (i) of theorem (4) if follows
that YM

m is associated and hence the proof is complete.

3.4 A model with Bernoulli after–effects

Here we give a concrete example of such a discrete process with after–effects. For the sake of
simplicity of exposition we will assume that only a single primary claim occurs during each time
period. (By allowing an atom at zero for the distribution of these primary claims we can also
allow periods with no primary claims at all.) The extension to the situation where a random
number of primary claims occurs in each time period, as before, is straightforward. Let �n
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denote the primary claim that occurs in the nth time period. We will assume that {�n;n ∈ ℤ}
is a sequence of i.i.d. non–negative random variables with E�2 <∞. The after–effects of each
claim are Bernoulli in the following sense. Suppose that {�nk ; k ∈ ℕ, n ∈ ℤ} is a double array
of independent Bernoulli random variables with values in {0, 1} that are also independent of
{�n}. We assume that, for all n ∈ ℤ, P (�nk = 1) = pk, k = 1, 2, . . .. We further assume that

∞∑

k=1

pk <∞. (16)

Also let {vk}, k = 1, 2, . . ., denote a sequence of measurable, nonnegative functions vk : ℝ+ →
ℝ
+ such that

sup
k
E[vk(�)

2] = L <∞. (17)

Then the stream of after–effects of the primary claim �n is the sequence of secondary claims
�nk := �nk vk(�n), k = 1, 2, 3 . . ., which occur at times n + 1, n + 2, n + 3, . . .. Thus, in the
stationary model, the total amount due to both types of claims that occur at time n, which
includes the present primary claim and the after–effects of all past primary claims, is equal to

Yn = �n +

∞∑

k=1

�n−k
k vk(�n−k). (18)

The overall effect of the nth primary claim together with all its future after–effects is

Zn = �n +

∞∑

k=1

�nk vk(�n). (19)

As a result of (16) and of the first Borel–Cantelli lemma, with probability 1, only finitely
many of the {�nk ; k = 1, 2, 3, . . .} are equal to 1 and hence the right hand side of (19) is a.s.
finite. Similarly, only finitely many of {�n−k

k ; k = 1, 2, 3, . . .} are equal to 1 a.s. and hence Yn
is also finite w.p.1.

We have

EZ = E� +

∞∑

k=1

pkE[vk(�)]

which, as a consequence of assumptions (17) and (16), together with the fact that 0 ≤ Evk(�) ≤(
E[vk(�)

2]
)1/2 ≤ L1/2, can be seen to be finite. Conditioning first on �, we also obtain

Var(Z) = Var(�) + 2

∞∑

k=1

pkCov(�, vk(�)) +

∞∑

k=1

pkVar(vk(�))

+

∞∑

k=1

pk(1− pk)(Evk(�))
2 +

∞∑

k=1

∞∑

l=1

l ∕=k

pkplCov(vk(�), vl(�)).

It is easy to see that the convergence of the series
∑∞

k=1 pk implies that of
∑∞

k=1 p
2
k, of∑∞

k=1 pk(1 − pk), and of
∑∞

k=1

∑∞
l=1

l ∕=k

pkpl. Hence, using a simple argument based on the

9



Cauchy–Schwarz inequality, on the finiteness of E�2, and on assumption (17), we see that
Var(Z) <∞.

A special case of particular interest is pk = �k where � ∈ (0, 1) and vk(x) = x for all
x ∈ ℝ

+. We then have EZ = E�/(1 − �) and

Var(Z) =
1 + 2�− �2

(1− �)2(1 + �)
+ (E�)2

�

1− �2
.

4 The Risk Model and the Diffusion approximation

Consider now the following discrete time free reserves process that corresponds to the stationary
claims process {Yn;n ∈ ℕ} defined in the previous section,

Rn = u+ cn −
n∑

m=1

Ym, (20)

where u is the initial risk reserve and c is the gross risk premium per unit time. The finite
horizon ruin probability of the process {Rn;n ∈ ℕ} for some fixed n0 ∈ ℕ is defined as

Ψ(u, n0) = P

(
inf

n=1,2,...,n0

Rn < 0

)
(21)

and the corresponding infinite horizon ruin probability is

Ψ(u) = P

(
inf

n=1,2,...
Rn < 0

)
. (22)

We will use the Newman-Wright FCLT for associated sequences in order to obtain a diffusion
approximation for the discrete time risk model (20). Suppose that we are given the stationary
claims process {Yn} defined in (7), a sequence of premiums {c�}, and a sequence of initial
capitals {u�}, � = 1, 2, . . .. We then define a sequence of continuous time free reserves processes
{R�(t); t ∈ [0,∞)} via

R�(t) :=
1√
�

⎛
⎝u� + �tc� −

[�t]∑

j=1

Yj − (�t− [�t])Y[�t]+1

⎞
⎠ , t ≥ 0. (23)

The following then holds.

Proposition 9 For the sequence of risk processes defined in (23) we assume that the mean
� of {Yn} given in (8) and the variance �2 given in (9) are finite. We further assume that
lim�→∞ �−1/2u� = u and lim�→∞ �1/2 (c� − �) = 
 > 0 for some strictly positive u and 
.
Then

R�(t)
d→ u+ 
t+ �W (t), t ∈ [0,∞) (24)

where W is standard brownian motion.
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Proof. Rewrite (23) as

R�(t) =
1√
�
u� +

√
� (c� − �) t− 1√

�

⎛
⎝

[�t]∑

j=1

Yj + (�t− [�t])Y[�t]+1 − ��t

⎞
⎠ .

The first term on the right hand side of the above equation converges to u and the second to

t by assumption. The third term converges weakly in ℂ[0, T ] to {�W (t); t ∈ [0, T ]} for any
T > 0 by a direct application of theorem (5) and proposition (8). The extension to ℂ[0,∞)
follows readily by Theorem 5 of Whitt (1970).

The above result can next be applied, in the same fashion as in Iglehart (1969), Grandell
(1977), and Grandell (1991), to approximate the surplus process (20) by

R̂(t) = u+ (c− �)t+ �W (t). (25)

The finite time ruin probability Ψ(u, t), of the surplus process (20) can then be approximated
by

Ψ̂(u, t) = 1−Φ
(
u+��t

�
√
t

)
+Φ

(
−u+��t

�
√
t

)
e−RDu, (26)

where

RD =
2��

�2
,

and � = c/� − 1. The corresponding infinite horizon ruin probability Ψ(u) of the surplus
process (20) is approximated by

Ψ̂(u) = e−RDu. (27)

5 Experimental results

Here we present numerical results that compare the actual finite horizon ruin probabilities, esti-
mated by means of Monte–Carlo experiments, with the corresponding diffusion approximations
for two models with after-effects.

5.1 Model 1

In this model primary claims are i.i.d. random variables that are gamma distributed with
mean 2 (shape parameter 2, scale parameter 1). The number of primary claims in each time
period is i.i.d. Poisson with mean 5. A primary claim �n,j at time n triggers a sequence

{�n,jk ; k = 1, 2, 3, . . .} of secondary claims that occur at times n+1, n+2, . . .with �n,jk := �n,ja
k

where 0 < a < 1. In figures 1 and 2 ten simulated sample paths of R(t) and R̂(t) are compared.
In these plots the time horizon is t = 1000, the initial capital is u = 100, a = 0.2, and � = 0.04.

In tables 1 and 2, the corresponding finite time ruin probabilities Ψ and Ψ̂ are presented
for time horizon t = 2000 and 10, 000, respectively. The relative error "% is defined by
"% = 100(Ψ̂ −Ψ)/Ψ.
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u Ψ± 1.96�̂/
√
N Ψ̂(u, t) "%

100 (4.89 ± 0.05)10−1 4.93 ⋅ 10−1 0.76

200 (2.42 ± 0.04)10−1 2.28 ⋅ 10−1 −5.73

300 (1.10 ± 0.03)10−1 0.98 ⋅ 10−1 −11.04

400 (4.92 ± 0.21)10−2 3.84 ⋅ 10−2 −21.85

500 (1.95 ± 0.14)10−2 1.38 ⋅ 10−2 −29.38

600 (7.70 ± 0.86)10−3 4.48 ⋅ 10−3 −41.82

700 (2.88 ± 0.52)10−3 1.31 ⋅ 10−3 −54.34

800 (1.10 ± 0.32)10−3 3.46 ⋅ 10−4 −68.56

900 (2.75 ± 1.62)10−4 8.17 ⋅ 10−5 −70.29

1000 (7.50 ± 8.49)10−5 1.73 ⋅ 10−5 −76.99

Table 1: Comparison of the finite-time ruin probabilities Ψ and Ψ̂, t = 2000.

u Ψ± 1.96�̂/
√
N Ψ̂(u, t) "%

100 (5.39 ± 0.05)10−1 5.43 ⋅ 10−1 8.80

200 (3.03 ± 0.05)10−1 2.94 ⋅ 10−1 −2.70

300 (1.70 ± 0.04)10−1 1.59 ⋅ 10−1 −6.58

400 (9.33 ± 0.28)10−2 8.54 ⋅ 10−2 −8.39

500 (5.37 ± 0.22)10−2 4.57 ⋅ 10−2 −14.95

600 (3.06 ± 0.17)10−2 2.42 ⋅ 10−2 −20.75

700 (1.73 ± 0.13)10−2 1.28 ⋅ 10−2 −26.05

800 (9.60 ± 0.96)10−3 6.65 ⋅ 10−3 −30.71

900 (5.30 ± 0.71)10−3 3.43 ⋅ 10−3 −35.25

1000 (2.83 ± 0.52)10−3 1.75 ⋅ 10−3 −38.06

1100 (1.68 ± 0.40)10−3 8.80 ⋅ 10−4 −47.44

1200 (8.50 ± 2.86)10−4 4.37 ⋅ 10−4 −48.61

1300 (6.50 ± 2.50)10−4 2.13 ⋅ 10−4 −67.16

1400 (2.75 ± 1.62)10−4 1.03 ⋅ 10−4 −62.66

1500 (7.50 ± 8.49)10−5 4.86 ⋅ 10−5 −35.23

Table 2: Comparison of the finite-time ruin probabilities Ψ and Ψ̂, t = 10, 000.
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Figure 1: Simulations of R(t), model 1.

Figure 2: Simulations of R̂(t), model 1.

5.2 Model 2

The second model is essentially in the framework of section 3.4. Primary claims are again i.i.d.
random variables gamma distributed with shape parameter 2 and scale parameter 1 and the
number of primary claims in each time period are i.i.d. Poisson distributed with mean 5. A
primary claim �n,j at time n triggers a sequence {�n,jk ; k = 1, 2, 3, . . .} of secondary claims that

occur at times n + 1, n + 2, . . ., with �n,jk := �n,j�
n,j
k . Here {�n,jk ;n ∈ ℤ; k, j ∈ ℕ} is a triple
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array of independent Bernoulli random variables such that

�n,jk =

{
1, with probability pk = ak

0 with probability 1− pk
,

where 0 < a < 1. Thus, the total contribution of the secondary claims triggered by a primary
claim � is Z = �

∑∞
k=1 �k which is finite with probability 1 by virtue of the Borel–Cantelli

lemma.

Figure 3: Simulations of R(t), model 2.

Figure 4: Simulations of R̂(t), model 2.

In figures 3 and 4 ten simulated sample paths of R(t) and R̂(t) are compared. The time
horizon is t = 1000, the initial capital is u = 400, � = 0.01, and a = 0.7.
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u Ψ± 1.96�̂/
√
N Ψ̂(u, t) "%

100 (8.47 ± 0.04)10−1 8.70 ⋅ 10−1 2.83

200 (7.49 ± 0.04)10−1 7.54 ⋅ 10−1 0.62

500 (4.95 ± 0.05)10−1 4.75 ⋅ 10−1 −3.93

1000 (2.28 ± 0.04)10−1 1.96 ⋅ 10−1 −13.98

2000 (3.29 ± 0.17)10−2 2.05 ⋅ 10−2 −37.65

3000 (1.50 ± 0.38)10−3 1.03 ⋅ 10−3 −31.32

4000 (0± 0) 2.37 ⋅ 10−5 −−−
5000 (0± 0) 2.54 ⋅ 10−7 −−−

Table 3: Comparison of the finite-time ruin probabilities Ψ and Ψ̂, t = 10, 000, a = 0.5.

u Ψ± 1.96�̂/
√
N Ψ̂(u, t) "%

100 (8.60 ± 0.03)10−1 9.18 ⋅ 10−1 6.84

200 (8.00 ± 0.04)10−1 8.42 ⋅ 10−1 5.30

500 (6.37 ± 0.05)10−1 6.42 ⋅ 10−1 −7.92

1000 (4.09 ± 0.05)10−1 3.92 ⋅ 10−1 −4.06

2000 (1.41 ± 0.03)10−1 1.24 ⋅ 10−1 −12.25

3000 (4.32 ± 0.20)10−2 3.06 ⋅ 10−2 −29.21

4000 (9.80 ± 0.97)10−3 5.77 ⋅ 10−3 −41.10

5000 (1.20 ± 0.34)10−3 8.20 ⋅ 10−3 −31.70

6000 (4.50 ± 2.08)10−4 8.68 ⋅ 10−5 −80.71

7000 (0± 0) 6.83 ⋅ 10−6 −−−

Table 4: Comparison of the finite-time ruin probabilities Ψ and Ψ̂, t = 10, 000, a = 0.7.

In tables 3, 4, 5, and 6 the corresponding finite time ruin probabilities Ψ and Ψ̂ are
presented for time horizon t = 10, 000, a = 0.5, 0.7, 0.8, and 0.9 respectively, � = 0.003.

Each entry in the six tables above involved 40,000 independent simulation runs. As ex-
pected, when the initial capital u is so large that the ruin probability is of the order of 10−2 or
smaller, the quality of the diffusion approximation is not very satisfactory. At the same time,
the computational effort necessary in order to estimate the ruin probability using simulation
becomes prohibitively large. We should point out that for a number of runs with large values
of u in tables 3, 4, 5, and 6 (all referring to model 2) the results of the Monte Carlo estimation
for the ruin probability give 0 because no sample paths leading to ruin were observed.

In closing we should point out that, from a practical point of view, the simple diffusion
approximation is a relatively “ blunt instrument” which does not provide a very accurate
approximation of the ruin probability, but instead a qualitative estimate. After all, as the
CLT itself, it is only based on the first two moments of the risk process and does not take into
account its tail behavior. Nontheless, such approximations have their uses in the analysis of
risk and insurance processes. For a detailed account we refer the reader to [2], [7], and [8].
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u Ψ± 1.96�̂/
√
N Ψ̂(u, t) "%

100 (8.27 ± 0.04)10−1 9.44 ⋅ 10−1 14.11

200 (7.88 ± 0.04)10−1 8.90 ⋅ 10−1 12.94

500 (6.70 ± 0.05)10−1 7.42 ⋅ 10−1 10.84

1000 (5.04 ± 0.05)10−1 5.40 ⋅ 10−1 7.05

2000 (2.67 ± 0.04)10−1 2.65 ⋅ 10−1 −4.64

5000 (1.96 ± 0.14)10−2 1.63 ⋅ 10−2 −16.86

6000 (7.73 ± 0.86)10−3 5.02 ⋅ 10−3 −34.99

7000 (1.58 ± 0.39)10−3 1.36 ⋅ 10−3 −13.63

8000 (4.00 ± 1.96)10−4 3.22 ⋅ 10−4 −19.39

9000 (1.75 ± 1.30)10−4 6.67 ⋅ 10−5 −61.87

10000 (0± 0) 1.20 ⋅ 10−5 −−−

Table 5: Comparison of the finite-time ruin probabilities Ψ and Ψ̂, t = 10, 000, a = 0.8.

u Ψ± 1.96�̂/
√
N Ψ̂(u, t) "%

100 (7.25 ± 0.04)10−1 9.71 ⋅ 10−1 33.94

200 (7.06 ± 0.04)10−1 9.42 ⋅ 10−1 33.42

500 (6.44 ± 0.05)10−1 8.60 ⋅ 10−1 33.61

1000 (5.58 ± 0.05)10−1 7.36 ⋅ 10−1 31.85

2000 (4.05 ± 0.05)10−1 5.29 ⋅ 10−1 30.67

5000 (1.35 ± 0.03)10−1 1.70 ⋅ 10−1 25.74

10000 (1.32 ± 0.11)10−2 1.42 ⋅ 10−2 7.55

11000 (7.38 ± 0.84)10−3 7.85 ⋅ 10−3 6.48

12000 (3.90 ± 0.61)10−3 4.20 ⋅ 10−3 7.71

13000 (1.88 ± 0.42)10−3 2.17 ⋅ 10−3 15.83

14000 (9.00 ± 2.94)10−4 1.08 ⋅ 10−3 20.56

15000 (5.25 ± 2.24)10−4 5.24 ⋅ 10−4 −0.29

16000 (1.75 ± 1.30)10−4 2.44 ⋅ 10−4 39.38

17000 (2.00 ± 1.39)10−4 1.10 ⋅ 10−4 −45.17

18000 (0± 0) 4.76 ⋅ 10−5 −−−
19000 (0± 0) 1.99 ⋅ 10−5 −−−
20000 (0± 0) 8.02 ⋅ 10−6 −−−

Table 6: Comparison of the finite-time ruin probabilities Ψ and Ψ̂, t = 10, 000, a = 0.9.
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