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Consistency of Perturbation Analysis for a Queue 
with Finite Buffer Space and Loss Policy 

Y. WARDI,  I M. A. ZAZANIS,  2 AND M. L u o  3 

Communicated by Y. C. Ho 

Abstract, The subject of  discrete-event dynamical systems has taken 
on a new direction with the advent of perturbation analysis (PA), an 
efficient method for estimating the gradients of a steady-state perform- 
ance measure, by analyzing data obtained from a single-simulation 
experiment in the time domain. A crucial issue is whether PA gives 
strongly consistent estimates, namely, whether average time-domain- 
based gradients converge, over infinite horizon, to the steady-state 
gradients. In this paper, we investigate this issue for a queue with a 
finite buffer capacity and a loss policy. The performance measure in 
question is the average amount of  lost customers, as a function of  the 
buffer's capacity, which is assumed to be continuous in our work. It is 
shown that PA gives strongly consistent estimates. The analysis uses a 
new technique, based on busy period-dependent inequalities. This tech- 
nique may have possible extensions to analyses of consistency of PA 
for more general queueing systems. 
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1. Introduction 

The  sub jec t  o f  s i m u l a t i o n - b a s e d  op t imiza t i on  o f  d i sc re te -even t  d y n a m i -  
cal sys tems,  and  espec ia l ly  o f  queue ing  ne tworks ,  has t aken  on  a new 
d i r ec t ion  in the  pas t  n ine  years ,  with the  d e v e l o p m e n t  o f  p e r t u r b a t i o n  
ana lys i s  (see  Ref.  1 a n d  the  references  there in) .  C o n s i d e r  a d i sc re te -even t  
d y n a m i c a l  system.  Let  z~, z 2 , . . ,  deno te  the  s tates ,  let ul ,  u 2 , . . ,  d e n o t e  the  
inputs ,  a n d  let  h deno t e  the  state t r ans i t ion  funct ion .  Thus ,  for  n = 1, 
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2, . . . ,  z,+l = h(zn, u,). Suppose that ul,  u2, . . . are independent,  identically 
distributed random variables. Let (12, F, p) be the probabili ty space under- 
lying realizations of  the sequences u~, u2, • • •. Thus, a sample point to c l-I 
gives rise to a realization of  an input sequence Ul, u2, • . . .  Consider a given 
initial state, z1. The states z2, z3 , . . ,  depend on z~ and on to ~12. Now, 
suppose that the state transition function h depends on a Euclidean variable 
x and it has the form h(z, x, u), where z is an element in the state space 
and u is an input. Then, the states z2, z3, • • • also depend on x, by the formula 

z.+~(x) = h ( z . ( x ) ,  x, u.) .  (1) 
Notice that z,(x) also depends on z~ and on to e 12. Let g be a real-valued 
(output) function of  z, x, u. Let f ( x )  be the expected value of g (z , (x ) ,  x, u,). 
Under  appropr ia te  ergodicity conditions, for every z~ and for almost every 

N 

lira Y. g(z,(x), x, u , ) /N=f(x ) .  (2) 
N~oo  n = l  

Suppose that it is desirable to compute an estimate of  df(x)/dx, by using 
simulation of  the dynamical  system. What comes to the mind is to use (2), 
if (3) below is satisfied for every z~ and for almost every to ~ 12: 

N d  df 
lim ~ ag(z, ,(x),x,u, ,) /N=~x(X).  (3) 

N ~ c o  n = l  dx 
Perturbation analysis (PA) is an efficient technique for evaluating 

dg (z,(x), x, u,)/ N, 
r1~1 d x  

for a given integer N, in one simulation run (see Ref. 1). An important  
question is the validity of  (3). The question has been answered affirmatively 
for a number  of  simple queueing systems: for M / G / 1  queues (Ref. 2), 
G I / G / 1  queues (Refs. 3 and 4), M / M / m  queues (Ref. 5), and closed 
Jackson networks (Ref. 6). Sufficient conditions for (3) were given in Ref. 
7. I f  (3) is satisfied, then PA is said to be exact or to give strongly consistent 
estimates of  df(x)/dx (see Ref. 2). 

The purpose of this paper  is to show that PA gives strongly consistent 
estimates for a single queue with finite buffer capacity and a policy of  
discarding customers, or parts thereof, when all the buffer space becomes 
full. Consider a FIFO queue. Let ff and s denote its interarrival time and 
service time random variables, respectively. Suppose that ( >  g (overbar 
denotes expectation). Let x represent the buffer capacity (see Fig. 1). x is 
expressed in time units; namely, if the buffer is full, then it takes the server 
x seconds to empty the queue. Let C,, n = 1, 2 , . . . ,  denote the nth arriving 
customer. Let z,(x) denote the waiting time of  C,,  namely, the amount  of  



JOTA: VOL. 68, NO. 1, JANUARY I991 183 

D ~  

It takes x seconds  to empty  a full queue 

Fig. 1. 

 -IJlllllllJ o - -  

Queue with policy of discarding customers or parts thereof~ 

t ime between the arrival o f  C~ and the start o f  its service. Let s~ denote the 
service t ime of C,,  if no part  o f  it is being lost. Let t~ denote the time at 
which C, arrives. Consider  the system at t ime tn. I f  zn(x)+ s, <-x, then all 
of  C, fits into the buffer. I f  z , ( x )+s ,  > x, then as much as possible of  C, 
joins the queue, and the part  of  C, which does not fit in the queue is 
discarded. 

The queue described above can be used to model a number  of  systems. 
For example,  in situations where the customer represents the amount  of  
fluid arriving to a reservoir at discrete points in time, the server represents 
the fluid flow rate out of  the reservoir, and any quantity in excess of  the 
reservoir 's capacity is directed out of  the system. As another example,  in 
packet switching for voice communications,  it is generally desirable to limit 
the packets transmission times; hence, the buffers at the switches could 
have limited capacities. Typically, a packet arriving to a full queue is 
discarded. The model described above, allowing for a customer 's  (packet 's)  
part  to be discarded, can act as an approximat ion (especially, i f  the packets 
are transmitted very fast). As a last example,  consider a situation where a 
standard finite buffer queue is used, the service time is a constant (deter~ 
ministic), and arrivals occur in large, variable-size batches of  customers. In 
such a case, the term customer  can be redefined to mean a batch of  arrivals, 
and its service time is proport ional  to its size. I f  a batch does not entirely 
fit in the buffer, a part  of  it is discarded. Naturally, the discarded amount  
may be measured in discrete units (corresponding to the nominal  customers 
comprising the batch); but, if the batches are large, and if the service times 
of  nominal  customers are small, then our model can provide an adequate 
approximation.  Generally, the amount  of  buffer can represent a trade-off 
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between the maximum customer delay and the average amount of customer 
loss. 

Let y.(x)  denote the amount  of C. discarded. Figure 2 illustrates the 
dependence of  y.(x)  on z.(x) and s.. Functionally, 

y.(x)  = max(z.  (x) + s~ - x ,  0). (4) 

I f  z. (x) + s. - x -< 0, then C. is fully accepted, and it incurs no loss, y.  (x) = 0. 
If  z.(x) + s. - x  >- O, then C. is only partially accepted, and it incurs some 
loss, y.  ( x ) =  z . (x)+ s . - x .  Its actual service time, after part of  it has been 
discarded, is s. - y . ( x ) .  Let ~'. _a t.+~ - t.. Let u. ~ (s.,  ~.). Then (see Fig. 3), 

z.+](x) = max(z.  (x) + s. - y . ( x )  - ~., 0). (5) 

Notice that (5) is a Lindley-like equation. Indeed, with x = ~ ,  y.(x) = O, 
and (5) becomes the Lindley equation for the G I / G / 1  queue. With (4) and 
(5), one has the structure of a discrete-event dynamical system driven by 
random inputs. Events are arrivals of  customers, occurring at times t., n = 1, 
2 , . . . .  The inputs are u. = (s., ft.). The states are z.(x). The state transition 
function h [see (1)] has the form 

h(z.(x), x, u.) =max(z .(x)+ s. -max ( z . ( x )+  s. - x ,  0) -~ ' . ,  0); 

see (4), (5). The output function has the form 

y.(x)  = g(z . (x) ,  x, u.)  = max(z . (x)  + s. - x, 0). 

Let 
N 

Y(x)=a . s .  lim Y~ y~(x)/N. 
N ---~ o~3 n = l  

I Queue 
Content 

Fig. 2. 

Sn+l 

Zn(X) 

i 
tn 

Time 

Yn,l(x) 

l ,  

zn.l(×) 

i 

t n÷l 

Time-dependent trajectory of the queue content. Here, 
z , ( x )  + s~ < x ~ y , , ( x )  = O, 

z , + t ( x  ) + s ,+  1 > x:--:> y , +  I ( x )  = zn+ ~ ( x )  + sn+ l - x.  
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I Queue 
Content 

IiT 
Yn(X) [I Yn.l(X) 

0 . . . . . . .  T ~ - -  

t n t n*l J t n + 2  
Z n*2 (x)=O - - i 1 , ~  

Time 

(x) 

Fig. 3. State transition function. Here, 
y,,(x) -- z . ( x )  + s. - x ~ z . . ~ ( x )  = z,,(x) + s.  - y,,(x)- ~. = x - ~., 
y.+l(x)  = z,,+~(x)+ s,,+~ - x. x < (~+l~z .+~(x)  = O, 

Z n + 3 ( X  ) = S n + 2 - -  ~ n + 2  . 

Since .g< ~, the system has a regenerative structure (see Fig. 4), and Y ( x )  

exists. Moreover ,  for  every Zl = z ~ ( x ) ,  for  a lmost  every o)~f~, 
N 

lim E y . ( x ) / N =  Y ( x ) .  (6) 
N ~ c c ~  • = l  

The fol lowing assumpt ion  will be made.  

Assumption 1.1. (i) The r a n d o m  variable g" has a b o u n d e d  density 
funct ion.  

I Queue 
Content 

t t ) y -y 

Busy Period Busy Period 
g,_ 

Time 

J 

Fig. 4. Regenerative structure. 
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(ii) The distribution function of the random variable s has at most a 
finite number  of  discontinuities. Let x~ < x2 < -  • • < xj be the points at which 
it is discontinuous. Then, the distribution function of  s has a bounded,  
continuous derivative on [0, xl) u (xl ,  x2) u -  • - u (xj, oo). 

(iii) There exists a point x > xj such that p(~ > x) > 0. 

Remark 1.1. Assumption 1.1 is satisfied under fairly general condi- 
tions, for instance, when ff is supported on the entire half-line R ÷, where 
it has a bounded density function (e.g., exponential distribution), and the 
distribution function of  s is continuously differentiable at all but a finite 
number  of  points. It is then clear that (i) and (ii) are satisfied. To see (iii), 
notice that, for every x, p ( ~ >  x ) >  0. The latter condition on s is satisfied 
for quite a few distributions, including deterministic, uniform, exponential, 
and erlangian. 

For technicalities involved with the proof  of Lemma 2.2, below, we 
will prove the strong consistency of PA only for points x satisfying x > xj. 
This restriction may be satisfied by the following argument: Loss of a part 
of  a customer is generally an undesired phenomenon.  Therefore, it is natural 
to have the value of x in such a way that only customers which arrive to a 
heavily loaded queue could incur loss. In this case, x should be outside of 
the support  of  s, preventing the possibility that an arriving customer, which 
finds the queue empty, could incur loss. In aiming at a more general analysis, 
we allow x to be within the support of  s (which would be the case if s were 
supported on all of R÷), but we insist that x be greater than any jump point 
of  the distribution function of s, i.e., x > xj. Thus, we will consider x 
belonging to a closed interval F, whose left point is greater than xj. Let 
F = [ Y , ~ ] ,  for some points Y>x~ and 2 > £  We will also assume that 
p(~ > 2) > 0. Notice that the latter assumption is trivially satisfied whenever 

is supported on all of  R ÷ (e.g., ff is exponentially distributed); in general, 
the existence of  2 satisfying p(~" > 2 ) >  0 follows from Assumption 1.1 (iii). 
Assumption 1.1 and the conditions on F are satisfied in the following 
situations: ~ is supported on R +, where it has a bounded density function 
(e.g., exponentially distributed), and either one of  the following four condi- 
tions is satisfied: 

(i) s has a bounded density function (namely, its distribution func- 
tion has a bounded derivative) and F = [Y, if] is any closed interval in R÷; 

(ii) s has a deterministic distribution, s = x~ w.p.1 for some xl > 0, 
~ > x ~ ,  and 2 > ~ ;  

(iii) s is uniformly distributed on an interval Ix1, x2], Y > x2 and ~ > Y; 
(iv) s has a discrete distribution; it can have values only from a finite 

set, x l , . . . ,  xj, Y > xj, and ~ > Y. 
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It can thus be seen that Assumption t.1 and the conditions on F are quite 
general. Consider x ~ F. By Assumption 1.1, (4), and (5), for every zl = z~ (x), 
for almost every w c FL, dy,(x)/dx exists for all n = 1, 2 , . . ° .  

Let prime denote derivative with respect to x. The following proposition 
will be established. 

Proposition 1.1. The function x-> Y(x) is continuously differentiable 
on F. 

Theorem 1.1. Perturbation analysis gives strongly consistent estimates 
o f  Y'(x), x ~ F; namely, for every zl = z~(x) and for almost every o~ 6 ~2, 

N 

lira Z y ' ( x ) / N =  Y'(x), (7) 
N~cx~ n = l  

The analysis is carried out in Section 2. Section 3 contains a numerical 
example. Section 4 is a conclusion. The appendix contains proofs not 
provided in the body of  the paper. 

2. Analysis 

In this section, Proposition 1.1 and Theorem 1.1 will be proved. The 
structure of  the proofs is the following: Consider an x ~ F. Recall that a.s. 
y'(x) exists for every n = 1, 2 , . . . .  In order to avoid a situation where y',(x) 
does not exist (which occurs with probability 0), we will define a sequence 
of  random functions ~ , (x) ,  n = 1, 2 , . . . ,  such that ~7,(x) always exists and 
~7,(x) = y ' ( x )  whenever the latter exists. We will show that ~%(x) can have 
the values 0 or - I ,  specifically: f t , (x)  = -1 ,  if the nth customer arriving to 
the queue is the first customer in its busy period which incurs loss; and 
~ , (x)  = 0, otherwise. Thus, we get an expression for y;(x), reflecting the 
fact that only the first customer in a busy period which incurs loss absorbs 
any additional infinitesimal buffer space (this point will be proved in Lemma 
2.1). Next, it will be shown that there exists a function G(x), defined on 
F, such that, for every x ~ F, 

N 

w.p.1 Z 71,(x)/N->-G(x), as N ~ ;  
n = l  

see Eq. (9). Continuity of  G(x) will then be proved (Lemma 2.2). Finally, 
using the inequalities in (10) and (16), finite-difference arguments wilt 
establish that Y'(x) exists and that Y ' (x )=  - G ( x ) ,  from which the proofs 
of the proposition and theorem will follow directly. With the expression of 
y'(x) obtained above, Algorithm 2.1 (below) computes a PA estimate of 



188 JOTA: VOL. 68, NO. 1, JANUARY 1991 

Y' (x) ,  ~"(x).  It is compu ted  along a s imulat ion run of  the system, keeping 
t rack o f  whether  an arriving cus tomer  is the first one in its busy per iod to 
incur a loss. 

Algorithm 2.1. 

Data. x ~ F, an integer N. 

Step O. Set sum = 0; set j = 1. 

Step 1. A cus tomer  just  arrived. I f  the cus tomer  is the first one in its 
busy per iod which incurs loss, set sum = s u m - 1 .  

Step 2. I f j < N ,  set j = j + l ,  and go to Step 1. Otherwise,  go to 
Step 3. 

Step 3. Stop the s imulat ion-run;  set ~ " ( x ) =  s u m / N ,  and exit. 

We now address  the proofs  o f  Theorem 1.1 and Proposi t ion 1.1. Let 
C,  denote  the nth cus tomer  arriving to the queue. Cons ider  x c F. Let ~ ~ 12 
denote  the event that, for  every n = 1, 2 , . . . ,  

z , ( x ) + s , - x ~ O  and  z , ( x ) + s , - y , ( x ) - ~ , ~ O ;  

see (4) and (5). By Assumpt ion  1.1, p(l~) = 1. Moreover ,  for  every w c 1~, 
y ' (x)  and  z',(x) exist, n = 1, 2 . . . . .  For  every n = 1, 2 , . . . ,  let 

k(n, x) a__ m a x ( k  <- n I Zk(X) = 0); 

if  Zk(X) > 0, for  every k -  n, set k(n, x) = 1. In  other  words,  k(n, x) = k such 
that  Ck is the first cus tomer  in the busy per iod containing C, .  Let 

K(n , x )  ~=min(k >-nlZk+l(X)=O). 

In  other  words ,  K(n, x) = k such that  Ck is the last cus tomer  in the busy 
per iod conta in ing C, .  Define the r a n d o m  funct ions r / , (x) ,  n = 1, 2 . . . .  , as 
follows: if y,(x) > 0 and either n = k(n, x) or y,,(x) = 0 for  every m = 
k(n, x) . . . .  , n - 1, then set r / , (x)  = -1 .  Otherwise,  set ~7,(x) = 0. Not ice  that  
~?,(x) = - 1  if and only if  C,  is the first cus tomer  in its busy per iod which 
incurs loss. ~?,(x) depends  on to and z~ (z~ is assumed fixed). It is illustrated 
in Fig. 5. 

Lemma 2.1. w.p.1, f t , ( x ) = y ' ( x ) ,  for every n = 1, 2 , . . . .  

Proof.  Recall that  p ( ~ ) =  1. Therefore,  it suffices to show that, for 
every to e 1~ and  n = 1, 2 , . . . ,  y"  (x) = r/, (x). Cons ider  a busy period,  consist- 
ing o f  customers  Ck , . . . ,  CK. By (5), for all n = k , . . . ,  K - l ,  

z ,+ , (x)  = z,(x) + s, - y , ( x ) -  ~,. 

Hence,  

z ' + , ( x )  = z ' (x)  - y ' ( x ) .  (8) 
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tn tn+l tn,2 tn*3 tn.4 

Time 

Fig. 5. The function ~%(x). Here, y ,+l(x)>0,  y~+3(x)>0. 
But ~.+l(x) = -1,  r~+3(x) =0. Also, r / . (x)= ~%+2(x)= ~%+4(x)=0. 

C o n s i d e r  first the  case  where ,  for  every  n = k , . . . ,  K, y,(x)  = 0. Since 
w e 1) and  by  (4), y ' (x )  = 0. By the  def in i t ion  o f  r~,(-) ,  r l , ( x )  = 0. 

Next ,  suppose  tha t  y,(x) > 0 for  some n = k , . . . ,  K. Let  

m = m i n ( n  = k , . . . ,  Kly , (x)>O).  

Then,  ~m(x)  = - 1  and,  for  every rh = k , . . . ,  K, r~ # m, r/,~(x) = 0. By (4), 
for  every r~ = k, . . . .  K, i f  y,~(x) = 0, then  y ' ( x )  = 0; and  i f  y~(x) > 0, then  
y,~(x)=z,~(x)+s,~-x, hence  y ' ( x ) = z ~ ( x ) - l .  Now,  z ~ ( x ) = 0 ,  s ince 
Zg(X) = 0 and  to E I). F o r  every r~ = k , . . . ,  m - 1, y ' ( x )  = 0; hence,  by  (8), 
z'+l(x) = 0. Hence ,  z ' ( x ) =  0. There fo re  and  s ince ym(X)> O, 

y~(x) = Z'~(X) -- 1 = O-- t = --1. 

But ~ m ( x ) = - 1 ,  hence  y ' ( x ) =  ~Tm(X). We have  shown that ,  for  every 
r~ = k , . . . ,  m, y ' ( x ) =  r /~(x) .  I t  r ema ins  to show the la t te r  equa l i ty  for  
r ~ = m + l , . . . ,  K. 

We will  now show by  induc t ion  tha t ,  for  every  r~ = m + l , . . . ~  K, 
y~(x) = 0 and  z~(x) = 1. C o n s i d e r  first the  case  where  ~ = rn + 1. By (8), 
z'~+~(x) = 0 -  ( - 1 )  = 1. I f  Ym+~ (x)  = 0, then  y'~+l(x) = 0. I f  y,,+~(x) > 0, then  
y ' + t ( x ) = z ' + t ( x ) - I  = 0 .  In any  case,  y ~ + l ( x ) = 0 ,  and  as  we have seen,  
z'~_~(x) = 1. Next ,  we turn  to the  induc t ive  a rgument .  S u p p o s e  that ,  for  
some  n~ = m + 1 . . . . .  K - 1, z~(x) = 1 and  y ' ( x )  = 0. By (8), Z~+l(X) = 1. 
I f  y,~+l(X) = 0, then  y~+~(x) = 0. I f  y,~+l(x) > 0, then  y~+l (X)  = z'+~(x) - 
1 = 0 .  In any  event,  y'+~(x)= 0. This comple t e s  the induc t ive  a rgument .  
Therefore ,  for  every n~ = m + 1 , . . . ,  K, y~,(x) = 0. But ~,~,(x) = 0; hence,  the  
p r o o f  o f  the  l e m m a  is comple te .  []  
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Let Gl(x) denote the probability that at least one customer incurs loss 
in a busy period. Let G2(x) denote the average number of customers in a 
busy period. Let G(x)  = Gl(x)/G2(x) .  By the definition of ~7,(x), for every 
02 E 1)., a .s . ,  

N 

lira E r l , , ( x ) / N = - G ( x ) .  (9) 
N ~ c o  n = l  

Lemma 2.2. G(- ) is continuous on F. 

Proof. See the appendix. [] 

Proof of Theorem 1.1. By (9) and Lemma 2.1, it suffices to show that 
Y'(x) exists and that Y ' ( x ) =  - G ( x ) .  The main arguments in the proof are 
the following: Let x ~ F and 8 > 0 be given, such that x + 6 ~ F. For an to ~ 12, 
consider a busy period of the queue, where x is the buffer capacity (to may 
belong to l ) c ;  in this case, a busy period ends when the next one begins; 
we consider them as two distinct busy periods). Suppose that the busy 
period starts with customer Ck and ends with customer CK, for some integers 
k and K. We will show that 

K K 

t~ ~., "q,,(x) < -- ~_, (y ,~(x+6)-y, , (x)) .  (10) 
n = k  n = k  

By (6) and (9), a.s., 

N 

lira ~ y , ( x + 6 ) / N =  Y(x+6) ,  (11) 
N --> ao n = l  

N 

lira E y , , ( x ) / N =  Y(x), (12) 
N --> oo n = |  

N 

lira Z ~ , ( x ) / N = - G ( x ) .  (13) 
N --~ oo n = l  

Fix an ¢o where (11)-(13) are satisfied. Take the limits in (11)-(13) over a 
sequence of integers N(m) ,  m = 1, 2, . . . ,  such that CN~m) ends the mth 
busy period of the queue, with x being the buffer capacity (to was fixed 
above), By (10), for all m, 

N ( m )  N ( m )  

t3 ~. , l , ( x ) / N ( m )  ~ -- ~. ( y . ( x + 6 ) - y . ( x ) ) / N ( m ) .  (14) 
n = l  n = l  

Hence and by (11)-(13), 

( Y ( x  + 8 ) -  Y (x ) ) /  6 ~ - G ( x ) .  
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By taking 8 ~ 0 (8 > 0), 

li___mm( Y(x + 6 ) -  Y (x ) ) /6  >- -G(x ) .  (15) 

Next, consider a busy period of the queue, whre x + 8 is the buffer capacity. 
Suppose that it starts with Ck and ends with CK [k and K are different 
from those in the discussion leading to (10)]. We will show that 

K K 

8 Y. r / , (x+8)>_ E ( yn (x+8) -y , ( x ) ) .  (16) 
n = k  n = k  

Therefore, 

( r ( x + 6 ) -  y ( x ) ) / 6 ~ _ - G ( x + 8 ) .  

By taking 8 ~ 0  ( 3 > 0 )  and by Lemma 2.2, 

lim( Y(x  + 8) - Y(x ) ) /6  <-- -G(x ) .  (17) 

By (15) and (17), 

l i m ( Y ( x + 6 ) -  Y (x ) ) /8  = - G ( x ) .  (18) 
~.~o 

The limit where 8 < 0 can be shown in a similar way. 
It remains to establish (10) and (16). 

Proof  of (10). The busy period in question is with x being the buffer 
capacity. It starts with Ck and ends with CK. Therefore, and by (5), Zk(X) = O, 
and for n = k , . . . , K - 1 ,  

z,+l (x) = z, (x) + s, - y, (x) - ~, > 0. 

Zk (X + 8) may be positive, but z, ( . )  is monotone nondecreasing in x; hence, 
for every n = k . . . .  , K - 1, z,+~(x+ 3) > 0. By (5), 

z,+l(x + 8)= z ,(x  + 8)+ s , - y , ( x  + 8)-~ ' ,> O. 

In showing (10), we analyze two cases. 

Case I. k = K .  Ifyk(X)=O, thenyk(x+8)=O[sinceyk( .) ismonotone 
nonincreasing], and ~7,(x)=0. Hence, (10) is satisfied. If y k ( x ) > 0 ,  then 
by (4), 

yk(x) = Sk --X, •k(X) = --1, 

and by (4), 

yk(X + 6)>-- Zk(X + 6)+ Sk--(X + 8). 

Hence, 

yk(X + 8) --yk(X) >- Zk(X + 6) -- ~5 >- --6, 

implying (10). 
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C a s e  II .  k < K. We will show that,  for  every n = k , . . . ,  K - 1, 

n 

z n + l ( x ) - z , + ~ ( x + 6 )  <- ~ ( y m ( x + 6 ) - - y m ( x ) ) .  (19) 
m=k 

The p r o o f  o f  (19) is by  induct ion.  First, cons ider  the case where  n = k. By 
(5), the fact  that  K > k, and  the fact that  Zk(X) = O, 

zk+,(x)  - zk+,(x + a) 

= Sk - -yk(X)  -- ~k -- (Zk(X + 6) + Sk -- y k ( x  + 6) -- ~k) 

= y k ( x  + 6) - y k ( x )  - Zk(X + 6) <-- yk(X + 6) -- yk (x ) .  

Hence ,  (19) is satisfied with n = k. 
Next ,  suppose  that  (19) is satisfied for  some  n = k , . . . ,  K - 2 .  We now 

show tha t  (19) is satisfied for  n + 1. We have 

zn+2(x) - z .+2(x + 6)  

= Zn+l(X)  + Sn+l - - Y n + l ( x )  -- ~ n + l  

- ( z , + ~ ( x + 6 ) + s , + l - y , + l ( x + 6 ) - ~ , + , )  [by (5)] 

= z ,+ l (x )  - z ,+ l ( x  + 6) + y , + l ( x  + 6) - y ,+ l ( x )  

n + l  

<- Z ( y , , ( x +  6 ) - y m ( x ) )  [by (19) and  the induct ive a rgument ] .  (20) 
rn=k 

Hence ,  (19) is satisfied for  n + 1. This establ ishes (19) for  n = k , . . . ,  K - 1. 
We now use (19) to show (10). In  the p r o o f  o f  L e m m a  2.1, we saw 

that  z ' ( x )  can be 0 or 1. Hence ,  

zk (x  + 6 )  - zk (x )  <- 6. 

This fact  will be  used below. We consider  two cases. 

~ , = k  ~7,(x) = 0. In  this case, for  all n = k , . . . ,  K, y , ( x )  = O. Case  II (a) .  K 
Hence ,  y , ( x + 6 ) = 0 ,  since y , ( x )  is m o n o t o n e  nonincreasing.  Since 
~ , ( x )  <- 0, this implies  (10). 

C a s e  II (b) .  K ~ n = k  "On(x) <~0. By the definit ion of  r / , ( .  ), 

K 

Y~ r / , (x)  = - 1 .  
n=k 

It  suffices to show that  

K 

y. ( y , ( x + 6 ) - y , ( x ) ) > -  - &  (21) 
n=k 
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By (19), with n = K - l ,  

K 
2 (y , ( x+6) -y , , ( x ) )  

n = k  

K - 1  

= ~, (Y,,(X+6)--Y,,(X))+yK(X+~5)--yK(X) 
n = k  

>--ZK(X) --ZK(X + ~)+ y,X(X + 6)--yK(x). 

We consider two cases. 

(22) 

Case lI(bl), yK(x)=0 .  Then, y K ( x + 6 ) = 0 .  But ZK(X)--ZK(X+8)>-- 
--6, since z~( .  ) can be 0 or 1. Hence, and by (22), (21) is satisfied. 

Case II(b2). YK (X) > 0. Then, by (4), 

y , , ( x )  = z , , ( x )  + s , ,  - x 

and 

yK(X + a)>-- ZK(X + 8)+ SK --(X + a). 

Therefore, 

z ~ ( x )  - zK ( x  + ~ ) + y K  ( x  + ~ ) - y K  ( x )  >- x - s~  + sK - ( x  + ~ ) = - &  

Hence, by (22), (21) is satisfied. 
This completes the proof of (21), hence of (10). 
The proof of (16) is similar to that of (10), hence it is relegated to the 

appendix. 
This completes the proof of Theorem 1.1. [] 

Proof of Proposition 1.1. The proof follows directly from Theorem 
1.1, Lemma 2.2, and the fact that Y'(x)= -G(x ) .  [] 

3, Numerical Tests 

Results of numerical experiments for computing estimates of Y'(x) are 
reported in this section. We assume on a deterministic service time of s = 1.0, 
that the arrival process is Poisson distributed with rates A = 0.8 and A = 0.95 
(these values of A correspond to moderate and high traffic intensities), and 
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Table 1. Results for A =0.8. 

N 1000 3000 5000 7000 9000 

PA Estimates -0.147 -0.154 -0.147 -0.148 -0.151 
FD Estimates (8=0,1) +0.201 -0.208 -0.113 -0.162 -0.154 
FD Estimate (6 = 0.01) +2.850 +0.286 +0.332 +0.032 -1.073 

tha t  the  buffer  capac i ty  is x = 1.6. Two es t imates  are  c o m p u t e d :  P A  es t imates ,  
name ly ,  

N 

E y',,(x)/N; (23) 
n = l  

and  F D  es t imates  ( f in i te-dif ference es t imates) ,  namely ,  

[n~=l Yn(X + a)/ N-  N~=a y,,(x)/ N]/6, (24) 

for  6 = 0.1 and  8 = 0.01, a n d  b y  us ing the same seed.  The results  are  shown 
in Tables  1 a n d  2, for  va r ious  values  o f  N. F o r  h = 0.8 (Table  1), it can  be  
seen tha t  P A  es t imates  y ie ld  a p p r o x i m a t i o n s  wi th  er ror  u n d e r  10%, for  as 
few as 1000 i terates.  O n  the  o the r  hand ,  f ini te-difference es t imates  wi th  
8 = 0.1 r equ i re  at  leas t  7000 i tera tes  for  s imi la r  prec is ion ,  a n d  with  6 = 0.01, 
over  9000 i terates .  I t  is no t  su rp r i s ing  to see tha t  P A  es t imates  are  be t te r  
t han  f in i te-di f ference es t imates .  I t  is in te res t ing  to no te  tha t  f ini te-difference 
es t imates  a re  worse  for  8 = 0.01 t han  for  ~ = 0.1; this  is l ikely caused  by  the 
fact  tha t  the  va r i ance  o f  f in i te-dif ference es t imates  increases  as  6 is r educed .  

F o r  h = 0.95 (Table  2), the  resul ts  ind ica te  tha t  PA es t imates  requ i re  3000 
i tera tes  to  ach ieve  an  e r ror  u n d e r  10%, bu t  F D  es t imates  requi re  over  9000 
i tera tes  for  s imi la r  p rec i s ion ,  with bo th  6 = 0.1 a n d  6 = 0.01. 

F ina l ly ,  in o r d e r  to ver i fy  that  the  P A  a n d  F D  es t imates  do  i ndeed  
converge  to s imi la r  l imits ,  we ran  the s imu la t ion  for  100,000 cus tomers .  The  
resul ts  are  shown in Tab les  3 and  4. The es t imates  o f  Y(x) were done  by  
s t r a igh t fo rward  s imula t ions ,  and  were then  used  to eva lua te  the  F D  esti- 
mates ,  Thus ,  the F D  es t imates  at x = 1.6, with 8 = 0.1 and  6 = 0.01, were  

Table 2. Results for h =0.95. 

N 1000 3000 5000 7000 9000 

PA Estimates -0.128 -0.144 -0.144 -0.141 -0.142 
FD Estimates (8 = 0.t) -0.323 -0,190 -0.174 -0.156 -0.213 
FD Estimate (6 =0.01) -1.700 -0.402 -0.011 -0.062 -1.198 
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Table 3. Results for h =0.8, N =  100,000. 

x 1.60 1.70 1.61 

Y(x) 0.1929872 0.1785946 0.1914803 
Y ' ( x )  -0.1517100 -0.1368400 -0.1502500 

done  by  [ Y ( 1 . 7 ) -  Y(1.6)] /0 .1  and  [ Y ( 1 . 6 1 ) -  Y(1.6)] /0 .01,  respect ively .  
The  es t imates  o f  Y'(x) were  done  by  us ing  PA. 

The fo l lowing  can be seen:  F o r  A = 0.8 a n d  x = 1.6, the  finite d i f ference 
es t imate  o f  Y'(x) with 8 = 0.1 is [ Y(1.7) - Y(1.6)] /0 .1  = -0 .143926.  Not ice  
tha t  it is be tween  the P A  es t imates  at x = 1.6 ( -0 .1517100)  and  at  x - -  1.7 
( -0 .136840) .  W h e n  8 = 0.01, the  results  are  more  precise :  The  F D  es t imate  
is [ Y(1.61) - Y(1.6)] /0 .01 = -0 .150690,  which  is be tween  the PA es t imates  
at x = 1.6 ( -0 .1517100)  and  at x = 1.61 ( -0 .1502500) .  

W h e n  h = 0.95, s imi la r  p rec i s ion  can  be  seen. W h e n  6 = 0.1, the  finite- 
d i f ference es t imate  o f  Y'(x) is [ Y(1.7) - Y(1.6)] /0 .1  = -0 .134365,  be tween  
the PA es t imates  at x = 1.6 ( -0 .1413100)  and  at  x = 1.7 ( -0 .1279500) .  W h e n  
8 = 0.01, the  F D  es t imate  is [ Y ( 1 . 6 1 ) -  Y(1.6)] /0 .01 = - 0 . 1 4 0 4 1 0 ,  be tween  
the PA es t imates  at x = 1.6 ( -0 .1413100)  and  at x = 1.61 ( -0 .1398800) .  

In  s u m m a r y ,  it can be  seen that  the  P A  a lgor i thm gives cons i s ten t  
es t imates  o f  Y'(x). Moreove r ,  Tables  t and  2 ind ica te  that  PA es t imates  
converge  fas ter  than  F D  es t imates .  F D  es t imates  converge  faster  when 
8 =0.1  t han  when  8 =0 .01 ,  bu t  to a less p rec i se  es t imate .  This shou ld  no t  
be  surpr is ing ,  s ince p rec i s ion  and  var iance  o f  the  F D  es t ima tor  are  genera l ly  
smal le r  for  larger  values  o f  8. 

4. Conclusions 

Cons i s t ency  of  PA for  a s ingle queue  with finite buffer  space  and  loss 
po l i cy  has been  es tab l i shed .  N u m e r i c a l  tests for  es t imat ing  the der iva t ive  
o f  the  average  quan t i ty  o f  cus tomer  loss as a func t ion  o f  the buffer  capac i ty  
were  conduc ted .  PA and  f ini te-difference es t imates  were  compared .  The 

Table 4. Results for A = 0.95, N =  100,000. 

x 1.60 1.70 1.61 

Y(x) 0.2427748 0.2293383 0.2413707 
Y ' ( x )  -0.1413100 -0.1279500 -0.1398800 
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tests show conclusively that PA estimates are far more accurate than finite- 
difference estimates, for comparable  numbers of  simulation events. The 
proof  of  consistency of  PA estimates uses a novel technique, based on busy 
period-based inequalities [Eqs. (10) and (16)]. This technique may be 
generalized to prove the consistency of  PA estimates for more general 
queueing network configurations. 

5. Appendix 

In this appendix,  we prove Lemma 2.2 and Eq. (16). 

Proof of Lemma 2.2. It suffices to prove that Gl(x) and GE(X) are 
continuous on F. We start with G2. 

Proof of Continuity of G2. Consider x ~ F and 3 > 0, such that x + 3 
F. We can suppose that zl(x) = 0, and consider the first busy period. Let 

M(x)  = min(m = 1, 2 , . . .  I z,~+~(x) = 0); 

and let 

M ( x + 3 )  -- min(m = 1, 2 , . . . I z m + l ( x + 3 )  =0) .  

In other words, CM<x) [CM<x+~, resp.] is the last customer in the first busy 
period of  the queue, where x [x + 3, resp.] is the buffer capacity. Then for 
every to e l~, 

M ( x +  3) >- M(x).  

Notice that 

G2(x)=E(M(x)) ,  G2(x+3)=E(M(x+3) ) ,  

Moreover,  

O2(x + 3) - O2(x) = E( M(x  + 3) - M(x)).  

Notice that 

Gdx + 3) - G2(x) 

= E ( M ( x + ~ ) - M ( x ) l M ( x + 3 ) > M ( x ) ) p ( M ( x + 3 ) > M ( x ) ) .  (25) 
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Let Ftl Cf~ denote the event that M ( x + 8 ) >  M ( x ) .  If o)~Ftl ,  then 
CM(~)+a belongs to the first busy period with x + 8 being the buffer capacity. 
Hence, by (5), 

zM(~)+~ (x  + ~ ) = zM(~)(x + 8) + sM(x) - yM(~)(x + 8) - ~M(,,~ > O. 

Since ZM(~)+~(X) = O, 

ZM(~)(X) + SM(x) -- yM(~)(X) -- ~ ( ~ )  ~ O. 

We saw in the proof  of  Lemma 2.1 that, for every n = 1, 2 , . . . ,  z ' ( x )  can 
be 0 or 1, and y ' ( x )  can be 0 or -1 .  Therefore, 

zM(~)(x + ~) - Z~(x)(X) ~ 8, 

yM(~)(X + 8) -- yM(~)(X) >-- --8. 

Hence, if oa c f ~ ,  since ZM(~)+~(X+8)>O, 

~ ( ~ )  < ZM(~)(X + 8) + SM(~) -- yM(x)(X + 8) 

<- ZM(x)(X) + SM(~) -- YM(~)(X) + 28; (26) 

and since z~c~)+~(x) = 0, 

~M(~) >--- ZM(~)(X) + SM(~) -- y~(x)(X). (27) 

Let f~2 C ~ denote the event that (26) and (27) are satisfied. Then, we 
have seen that f~Cf~2.  By Assumption 1.1, the density function of  
is bounded by some constant K~. By conditioning on M ( x ) ,  and by (26) 
and (27), 

P(~'~ 1) ----- P([]2) ~ P(~M(x) < ZM(x)(X) + SM(x)-- YM(x)(x) 

+ 2~ I (M(~) >-- Z~(x~(X) + SM(~)--yM(.~)(X)) 

<-- 28K~/  p(  ~M(~) >-- ZM(~)( X ) + SM(~) -- y~(~)( X ) ). (28) 

But 

zM(x)(x) + sM(x) - yM(x)(x) <- x <- 37, 

where 37 is the right-hand point of  F. Hence, 

P(~M(x) >- ZM(x)(X) + sM~x)- yM(~(x ) )  >- P(CM(~)>- Y~) ~ K2. 

By Assumption 1.1 and the conditions imposed on F, K2> 0. Therefore, 
and by (28), 

p ( f ~ )  <- 26K~/  K2. (29) 
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Next, if M ( x + 6 ) > M ( x ) ,  then M ( x + 6 ) - M ( x )  is the number of 
customers in the first busy period with x + 6 being the buffer capacity, 
beyond the M(x) th  customer. Since ZM(x)+I(X)= O, 

zM(x)+l(x + 6) = zM(x~+~(x + 6) - z~(x)+l(x) <- & 

Therefore, and since E(M(£[z t ( x )=  6 ) <  00 (by the assumption that p(ff> 
£) > o), 

E ( M ( x +  6) - M ( x ) [ M ( x  + 6) > M ( x ) )  <- E ( M ( x  + 6)]z~(x) = 6) 

<- E(M(00) lzl(x) = 6) 

& K3 

<oe. (30) 

By (25), (30), and (29), 

0 <-- G2(x + 6) -- G2(x) <-- 26KaK3/K2. 

This shows that G2(')  is continuous on F. 

Proof of Continuity of G~. Consider x e F and 6 > 0, such that x + 6 
F. Let zl(x) = Zl(X-[- 6 )  = O. Let 12(x) [12(x + 6), resp.] C 12 denote the event 
that 

y , ( x ) > 0  y , ( x + 6 ) > 0 ,  r e s p . .  
n = l  L n = l  

Then, 

Gl(X)=p(a (x ) ) ,  GI (x+8)  -=p(O(x + 6)). 

Let 121C12 denote the event that M ( x + 6 ) >  M(x) .  We saw by (29) that 

P(~I)  <- 26K1/K2. 

Now, if to e II(x + 6) n 12(x) c, then for some n = 1 , . . . ,  M ( x  + 6), y , (x  + 
6 ) > 0 ,  and for all n = l , . . . , M ( x ) ,  yn(x)=0.  Since Yn(') is monotone 
nonincreasing, 12(x + 8) n l~(x) c C lI~. Hence, 

p(l I (x  + 6) n 12(x) c) <- 26K~/ K2. (31) 

Now, 

IO~(x) -  O~(x+ a)[ 

= I p ( O ( x ) ) - p ( n ( x +  a))l 

-< p ( a ( x )  n a ( x  + a) ~) + p ( a ( x  + 6) n a ( x )  ~ ) 

-< p ( a ( x )  n a ( x  + 6 y )  + 26K,/K2 

- p ( a ( x )  n a ( x  + ~)~ n aT) + p ( a , )  + 26K,/K2 

<-p(a(x)  n a ( x  + 6)  ~ n a ~ )  +46K,/K2. (32) 
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Recall that f ~  is the event that M ( x ) =  M ( x + ~ ) .  For every m = 1, 2 , . . . ,  
let H,, C Ft denote the event that M (x) -> m and 0 = y,, (x + 6) < ym (x). Then, 

a ( x )  n f~ (x  + ~ ~ 6) c' ,12~cU,,=1 gin. (33) 

We now find an upper  bound on p(Hm). Let L be an upper bound on 
the derivative of  the distribution function of  s, whenever it exists (see 
Assumption 1.1). By Assumption 1.1 and the fact that x cF ,  

p(H~) = p (x  < s~ <- x + `3) <- L6. 

Consider m = 2, 3 , . . . , .  Then, 

p(H, , )  = p ( H m t M ( x )  >- m ) p ( M ( x )  >- m). 

Now, 

But 

p(H,.IM(x)  >- m) 

= P(Ym (x) > O, y~(x  + ,3) = O lz2(x) > 0 , . . . ,  zm(x) > 0), (34) 

then 

p (x  < z , , ( x ) +  s,~<- x +  SIzm(x))<- LS. 

Now, by (5), 

Zm(X) = 2m-t(X) + Sin-, -- ym-4(X) -- ~m-i ; 

and since ( has a bounded density function, there exists a constant K4 > 0 
such that 

p( zm( x) ~ UJ~=, [ x - x,, x + 6 - x,]z, .(x ) > o) <_ K4& 

Hence, and by (35), 

p ( H m t M ( x )  >- m) <- 6(L  + /'2.4). (36) 

y~(x  + ,~ ) >- y . , ( x ) -  & 

Hence, by (34) and the fact that z,,(x) <- zm(x+ 6), 

p ( H , , I M ( x ) > - - m ) < - - p ( x < z m ( x ) + s m < - - X + S I h ( x ) > O , . . . ,  zm(x) > 0). 
(35)  

Let x ~ , . . . ,  xj be the real-valued, positive points where the distribution 
function of  s is discontinuous. If  

zm(x) ~ U;'=, [ x - x , ,  x +  ~ -x , ] ,  
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By (32), (33), and (36), we have 

[Gl(x) - G~(x+ 3)1 

<-- ~ p (H. , )+46K~/K2  
m = l  

<- ~ p ( H m l M ( x ) > - m ) p ( M ( x ) > - m ) + 4 6 K 1 / K 2  
m = l  

<-6(L+K4) ~ p ( m ( x ) > ~ m ) + 4 3 K ~ / K 2  
m = l  

= 6 (L+  K a ) E ( M ( x ) ) + 4 6 K 1 / K 2  

<- 6 (L  + K4)E(M(YO)+46K1/  Kz. (37) 

Hence,  G~ is continuous on F. 
This completes the proof  of  the lemma. [] 

Proof  of Equation (16). The busy period in question is with x + 6 
being the buffer capacity. Therefore, zk ( x+6)=O,  and for every n =  
k , . . . , K - 1 ,  z ,+ l (x+6)>O.  Also, zk(x)=O, and by (5), for every n =  
k , . . . , K - 1 ,  

z,+,(x) --- z , (x )  + s, - y, (x) - ~,, (38) 

z,+~(x+6) = z , ( x + 6 ) + s ,  - y , ( x  + 6 ) -  ¢,. (39) 

We analyze two cases. 

Case I. k = K .  I f y k ( x + 3 ) = O ,  then~Tk(X+6)=O. Sinceyk(x)>--O,(16) 
is satisfied. I f  Yk (X + 6) > 0, then Yk (X) > 0 and r/k (X + 3) = -- 1. Therefore, 
and since zk ( x ) = Zk ( X + 3 ) = O, 

yk(X + 3) --yk(X) = Zk(X + 6) + Sk -- (X + 3) - (zk(x) + Sk -- X) 

= - 6  = 6 ~ k ( x  + 6 ) .  

Hence, (16) is satisfied. 

Case II.  k < K. We will show that, for every n = k , . . . ,  K - 1, 

z , + l ( x ) - z , + l ( x + 6 ) > -  ~ ( y m ( x + 6 ) - y m ( x ) ) .  (40) 
m = k  

The proof  of  (40) is by induction. First, consider the case where n = k. 
By (38) and (39), and since Zk(X)= Zk(X+ 3)=  O, 

z~+,(x)- z~+,(x + 6) 
>-- zk(x) + sk - yk(x) - ~k -- (Zk(X + 6) + Sk -- yk(x + 6) - ~g) 

= yk(X + 6) - yk(x). 
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Hence,  (40) is satisfied with n = k. Next, suppose that (40) is satisfied for 
some n = k , . . . ,  K - 2. We now show that (40) is satisfied for n + 1. We have 

z .+2(x)  - z .+2(x  + a)  

>- z .+~(x)  + s°+, - y . + , ( x )  - ~o+1 

__ ( Z . + I (  x Af. (~) ..[- Sn+l -y ,+l (x  + a) - &+~) 

=Z,+l (X) -Z ,+~(x+6)+y ,+l (x+6) -y ,+ , (x )  [by (38) and (39)] 

>- ~ O, , , (x+6)-ym(x))+y,+~(x+6)-y~+~(x)  
rn~k 

[by (40) and the inductive argument] 
n+l  

= E (y~(x+6)--ym(X)).  (41) 
m~k 

This shows (40) for n + 1. Hence, (40) is satisfied for n = k, . . . ,  K - 1. 
We now turn to establish (16). We consider two cases. 

Case II(a). Z~=k r / , ( x + 6 ) = 0 .  Then, for every n = k , . . . ,  K, y , ( x+  
6) =0 .  Since y,(x)>_O, (16) is satisfied. 

Case II(b), Z K ~=k ~7,,(x+ 6 ) = - 1 .  It suffices to show that 

K 
E (y~(x+ 6) - y , ( x ) )  <-- -6. (42) 

rt~k 

Since 
K 

2 r /n(x+~)  = - 1 ,  
n=k 

there exists n---k, . . . .  K, such that y n ( x + 6 ) > 0 .  Let 

1 ~ max(n  = k , . . . ,  K ty , (x  + 6) > 0). 

Then, 

y~(x + a)  = z~(x + a ) +  s t - ( x  + 6 ) > O .  

Therefore, and by the fact that Yt(' ) is monotone nonincreasing, 

yt(x) = zr(x) + sl - x > O. 

Therefore, and by (40) with n = l - 1 ,  
/ 

Z ( y m ( x + 6 ) - y . , ( x ) )  
m = k  

<- y,(  x + a)  - y,(  x ) + z,( x ) - z,( x + 6)  

= z t (x  + a) + s~ - (x  + a)  - (z~(x) + st - x )  + z~(x) - z , ( x  + 6) 

(4s)  
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Since for all n = l +  l , . .  . ,  K, y , ( x + 6 ) = 0  [by the definition of l] and 
y~(x)>-O, (42) follows. Hence,  (16) follows, [] 
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