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Abstract

We analyze an infinite-server queueing model with synchronized arrivals and departures driven
by the point proces$T;,} according to the following rules. At tim&,, a single customer (or a
batch of sizg3,,) arrives to the system. The service requirement oftifieustomer in theth batch
is 0; ». All customers enter service immediately upon arrival but each customer leaves the system
at the first epoch of the point proce$g,,} which occurs after his service requirement has been
satisfied. For this system the queue length process and the statistics of the departing batches of
customers are investigated under various assumptions for the statistics of the point ffogess
the incoming batch sequenég, }, and the service sequenge; ,,}. Results for the asymptotic
distribution of the departing batches when the service times are long compared to the interarrival
times are also derived.

KEYWORDS. STATIONARY AND ERGODICPOINT PROCESSESGATED QUEUES, INFINITE SERVER QUEUES
SHORT TITLE: SYNCHRONIZED INFINITE SERVER QUEUES

1 Model Description: Dynamics and existence of a stationary version of
the process

Consider a system where groups (or batches) of customers arrive at the epochs of a point process
{T;n € Z} defined on the whole real line. Theh group arrives at timd’, and consists ofj,
customers. Théth customer of thexth group, which we will denote b¢; ,, 1 < i < 3,, n € Z,

remains in the system far; ,, time units, and then deparéd the next arrival point after his service
completionj.e. at timeTy,; ,) whereL(i,n) := inf{k € Z : T}, > T), + oin}.

In more descriptive terms we envision a shuttle bus which arrives at a certain facility at the epochs
{T,} of a stationary and ergodic point process. Each time the shuttle bus arrives, it brings along a
new group of passengers and delivers them to the facility. /Th@assenger of theth group will
stay in this facility foro; ,, time units, and then he will move on to a waiting area from where he will
be picked up by thédirst shuttle that arrives.We assume that the facility, the waiting area, and the
shuttle, all have infinite capacity so that a new group of passengers can always be delivered to the
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facility and a departing shuttle will always be able to take along all passengers waiting to leave. We
also assume that, when the shuttle arrives to the facility at {if\@, the new group of passengers is
delivered to the facility instantaneously and the group of passengers waiting to leave also boards the
shuttle instantaneously. We will denote the size of the departing group witithhshuttle byy.,.

In the sequel we will be referring to passengers in the facilitpustomers in serviceand passen-
gers in the waiting area, waiting for the shuttle castomers in the output buffeFhe facility together
with the waiting area will be referred to as the system. Két) denote the number of customers in
the system} (¢) the number of customers in service, anigt) the number of customers in the output
buffer at timet. If we denote by{ R(¢);t € R} theforward recurrence time processsociated with the
point procesq T, }, i.e. R(t) = > .z 1(T,, <t < Ty1)(Tny1 —t), then the number of customers in
the system, the number of customers in service, and the number of customers in the output buffer can
be expressed as follows

oo Bk
X(t) = > > UL <t<Tp+oip+ R(Tk+0oin)) (1a)

k=—o00 i=1

oo B

Y(t) = Z Zl(Tk <t<op+Th), (1b)
k=—00 i=1
oo B

Z(t) = Z Zl(Tk+0i,k <t< Tk+0i’k+R(Tk+Uz‘7k)) . (1c)

k=—o00 i=1

Note that the above processes have been defined tailgéitecontinuous sample pathi particular
we will denote byX,, .= X(T,,—), Y, =Y (T,,—), Z, := Z(T,,—), the corresponding values as seen
by an arriving shuttle. It is easy to see that

n—1 B

Xo = > UTi+oip>Toa), (2a)
k=—00 i=1
n—1 B

Vo = D) UTp+oix>Tn), (2b)
k=—o00 i=1
n—1 By

Zo = Y, > UTwr <Titoix<Tn). (20)

k=—o00 i=1

The above describes succinctly the dynamics of the process. It remains to be shown that, under natural
stochastic assumptions, there exists a unique stationary version of this process. This is done in the next
section, together with an analysis of the stationary number of customers in the system.

While this model has not been studied before in the literature, there is of course a related literature
regarding infinite server queues. For general results on infinite server queues we refer the reader to
[15], [3], and [2]. More specifically, infinite server queues with batch arrivals have been considered in
[14], [7], [8], [9], [10]. We also mention the time—varying systems considered in [5] and [1] as well
as the network of queues considered in [11]. Finally, in [13] and [12] the reader can also find results
regarding matrix analytic techniques for the numerical computation of performance characteristics.



1.1 The stationary version of the process

For standard definitions regarding stationary point processes we refer the reader to [2]. We start with
a probability spacé(2, .#, P) and a measurable flopd; } on (£2,.#) such thatP is invariant unde#,

i.e. Po#, = Pforallt € R. We also assume that a simple point procgBs}, with corresponding
counting measuré/’, has been defined on this space and that it is compatible with thg figwThus
N(B,w) =),z 1(Th(w) € B) forall B € Z(R) andN (B, 0;(w)) = N(B + t,w) (see [2]).

Hence, under the probability measure the point process is stationary and we will assume it
to have finite rate\ > 0. We use the standard numbering convention for the points of the process
according to whictj is the first point to the left of, or precisely at, zero, i(Ty < 0 < T1) = 1.

We denote by, := T},,1 — T, the time between arrivals. Als@" denotes the Palm transformation
of the measurd” with respect to the point process. This can be done via Mecke’s definition by letting

PY(A)=AE Y 1(0r,(4)

{n€z:0<T,<1}

forany A € .. Suppose that, in addition to the point proc€$s}, a stationary sequence of random
elements{(8,; o1,n,02m,-..,08,n);n € Z} has been defined on the probability spgte.7, P).

In fact, if we letS be the space of all sequences with non-negative elements, finitely many of which
are non-zero, and” the collection of Borel sets d§, consider a random elemeft : (2,.%) —
(S,) and denote its components @s o, 02,0,03,0,...). The batch size ig := inf{i : 0,0 =
Oforall j >i}. If we setS,, := Sy o 67, theng,, = fy o 07, ando; , = 05 o 7,,. We thus have a
stationary sequence of service times for the arriving batches compatible with thé il will also
assume thaP’(3y > 1) = 1.

In order to show the existence of the stationary regime we consider the prﬁéels)st € R}
defined on the same probability space via the expression

Y(t) =) 1T, <t<T,+ _max_{oin}). (3)

neRr yeeMn

Note that the system defined by the above expression is an ordifyary oo system. Also, since
PY(By < o0) = 1, itis easy to see that the difference between the gets Y (1) < oo, t € R}
and{w : Y(t) < oo, t € R} is a set of probability zero. Furthermore, the procgss finite with
probability 1 provided that

E° max {00} < o0 4)

i=1,2,....80

(e.g. see [2]). Hence, provided that condition (4) holds= X, < oo P’-a.s.

1.2 Notation

We will study this system under various assumptions for the distributional aspects of the input and
service process. To this end, we will introduce a Kendall-type descriptor for these systems, namely
(A, S, B), where A specifies the statistics of the arrival epochighe statistics of the service require-
ment for each customer, arf@l the statistics of the batch size. This descriptor will be used mostly

in the case where the input process is a renewal process. In thisicagkedenote the inter-arrival
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distribution, S the distribution of the service requirements which will be assumed i.i.d. Baie dis-
tribution of the batch sizes (also assumed i.i.d.). Interarrival times, service times, and batch sizes are
assumed to be independent of each other. Thus, for instahbe ., Geo(p) will denote a system

where customers arrive at the epochs of a Poisson process with irateatches, independent of the
arrival process, geometrically distributed with probability of “successand their service require-
ments are deterministic and equaldo Similarly, (GI, M, d1,) is a System where customers arrive
according to a renewal process (with general interarrival time distribution) in batches of size 1 and
whose service requirements are i.i.d. exponential random variables with.r&a the other hand,

the notationG, G, G) will refer to a system where the arrivals, batch sizes, and service requirements
are jointly stationary with no independence assumptions made, wh@kdaé&' I, GI) refers to the

case where arrivals are renewal, batch sizes and batch requirements are i.i.d. and all these processes
are mutually independentG, GI,GI) will refer to a system where arriving batch sizes and service
requirements are both i.i.d., independent of each other and of the arrival pfa@gassvhich however

will be assumed to be an arbitrary stationary point process uRdeth rate A € (0, co).

Also, since we will study in detail the departure process from this system, and in particular will pay
attention to second-order characteristics of this process, we will use the sywabalsdCov to denote
the variance and covariance of various quantitigh respect to the stationary probability measure
and the symbol¥ar®, Cov” to denote the corresponding variances and covariamitesespect to the
Palm probability measur&®.

1.3 The expected number in the system in the stationary framework

Let us now proceed to compute the expected number of customers in the system. We will establish the
following

Proposition 1. In the systemG, G, G) the expected number of customers in stationarity is given by

Bo
EX(0) =AE° |> 050+ R(0) 0 0s,, | - (5)
=1

If we further assume that the service requirements are independent, identically distributed random
variables with distributionG(z) := P°(s¢ < z), and the arriving batch size&3,,} are i.i.d. random
variables, and if we suppose that the arrival point process, the batch sizes, and the service requirements
are independent of each other (the systgmGI, GI) according to our notation) then the expected
number of customers is given by

EX(0) = AEByE (01,0 + R(0) 0 0, ,]- (6)

In particular, for the systeniGI, GI, GI), where the arrival process is renewal with interarrival time
distribution I,

EX(0) = E°By /O - U(z)G(dzx), (7)

whereU := Y"7° , F** is the renewal function associated with the renewal arrival process.



Proof: Start with (1a) which we rewrite as

X(t)= > > 1(Boobn > i)1(Tk <t < T+ 059007, +R(0)oby,,007,).

k=—o00 i=1

(Note that, by the composition rule for shifts [2, p.8(Tx + oix) = R(0) 0 0,,, o 01, = R(0) o
0Tk+ai’oong .) Using Campbell’s theorem (see [2, p.17]) we obtain (5).

The Palm expectation in (5) is finite provided thzt >~ ;¢ < 0o andE® -7, R(0) 0 0y <
oo. If we now assume that the service times are independent, identically distributed random variables,
and also independent of the batch sizes and of the arrival process, then

EX(0) =\ Z P°(By = i)E°[oi0 + R(0) 0 05, ]
i=1

from which (6) readily follows.
To establish the last part of the proposition we now assume in addition the arrival process to be

renewal with interarrival distributio’, (independent of the service requirements which are i.i.d. with
distributionG) and use Wald’s lemma to obtain

N[0,01,0)—1
E%o10+ R(0) 00y, = E° > 7| =E"E°N[0,010)
n=0
= ! / U(z)G(dx). (8)
0

The first equation above is due to the fact that, uria%ral’g + R(0) 0 b5, , = Tr,, With Ly =
inf{k : Ty > 010} = N|[0,00,1), whencely, , = 70+ --- + TN[0,00.1)—1- 1€ last equality follows
readily from the independence of the arrival process and service times since, conditioning are
can see that’ N[0, 01 9) = E°U(01,). Equation (8), together with (6), yields (7). |

The expected number of customers in the sysismeen by an arriving shuttt&n also be obtained
in terms of the statistics of the input process.

Proposition 2. In the systemiG, G, G) the expectation of the number of customers in the system under
the Palm probabilityP? is given by
Bo

E°X(0) = E°> N[0,040). (9)
=1

Proof: The expectationz° X (0) can be easily computed from (2a) using the invariance of the Palm
probability measuré®® under the shiftr, as follows

[e.9] 6777. o0 o0

E°X(0) = E°) > 1T n+0in>Ta) = Y O PUBw>i,Tpnt0in>T)

n=1i=1 n=1i=1
o0

= Z ZPO(ﬂ—n ofr, > 1, T 00, +0;_nobp, >T 100r,)

n=1i=1



where, in the above equalities we have also used Fubini’'s theorem. Howevergsined, = [,
0i—n 0 01, = 050, andT, 0 07, = Trpin — Tn, P'—a.s. for alim € Z. Thus

Po(ﬁ—n © 6)Tn >1,T po 9Tn +04—no eTn >T 10 9Tn) = PO(/BO >4, —Th + 0i0 > Tho1 — Tn)

and

EOX(O) = Zzpo(ﬂo > Z',ULO > Tn—l) = EOZ 1(50 > Z) Z 1(0@0 > Tn—l)- (10)
=1

n=1i=1 = n=1

In the above string of equalities besides the invariancBbfinder the aforementioned shift we have
also used Fubini's theorem repeatedly together with the non-negativity of the random variables in-
volved. Taking into account (10) and the fact thaf’> , 1(ci0 > T,,—1) = N|0,0,0) we obtain

(9).

2 The number of customers in the system in the stationary framework
for constant service times

2.1 Number of customers in the system for single Poisson arrivals and constant service
times: The system(My, d,, d1)

Of special interest is the case where customers arrive singly and their service time is constant and equal
toa. Let{As;t € R} denote thdackward recurrence timer ageprocess of the point proce$%,, } at
timet,i.e. Ay = ., 1(T, <t <T,y1)(t —T,). (For typographical convenience here we will use
subscript notation for the proce§d, }.) Then the number of customers in the system at tilsegyiven

by the expressioX (t) = N(t — A; — a,t — A]. In particular, the number of customers at tinean

be expressed a% (0) = N (Tp — a, Tp).

The joint probability generating function of the (stationary) number of customers in service and the

number of customers in the waiting aredw,, ws) := wa(o)wzz(o) can be computed easily if we

distinguish the following two cases:

Case 17 < —a. ThenY (0) =0, Z(0) = N(Tp — a,Ty).
Case 2Ty > —a. ThenY (0) = N(—a,—Ty], Z(0) = N(Tp — a,—al.

Thus

flwr,wa) = wa(O)WQZ(O) = / ye Mot (lmw) o= M(-wa) N =M gy 4 g=Aay, e=Aa(l=w2)
0

and hence, we have the following
Proposition 3. The joint probability generating function of the (stationary) number of customers in
service and in the waiting area for tHé/,, d,, 61) system is given by

_ W —Xa(l-wn) —Aa(2—w2) v
f(wi, w2) 1+w1_w26 T e bt 1+w; —wsy )’ (1)



In particular, if we set in turnv; = 1 andwsy = 1 in the above expression we obtain the marginal
distributions for the number of customers in service and the number of customers in the waiting area

as follows

EwY(O)

EwZ (0)

ef)wb(lfwl)7 (12)

2
L (- w)® aeew) (13)

2—w2 2—w2

As expected, the number of customers in service is Poisson with meahhe number of customers

in the waiting area has medZ(0) = 1, and varianc&/ar(Z(0)) = 2(1 —
tained from (13). The covariance between the twéds(Y (0), Z(0)) = e~*
1—e—A

correlation coefficienpy, z = —

e~*%) as can be readily ob-
— 1 with corresponding

2)a

We can also obtain the stationary number of customers in the waiting area in terms of the Erlang

distribution functions defined by

k=1
J
Fi(z)=1-Y e k=12, (14)
i=0 7
as follows: Rewrite (13) as
1 —Aa(l—w2)
E’UJQZ(O) _ o B ef)\ae2_ + ef)\a,w267/\a(17w2)
2 w2
ok j k—1
_ Wy —Xa Aa (Aa)? —Xa k —)\a )\a
= D e € Zw Z L — Zw Sk

k=0

7=0

Collecting terms in the above expression we establish the following

Proposition 4. The stationary distribution of the number of customers in the waiting area for the

(M, d4,61) is given by

1
§}q<2Aa%

1 A k-1
WF]{+1(2)\G/) & —2Aa

2.2 The stationary number of customers in the systeniG, d,, G)

Let ® denote theénput measure.e. for any Borel seB € #(R),

®(B) denotes the number of cus-

tomers whose arrival occurs i, i.e. the measure defined by its values on intervals via the relationship

Suppose that; , = aforallnandalli = 1,2, ...

= Bul(s<T,<t).

neL

, Bn- The number of customers present in the system

attime 0, assuming that the system has been operating since the infinite past, is dedoted Gyen

X(0) =

®(Th — a,Ty] P-a.s.

7



(As a consequence of the above, we also haveXh@) = ®(7y — a, Tp], P'—a.s. Thus, the Palm
distribution of the number of customers in the system at a typical point of arrival is

P°(X(0) = k) = PY(®(—a,0] = k).
The stationary distribution of the number of customers in the system can be obtained by the Palm

inversion formula (see [2]) as follows:

T
P(X(0)=k) = )\EO/ 1(X (s) = k)ds.
To

However,X (s) = ®(—a, 0] P’-a.s. and thus from the above we readily establish the following

Proposition 5. The stationary number of customers in the systéiv,, G) is given by

P(X(0) = k) = AE°[1p1(®(—a, 0] = k)].

3 The departure process when arrivals are (batch) Poisson and service
times are constant: The system{M,, 0., GI)

Here we will focus our attention on the departure process and will derive results both for the statistics
of departing batches and for the total number of departures in a time interval. In this section we
will again assume, unless otherwise specified, that arrivals are Poisson with aateservice time

are constant and equal to For the most part we will also assume that arriving batchgs are

i.i.d. random variables, independent of the Poisson process and we will focus on the statistics of the
departing batched,x,,}. According to our convention we will denote this system by the descriptor
(M), d,,GI). Occasionally, to underscore the essential aspects of the problem, we will restrict the
analysis to the case where the batches are all of unit size i.e. to thé/\dasé,, s;. It will readily
become clear that this involves no real loss of generality.

3.1 The distribution of departing batches

According to the dynamics of the process, at epbgla batch of size3,, arrives and another batch, of
sizey,, leaves. Under the assumption of constant service times we have

Xn = @ (Tn—l —a,Tp — a]
®(Ty 1 —a,To1 A (Tp —a)] . (15)

We will denote bys(z) = E°[2%], x(z) = E°[2X0], the Palm probability generating functions of
the arriving and departing batches.

In order to simplify the discussion we will restrict ourselves for the moment to the case where
customers arrive singly at the epochs of the Poisson process (i.e. the casedwheré w.p.1 and
hencel(z) = z). Then the corresponding expression for the departing batches is

Xn =N(Th-1—a, T, —al. (16)
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Figure 1: Departure batches when the arrival batches are of size one and service times are constant.

Despite the fact that, for # j, x; andy; are obtained from the number of Poisson arrivals in the
disjoint intervals(7; — a,Ti+1 — al, (T — a,Tj+1 — a], as we will see in the sequ#éiese random
variables are not independeniThis should come as no surprise since the disjoint intervals are not
deterministic but functions of the points of the Poisson process itself.

Proposition 6. For the (M, d,,61) system, undeP?, the departing batche$y,,} are identically
distributed with probability generating function given by

1 (1-2)2 _\uo
.— 07, x0] — o Aa(2—=z)
X(z) := E7[2X°] 5 5, ¢ . a7
The corresponding distribution, with the same definitions as in (14), is given by
1
Pxo=0) = SFi(2\a),
1 (Aa)F—1 _

0 _ _ 2\a

P'(xo=k) = WFI@+1(2)‘G) + me , k=>1. (18)

Proof: Consider the departing bataty = N (71 — a,Tp — a] = N (T_1 — a, —a] P’—a.s.. Since
T_, = —7_, PY-a.s. one can see that

e*/\u(lfz) u<a

ze—ra(1=2) u>a.

E°2X0|r_y =] = { (19)
From this, taking into account th&®(7_; € du) = \e~“du, we obtain (17). To establish (18) it
suffices to note that (17) is the same expression as (13).

If we leta — oo in (17) we obtainy(z) — 2%2 and thus we have the following

Corollary 1. Inthe (M), d,, d1) whena — oo, the departing batch size(z) converges in distribution
to a geometric random variable with success probabilitg.

An intuitive explanation for this result lies in the fact that, und&t, yo = N(T_1 — a, —d]
according to (15). Thus, the limiting case of corollary 1 may be seen as a consequence of the fact that
the number of Poisson\} points in an independent, exponentially @listributed interval is geometric
with success probability /2. Nonetheless, the shortest complete proof of this is via proposition 6.
Further such asymptotic results are given in section 3.4.

The more general situation, where customers arrive in batches, can be handled in precisely the same
way. The final result for the p.g.f.’s of the departing batches is the same in all casesrejitlaced by
B(z), the p.g.f. of the arriving batches. Thus we have the following

9



Corollary 2. In the (M, d,, GI) if customers arrive in i.i.d. batches with p.g.f. given®), the
p.g.f. of the departing batches unde? is given by

_ B(2))?
x(2) == EV[zX0] = 5 15(2) — (12 %((;)) e Ma(2=6(2)) (20)

From (20) we can easily see that the mean and the variance of the typical departing batch is
E%0 = E"B
and
Var’(xo) = Var'(9) + 2(E°p)* (1 — e

with a corresponding (squared) coefficient of variation
CI=Ci+2(1-e).

(In the above expressioWar’(X) denotes the variance of a random varialillewith respect to the
Palm probability measure, i.8/ar’(X) = E°X? — (E°X)? and the squared coefficient of variation

is defined ag"% = Vgooi)(g)?.) The expression for the coefficient of variation shows that the departing

batches have greater variability than the arrival batches.

Corollary 3. Inthe limit, asa — oo, the Palm distribution of the departing batches in tfé,, J,, GI)

system becomes

Jim_ E0[zX0) = 2_15(2) (21)

Note that the right hand side of (21) is the composition of the probability generating function (p.g.f.)
of the arrival batches with the p.g.f. of a geometric distribution with probability of sudge@ss

3.2 The covariance of the departing batches undeP? in the system(/,, d,, 01)

As mentioned above, the sizes of departing batches are not independent. The joint statistics of the
departing batches will be derived in section 3.4 in the more general case where service times are not
deterministic. In this section we will examine the covariance of the sizes of departing batches. We start
with the following

Lemma 1. If {7}, } is a Poisson process with raeanda > 0 then
Cov'(N(—a,0], N(Tp — a,T,]) = A\aP%(T, < a) = nP°(Tpy1 <a), n=0,1,2,... (22)

whereCov’(X,Y) := E°[XY] - E°X E’Y denotes the covariance of any two random variables with
respect to the Palm probability measurs.

Proof: The casen = 0 can be checked immediately since in that case the left hand side of (22) is
Var’(N(—a,0]) = Aa while the right hand side is also equalXa since P*(T, < a) = 1. We can
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thus assume that > 1. Conditioning oril;, we note that, if;, > a thenN(—a, 0] andN (T}, — a, T;,]
are independent random variables and in this case it is easy to see that

EY[N(—a,0)N(T) — a, Tp]|Th = v] = (1 + Aa) (1 +(n— 1)9> : if v > a.
v
On the other hand, wheR, < a, N(T,, — a,T,] = N(T,, — a,0] + n and thus
E°[N(—a,0|N(T,, — a,T,)| T, = v]

= E°(N(—a,T, —a] + N(T,, — a,0))(N (T}, — a,0] +n)|T, = v], ifv<a.

Combining the above two cases and carrying out the computations gives

E°[N(—a,0)N(T,, — a, Ty, | T, = v] (23)
(1+)\a)<1+(n—1)%> if v<a,

n+1+(n+3)Aa+ \a? -2 v — Nav if v >a.

SinceP)(T;, € dv) = )\((A;;l;!l e~dv, from the above we obtain

E°[N(-a,0)N(T,, — a,Ty)]
= 14 Xa+ Xa(l+ Xa)PYT,, > a) + (2 a + (Ma)?)PY(T;, < a) — nP°(T)p1 < a)

or
EY[N(—a,0|N(T), — a,Tp])] = 1 + 3Xa + (Ma)? = X\aP°(T}, > a) — nP°(Thy1 < a).

Subtracting from the above expressiBAN (—a, 0] EON(T,, — a, T,] = (E°N(—a, 0])2 = (1+ Xa)?
establishes the proof of the lemma.

Using the above lemma we can readily obtain the covariance between two departing batches as
follows

Proposition 7. The covariance between two batchgs x,,, in the systemiM,, é,, d1) is given by

)"
( CL) ean

n!

Cov’(x0,Xn) = , n=12.... (24)

Proof: Write x1 = N(Tp — a,T1 — a] = N(Tp — a,To] + N(Tv, Th] — N(Th — a, T3], or, since
N(Tp, Ty =1

x1 = N(Tp—a,To] = N(Th — a,T1] + 1, (25)
Xn = N(Tnfl —a, Tnfl] - N(Tn —a, Tn] +1, (26)

the second equation above following by the same reasoning applied to N(T,,—1 — a,T),, — al.

11



Thus

Cov’(x1,xn) = CoV’(N(Ty —a,Ty], N(Tp—1 — a,T,_1])
+CoV*(N(Ty — a,T1], N(T}, — a,Ty,))
—CoV’(N(Ty — a, Ty), N(T;, — a, T},])
—CoV’(N(Ty — a, Th), N(Tp_1 — a, T, 1))
= 2Cov’(N(-a,0], N(T,,_1 — a, Tp,_1])
—Cov?(N(—a,0], N(T}, — a,Ty))
—Cov®(N(—a,0], N(Tp,_2 — a,Tp_2]),

the second equation above following by Palm stationarity. Hence, using the result of lemma 1, we
obtain

N
N

Cov’(x0,xn) = 2XaP’(T,—1 <a)—2(n—1)P°(T;, < a)
~XaP%T,, < a) +nP°T,41 < a)
~XaP%T,_5 <a)+ (n—2)P°(T},_1 < a).

(Aa)?—1

Rearranging the above expression and simplifying gie€ (1, xn) = (=T e~ Equation (24)

is a restatement of the above using stationarity. |

Proposition 8. The sizes of the output batchés,, }, in the systemiM,, d,, 91) satisfy

n—1 n—1 ()\a) n ()\a)k
Var® (Z Xk) = 2)\(12 X e 4+ 2n (1 — Z X e_)‘“> . (27)
k=0 k=0 '

= k=0

k

Proof: We have

n—1
> xe = N(=a,0]+ N(0,T,] — N(T, — a,T,]
k=0
= N(—a,0]+n— N(T, —a,T}] (28)
where, in the above equation it should be noted that the intefvals0] and (7,, — a,T),] are not

necessarily disjoint. Thus, taking into account th&tN (—a,0] = EON(T},, — a,T,] = 1 + \a we
have

n—1
Var? (Z Xk)
k=0

E° ((N(=a,0))* + (N(T,, — a, T,)])* — 2N(—a,0)N(T,, — a, T))
= 2(1+3Xa+ (\a)?) —2E° [N(—a,0)N(T,, — a,T]] - (29)

From the above using lemma 1 we obtain

n—1
Var? (Z Xk) = 2)\aPO(Tn >a)+ 2nP0(Tn+1 < a).
k=0

12



This concludes the proof of the proposition. |

Note that, ast — oo, P°(T,, > a) — 1 while nP°(T},1 < a) — 0. Thus,

n—1
lim Var’ (Z Xk) =2)\a
which indicates the strong dependence that exists between the batches. In fact the following holds:

Corollary 4. Asn — oo the sum of the sizes of the firsbatches that depart at time 0 and after satisfy

n—1

Z Xk — 1 N Poi(2)a)
k=0

. . . . d .
wherePoi(c) denotes a Poisson random variable with mean 0 and —, as usual, convergence in

distribution.

Proof: It is an immediate consequence of (28), together with the independent increments property of
the Poisson process, and the fact that, . (—a, 0] N (T, — a,T},] | 0.

3.3 The number of departures in an interval for the stationary process and its index of
dispersion for the departure process of the systemiM,, d,, GI)

In this section we obtain the statistics of the stationary departure process within a time iftefjval

Proposition 9. Let D(0, t] denote the number of departures in the intei\@ak] for the systeniMy, dq, GI).
Then

V() = BP0 = N0 (v 0 (86) )
AtAa)B(z) _ 1
—\t MB(z) _ A(tha)B(z) e =1
e ( R ETeR 6 “)' (20)

Proof: In order to compute the probability generating function” (- we will examine the following
two cases separately.

Case 1:t < a. Let A, denote the age of the Poisson process at tinfehen

B[P0 Ag 4] = 1(A; <t,Ag>a—t+ A)B(z)e r1=8E)
+1(A; < t,Ag < a—t+ Ay)e MNFA—A)1=5(2))

To see the above we start with the remark that> ¢ implies that there are no Poisson points in the
interval [0, t], hence there can be no departures in that interval (since departures can occur only at the
points of the process). This explains the last term on the right hand side of (31). Let us next examine

13



-u-a t-v-a 0

Figure 2: The first case.

thefirst term: A; < ¢t means that there is at least one point of the proce$8,it). However, since

by assumptiort < a, this means that only customers who arrived before O can leave in the interval
(0,t]. Since there can be no arrivals in the interal4y, 0), we conclude that only customers who
arrived before- A are candidates for departure(iiy ¢]. Finally, the indicator ofdy + (¢t — 4;) > a
guarantees that the customers who leave the systgih ihare precisely those who arrived in the
interval (—Ap — a, Ag]. The number of batches who arrived during this interval is Poisson distributed
with mean)a plus one batch that arrives atdy. This explains the first term on the right hand side
of (31). Regarding theecond ternwe haveA, + (¢t — A;) < a which means that the customers who
leave the system if0, t| are those who arrived in the system in the intefvaly — a,t — A; — a).

The number of such batches is Poisson distributed with méan Ay — A;). Note in particular that

in this case the customers belonging to the batch that arrivegigleave aftett.

Case 2:t > a. With the same notation as above

<t —a)f(z)e M-A)(1-6())

E[zP0 (A
(t—a< Ay <t,Ay>a—t+ A)B(z)e 15D
(
(

7At] 1

+1
+1(t—a< A <t, Ay <a—t+ Ap)e MHA—A)(1=0()
+ 1(A¢ > t) (32)

In order to determine the joint distribution af, and A; it suffices to keep in mind that, as long
as the age of the arrival processtatd;, is less thart this means that there is at least one point of
the Poisson process in the interal ] and hence to conclude that, on this eve#g, and A; are
independent, exponential random variables with vatelf however A, > t this means that there
is no Poisson point if0,¢] and hence thatl, = Ay + t on that event. Combining the two cases
above we can give the following representation for the random variahlesA;: If n, &, are two

independent exponential random variables with pathen (A, 4;) 4 (&, min(n,t)) + £1(n > t)).
The corresponding distribution function is

(1—e)(1—e) v<t
PAg<u, Ay <v)=( 1—e M_eWpe Mt <y <yt
1—e u+t<w

14



a
a
u +V~|
—u-a t-v-a 0 t
Figure 3: The second case.
Taking expectation with respect #y and A; in (31) we obtain
v+a—t
B[P0 = / / o M=) (1-B(2)) 20~ A0+) gy
v=0 Ju=
/ / 2)e M-8 N2 N+ gy 4 oM
v=0 Ju=v+a— t
f)\t —B(2)) _ =Xt 7)\a(27ﬁ(z)) h()\)
= — sinh (At
B(2)(2 - B(z )) 2—p(z)
+ B(2)e M B@ ginh(At) + e
whence we obtain
1
E[ZPOL) = e_/\a< z) — >e_>‘“(1_ﬁ(z))sinh At
=704 ) - 5505 (A1)
AB(z) _ 1
Y € :
+e 14— if t <a. (33)
[ ﬁ(Z)(Q—ﬂ(Z))]
Similarly, whent > a, taking the corresponding expectations in (32) we obtain
t
F[PO4) _ / Ae M B(2)e M=) gy
/ / —)\a( (z)))\ —Au+v) dudv
v=t—a Ju=v+a— t
v+a—t
+/ / A(tu—0)(1-8(2)) 2= w40 qudy + o=
v=t—a
Thus in this case we have
E[ZD(O,t]] — efAt |:e)\tﬁ(z) _e)\tﬁ(z] + ﬂ( ) —Xa(l 5(75))6*)\75 sinh()\a)
e~ N ef)\tef)\a(lfﬁ(z))
I af(z) o -\t
= e 1 sinh(Aa + e
@A | | = simbO0) 5505
which we can rewrite as
1
B[P0 — = _ —2a(1-8(2)) ginh
[z ] e B(z) 550 e sinh(a)
Aaf(z) _ 1
+e M1+ _C T o MBR) _ aB) , ift>a (34)
[ B(=)2 = A=)

15



Combining (33) and (34) into one equation, valid forsalt 0, we obtain (30). |

Evaluating the derivative of the probability generating function given in (30) at 1 we can
verify that U'(1) = A\tE°3, where3'(1) = E°3, is the mean batch size. This is of course a direct
consequence of stationarity. The variancéxf, ¢] can also be readily obtained:

1 —e M _—eMginh(M), 0<t<a,

(cosh(Aa) — 1), t>a. (35)

Var(D(0,1]) = M E°[32] + 2(E°[Bo])? x {
As a rough measure of comparison to the Poisson process we can also compudextod dispersion

defined as the rati aé%)(g%}) (see [4)).

1 — e M — e~ ginh(\t)
Y ’

t<a,
I.(t) = CZE°[Bo] + 2E°[Bo] x
cosh(Aa) — 1

v , t > a.
E0[3]

whereCE = (FaS?

is the squared coefficient of variation of the batch size distribution.

The next proposition characterizes the nature of the output process when the servicistimeh
larger that the mean interarrival time.

Proposition 10. In the (M), d,, GI) system (Poisson-batch arrival model with deterministic service
times equal ta:) described in this section, when— oo the number of departureB, (0, t], in the

time interval(0, t], converges in distribution to a random variable that can be represented as follows:
If @, is Poisson distributed with meaxt, @, is geometric with probability of success 1/2, afid}, },

{3}, are i.i.d. sequences distributed according to the distribution of the incoming batches, and if
furthermore we assume that all the above random variables are independent, then

Qp Qg
Da(0,1] -5 1(Q, > 0) (Z Bnt Y ﬁ;) : (36)
n=1 n=1
Proof: If we leta — oo in (33) we see that
AtB(z) _ 1
lim BP0 — =X (14 & - 37
b 56— 50) G0

Furthermore the convergence is uniformzire [0, 1]. Thus, by the continuity theorem [6], the right
hand side of (37) is the p.g.f. of the number of departures in an interval of lemgtie limit where

the length of stay in the system for each individual customer goes to infinity. In fact the right hand side
of (37) can be written as

e M(I-B(2)) _ oM
(I—eM)B(2) 2-p(2)

Based on the above p.g.f. one can verify that the number of departures in an interval of leagthe
stochastic representation claimed in (36). |

K(z):=e M4 (1 —e ™M) (38)

16



10

Figure 4: The variance function when= Eg = 1, a = 1, Var(3) = 1, andt € [0, 10]

3.4 Joint statistics of departing batches in the systen\,, G1, d;)

Proposition 11. Let{y;;7 € Z} denote the sequence of departing batches {Ma, G1,4;) system.
Assuming that customers arrive singly and according to a Poisson process withaatkthat service
times are i.i.d. with distributiortz, the joint distribution of» consecutive batches is given by

n T; _
B[] = // dry - dT, 3" | {e‘“‘z””TmG(“““
i=1

x (é(Tn —Ti1) + Z;:z ZJ'G(TJ'*“T]'])} ‘

0<T1 << T <00

Proof: With each arriving customer we associate a point on the half [Rané& ™ by means of the co-
ordinates{ (7}, 0;); j € Z} whereT} is the arrival epoch of thgth customer and; his service require-
ment. Thus if we consider the point procedson the half plane given by/(A) = > .7 6(1;.0;)(A)
whered, .,y is the measure that assigns unit mass at the gaimy and A a Borel subset oR x RT,
is Poisson with mean measurédt x dx) = A\dtG(dz). Consider the striped; := {(t,z) : t <
Ty, Ticn < x+t < T}, i = 1,2,...,n. Any customer whose arrival coordinat€s;, o;) falls
in striped will depart with theith batch at timel;. In fact the size of théth batch, is given by the
expression

i—1
XiIM(Ai)+Zl(TF1 < T + o < T;). (39)
k=0

From the above definition it is clear thdf and A; are disjoint wheri # j and hence that/(A;) is
independent of\/ (4;). Also,

/1:47; v(dt x der) = /:OO /TiTiltt MtG(dz) = )\/OO (G(T, + s) — G(Ti_y + s)]ds

s=0

T,
= /\/ G(u)du.
Ti 1

17



™

Figure 5: The corresponding index of dispersion with the same parameters as before. Note thtat when
is much smaller than = 3 the point process is overdispersed while whénmuch larger tham the
dispersion approaches 1, which is the value for the Poisson process.

Then,
e 1—2)A [1 G(u)d =

E° [Z%l"'zzf" Ty, ..., T, = H 67( —zi)A [r] | G(u)du G(Tn_ﬂ—1)+zsz(1}—17]}]
i=1 j=i

From the above considerations together with the fact that the joint dengity of. . , 7},) is
MNeMn1(0< Ty <Th <--- <Tp)
the proof of the proposition follows. |

Corollary 5. Suppose thaf{G,;a € R"} is a parametric family of distributions oR™* index by a
parametera and such thatlim G, (z) = 0 for all z € R*. Then we obtain

a—0o0

n

lim EO [z ... 2] = H

a—00 /
=1

1
2—ZZ'

, (40)

from which we conclude that, whenis very large (compared td/)) the output process consists of
independent geometric batches with parametex.

(We make no specific assumptions regarding the nature of the parameter though natural examples
would be the case whereis a scale parameter i.&7,(z) = G(z/a), or a location parameter i.e.
Go(z) = G(z — a). In general, of course; could be any type of parameter belonging to an open
interval I = (a1, az) such thalim, ., G,(x) = 0 for all z € RT.)

Proof: The integrand in the expression for the joint batch distribution in proposition 11 is given by

n Ti — Wdu o n
e T | e e U > 4Gu(Ty 1, T | |- (4D)

i=1 Jj=t
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Asa — o0, Go(u) — 1forall realu andG,(T;, — Ti—1) — 1, Go(Tj—-1,Tj] — 0 w.p.1. Thus, letting
a — oo the integrand converges to

n
\e—ATn H o~ (1=2)ANTi=Ti 1)
=1

Taking into account thdl; — T;_1 = 7; and appealing to the Dominated Convergence Theorem we
obtain

lim EO [z 2Xn] = / / dry - - dry\e A 2im1 Ti(2-21)
a—0o0
A straightforward computation completes the proof. |

To obtain a better idea of the correlation structure of the departing batches we compute the correla-
tion between the sizes of two departing batches, one atfjraaed the other at timé,,. As shown in fig-
ure 6, the size of the departing batch at tifjeis the sum of the number of Poisson points in the shaded
area A plus one if the customer who arrives at tifhg finishes service before tinig. Let us denote by
& 4 the number of points in the stripe A of figure 6, anddgythe number of points in stripe B, i.e., to be
more precise§a = > oo LT <T_p+0_k <T0), {8 = poo W(Th-1 <T_j+o_ <T),). Let
us also introduce the random variabies = 1(T-14+o0-1 < Ty),n-1 = 1(Th—1 < T-14+0-1 < T,),
andn; =1(T,-1 <T;+ 0, <T,),i=0,1,2,...,n — 1. Then clearly

X0 = &a+17-1
Xn = &8N+
=0

Itis easy to see that the random variallgg: = 0,1,2,...,n—1} areindependent @fs, {5, 71, 7—1.
Thus

Cov®(x0, Xn) = CovP(€a,€p) + Cov®(€a,m-1) + Cov®(n, &R) + Cov®(n_1,7-1). (42)

In order to compute the first term of the right hand side above we conditidy enT_ | = u, T;, —
T,.1=v,T,1—Ty=w. Itis easy to see then th&j, £z are conditionally independent (and, given
the above random variables, Poisson distributed) and thus
EOleaép|To — Ty =u, Ty — Ty = v, Ty y —Tg = w]
= E[alTo — Ty = u]E°[€8|T0 — Ty = u, Ty = Ty = v, Ty — T = ]

(o) (o)

In view of the above we have

COVO(an§B) = /\QEOUOCOVO (Gr(=T-1), Gi(Ty, = T-1) — G1(Ty—1 — T-1)) (43)

where G (x
distribution. Slmllarly,

y)dy is the integrated tail distribution that corresponds to the service

Cov'(éa,-1) = AEY%qCoV® (G(-T-1), G(T, —T-1) — G(T)_1 —T_1)),
COVO(fB,?’],l) = )\E‘OO'OCOV0 (G(*Tfl) N G[(Tn - T ) G[( n—1— Tfl)),
Cov’(n_1,7-1) = CoV’(G(Tp —T-1) —G(Tp1 —T-1), G(-T_1)).
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2.5

Figure 6: The computation of the covariance of the sizes of two batches

Using the above equations and (43) in (42) we obtain an expression for the covariance of the size of
two batches. In particular, if the service time distribution is exponerdiét) = 1 — e~ #*, then the
above expressions simplify and the following proposition holds:

Proposition 12. In the (M), M,,,6,) model where customers arrive singly according to a Poisson
process with rate\ and service times are independent, exponential, with gateen the stationary
covariance of departing batches is given by

Cov(x0, Xn) = pq", n=12,... (44)

wherep = >\+u andq = —u.

4 Renewal arrivals and exponential service times: The systed:1, M,,, GI)

In this section we assume that the arrival process is renewal whereas the service time distribution is
exponential with ratg;. We will assume as usual that customers arrive in batches ofjgizenere

the sequencés,,} is i.i.d. with given distribution and corresponding probability generating function
B(z). Furthermore we will denote the number of customers in the system just prior tdfttarival

by X,, := X(T,,—) and lety(z) := E°[2%°] denote the probability generating function of the number

of customers in the system under the Palm meaBlrat time0— i.e. the p.g.f. of the event—stationary
distribution just prior to a typical arrival. A first result which will play an important role in the sequel

is the following

Proposition 13. In the system{G1, M,,, GI), if the input batch size distribution is light-tailed i.e., for
somee > 0, 5(1+¢€) < oo then the departing batch size is also light-tailed and we hig\ter-¢) < cc.

Proof: Recalling (2a) we will show that, i > 0, ¢(1 +¢) = E%(1 + €)*° < co. Indeed, Xy =
Dot Zm" 1(T-,, + 0i, > 0) and thus

EY(1+9%7] = ﬁ
ooﬁ—

= J[TIC+eaTn+0in>0).

n=11i=1

H (14 U(Tp + 0ip > 0) + 1Ty + 01 < 0))

14i=1

3
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In order to show that the above expectation is finite we consider first the conditional expectation given
{(T-p,B-n);n=1,2,...}. We have

EO[(]‘ + G)XO’(T*TH/B*TL); n = 1, 2, .. ] = H (]_ —+ EQ“T*"L)Bfn .
n=1

(In the above equation note thAt, is a negative). Taking expectations with respect to the batch sizes
{B_n;n € N} we have

e}

I} (1 + ee“T*") = H (1 - (5(1) - B+ EG“T%)))

8

E (14X T sn=1,2,..] =

3
Il
—

I
8

(1= B/(1+ cp)ee ™))

n=1

wherec,, € (0,¢). Thus, since?’(z) is an increasing function, we can write

(e e}

El1+ 6T pin=1,2,..] < [[(-p8 1)) gH )

n=1

where we have used the mean value theorem for the differentiable fuptiomnd we have sef :=
B'(1)e = eE°3,. From the above we see thiat[(1+¢)*°] < oo provided that=° [T[>°; (1 — ne #1")] <
oo. In view of the inequalityl — = < e~* which holds for allx € R, it is enough to show that

EUFﬁZiﬁﬂn < 0. (45)

Fix nowd > 0 and consider a renewal process, } with interarrival times
. |0 if 0<T, <6,
mEVe it s<r

We thus havd, = 7 +- - - + 7,, and hencd}, < T}, a.s. for alln. In order to show (45) it then suffices
to establish that )
E° [e*”Zleean} < 00.

Then, a moment’s thought reveals that

Z e~HIn — Z a* Vv (46)

n=1

where{Vy;k = 0,1,2,...} are independent, geometric random variables with common distribution
P(V=i)=P(r>68) (P(r<d) 'i=12,.. anda:=e " < 1. We thus need to show that

oo
oo k 1-—
ElenXiZoo" Ve — | | Ppp— —qnak' < 0.
k=0~ 9€

Since none of the terms of the above infinite product is equal to zero, the above infinite product is finite
if and only if the infinite product

[e'e] k [e'e)
I H( : )
. —— 1—=(1—e")
k=0 1—q k=0 p
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converges properly, i.e. away from zero. A necessary and sufficient condition for this is the absolute
convergence of the infinite seri®s;° ]%(1 — e—”“k). This series however converges absolutely as can

be seen by comparing it with the geometric sefgg o (where0 < a < 1), since
1—ene’

lim —— =n.
k—o0 Oék "

A direct consequence of the above proposition is the following

Corollary 6. If 3(z) < oo for all z € R then¢(z) < oo for all z € R. In particular, if customers
arrive singly thenp(z) < oo for all z € R.

4.1 Statistics of number of customers in the system and of departing batches when
customers arrive individually: The system(G1, M,, 6;)

From the above corollary it follows in particular that, if customers arrive singly, #ief is analytic
atz = 1 and hence that

. (z—1)k
o) =3 B (47)
k=0
where theith derivative ofp(z) at 1 is equal to théth descending factorial moment &fj:
¢ (1) = E°[Xo(Xo — 1) -+ (Xo — k+ 1)]. (48)

Let us denote by (s) := E°[e~*™] the Laplace transform of the interarrival time distribution. Then,
conditional onry and X, underP?,

d a
X1 = 1+Z%,
i=1

where they; are independent Bernoulli random variables with probability of sucee$%. Indeed,
X, = Xr,— and hence, at tim&, — the customer who arrives @ = 0 is certainly present. Also,
each one of the&; customers that were present at tiffie- will remain in the system with probability
e #7 independently of each other. Thus

Xo
X
EO[ZX1|TO,X0] =z (67'“7—02’—}‘ 1 —67“70)X0 =z E efk’”‘)(z— l)k ( k:0> )
k=0

Taking expectation with respect tg in the above gives

01X e (z—1)F
B2 Xo) = 2E0 ) ¢(kp)

X 1(Xo>k)Xo(Xo—1)---(Xo—k+1).
k=0 ’

Note that, while the above sum is written as an infinite sum it has in fact a finite number of terms with
probability 1. Observe however tha’[1(Xy > k) Xo(Xg — 1)--- (Xo — k + 1)] = ¢*)(1). This
yields the following basic relationship:

8() = =3 Cluk) (=~ 1/F6D 1) (49)
k=0 '
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If we differentiaten times term by term the power series on the right hand side of the above equation
and we evaluate the resultat= 1 we obtain the recursive relation

¢(1) = ¢ ()¢ (un) +ne" D (1)¢(u(n — 1) (50)

whence we see that

|
—

n

o"(1) = n!

%

¢ip)
1= C((+1)p)

which, with the usual assumption that an empty product is equal to 1 includes the@dse = 1.
Thus we are ready to state the following

n=012,....

Il
=)

Proposition 14. For the system with single arrivalg,z) is analytic for allz € R with

N T G
$z) =Y (z—1) H 7 (51)

= imo 1= C(E+ 1w

Furthermore the p.g.f. of the size of departing batches is given by

LN - L- ) \ 77 Cli)
D=L+ (- (”«(n—l)m)ﬂ (i + D) 2

Proof: Equation (51) is an immediate consequence of proposition 13, (47), and (50). To establish (52)
it suffices to notice that

X(2) = (a+p2)dla+pz) = (g+p2) Y (- H z+1 D]
n=0
and carry out the algebra. |

4.2 Statistics of number of customers in the system and departing batches when cus-
tomers arrive in batches: The system G/, M,,, GI)

With the same notation as before we have that

Proposition 15. If the p.g.f. of the batch size distribution is such that + ¢) < oo wheree > 0 then
the corresponding probability generating function for the number of customers in the system exists for
z € [0,1 + €] and is given by the power series

o

Bz =3 o)z~ 1) (53)

n=0

where the derivatives dt (which are equal to the corresponding descending factorial moments) are
given by the recursive equations

n—1

o™ (1) < ) B8R, n=1,2,...., 6O =1  (54)

k:0
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The probability generating function for the departing batch size in steady state is given by

X(z) =3 XMW - 1) (55)
n=0
where -
Wiy — #W) = (n
X0 = () 0¥k, (56)

Proof: The expansion around 1 in (53) is possible by virtue of proposition (13). From the relationship
EU[ZXI‘Xo,,Bo,TO] — (1 — e HTO 4 Ze*#‘ro)XoJrﬂo
we obtain

¢(z) = E°[o(1+(z—1)e ™) ( +(z = e )]

— E° Z;l(z—l neTmHT N (Z) (= ’“)(1)]
n=0
D I-ICRRILSNDY (Z) o (15" P () (57)
n=0 k=0

and hence, taking into account (53), we see that

o) = )Y (1)) 6P (WP () (58)
k=0

whence (55) follows readily.

Noting that
X(2) = B [(77 4 2(1 — emm)) Xorio] (59)
we readily conclude that, if(1 + ¢) < oo, thenx(1 + ¢) < oo hence the expansion in (56) is valid.
From (59) we obtain

n

@) = 2 E w3 (1) B

n=0 k=0
o) Ky
- nz:;] n! C(np) kzo (k) (_1)kg(kﬂ)a

where in the last equation we have also taken into account (58). This last equation establishd (56).

4.3 System time distribution for the systemXGI, M,,, GI)

The system time distribution for the typical customer in this system obviously does not depend on
whether customers arrive individually or in batches. Thus, to keep our notation simple we will assume
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that customers arrive individually. As beforg(s) = E°[e—5(T1=70)] denotes the Laplace transform
of the interarrival time distribution ang(¢) the forward recurrence time of the arrival process at time
t. Then the system time of a customer who arriveg@at= 0 and whose service requirementig is
given byVy = o9 + R(0y).

Proposition 16. If the service timego,, } above are i.i.d. exponential with rajeand independent of
the arrival process, then the Laplace transform of the service time distribution, is given by

FOfe—s¥o] = S =Sl ) (60)

= = Cs+p)

Proof: Let g(t, s) := E°[e~*E(")], denote the Laplace transform of the forward recurrence time of the
arrival process (which of course depends brA straightforward renewal theoretic argument gives

g(t,s) = Ble*M=D1(Ty > ¢)] + /0 t g(t — u, s)dF (u) .

Taking further a Laplace transform with respect tee have

r(0,s) = /OOO et s)dt — W—r(e,s)gw)
or

(0 —s)(1—¢(0))
Since service times are exponential with rat¢hen the Laplace transform of the system time of a
typical customer is

v(s) := E%le™*"] = / pe Me Ve B dt = uD(ju+ s, ) . (62)
0

From (61) and (62) equation (60) follows readily. |

5 Appendix — The distribution of departing batches under P for the sys-
tem (M), 04, 61)

Here we provide a sketch of the analysis for the distribution of departing batches Rvadeen cus-
tomers arrive singly according to a Poisson process with xaded service times are deterministic
(equal toa).

The p.g.f. E°2X» was obtained in proposition 6. UndBrhowever, the random variablég.,} are
no longer identically distributed. Using an analogous analysis we can establish the following

Proposition 17. Thestationaryprobability generating functiong'zX» for the system{M,, d,,d1) are
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given by the expressions:

1 (1—2)% .o
EzXn — _ a(2—=2) = —1,-2,-3,...
[Z ] 2 — 2z 2 —z € n 07 ? Y 37 )
1 (1—2)2
Elx1 _ - 1 Aa(2—z)
[Z ] (2 _ Z)2 2 — 2 ( + Aa) Y
2 n—1
E[ZX"] — 1 (1 — Z) o (_1) _ 67)\(1(272)
2—2 22-2) z2(2-2)(1-z2)n1

i
[\

+
(]

n—2 k
O\/:!)k (Zk—l-l B Zk) a4 -1 —Aazz = Zl k)l

kOlO

n—2n—2—Fk k l
—)\a —>\u u)) ()‘u) -
I / e o du n=23,4,...

k=0 =0

—~
=l
o

It should be noted that batches departing before time 0 have the same distribution aBUrithes
distributions of the sizes of the batches that depart after time O are different, it can be shown however
that, asn — oo,

E[zX"] — 1 (- Z>26*M(2*Z>.
2—2z 2—2z
(Compare this with (17).) The complicated expressions above which have been obtained by straightfor-
ward analysis are not particularly illuminating and the proof of this proposition will be omitted. More
can be gleaned about the behavior of this process by examining the expected sizes of departing batches:

Proposition 18. The stationary expectation of the departing batch size for the syStémd,, ;) is
given by the expression

D it n=1, (63)
1= e Ol a gt Qa2 >y

Proof. This can of course be obtained from the above expressions for the corresponding p.g.f.’s. Itis
however easier and more illuminating to obtain it by a direct argument as follows. We start with the
fact that

AU if u<a
E[Xn|7—n1:'u]:{l+>\a it w>a n=10-1,-2,-3,...
and
o M—=-PTh1—a<0<T, —a|mp—1=u) if u<a _
E[X"h—"l_u}_{ 1+Xa—P(Tp_1—a<0|t,1 =u) if u>a, n=234...

(This can be obtained by arguments similar to those in section 3.) Taking additionally into account
that, due to the inspection paradox, whitér,, € du) = Ae **du for alln € Z\ {0}, P(1o € du) =
A2ue~*du and carrying out the elementary computations we establish the proposition.
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Finally we should point out that, as — oo, the corresponding stationary distribution for the size
of the departing batches becomes

5 ! if n#1,
—z
lim E[zX"] = (64)

a—0o0 1 .

Note that the first batch after the origin in the stationary case is an exception since the gap that precedes
it is the sum of two independent exponentials with rate

Acknowledgement. The author would like to thank an anonymous referee for many remarks that
improved the exposition of the paper.
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