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Sensitivity of the Joint Survival Probability
for Reinsurance Schemes

E.E. Roumelioti, M.A. Zazanis�, N.E. Frangos

We model the joint risk process for an insurer and a reinsurer using a di�usion approximation and obtain expressions for the

sensitivity of the joint survival probability with respect to parameters of the reinsurance scheme. The approach used leads,

more generally, to explicit expressions for the sensitivity of functionals of di�usions in Rm with constant coe�cients, whose

drift vector and covariance matrix are di�erentiable functions of a parameter, in a form suitable for e�cient Monte{Carlo

simulation. The functionals examined depend on the values of the di�usion at a �nite number of time epochs and the

sensitivities are calculated using the Likelihood Ratio Method. An extension to dynamic reinsurance schemes is also briey

described and sensitivity estimators are provided using the integration by parts formula of the Malliavin calculus. Copyright
c 2009 John Wiley & Sons, Ltd.
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1. Introduction

Di�usion models in risk theory have been used for a long time as convenient macroscopic models for the understanding of the

qualitative issues in insurance risk problems, e.g. see [10], [8]. They are also a valuable tool for quantitative approximations in the

evaluation of reinsurance policies. (Reinsurance is common practice in the insurance business, whereby an insurance company

passes part of its liabilities to another �rm, the reinsurer, in an attempt to reduce and transfer the risks it undertakes in its

portfolio.) For applications of di�usion models to the analysis of reinsurance problems see for instance [1], [2], [9], and the

references therein, as well as [12] and [13] who proposed a method based on di�erential equations for computing sensitivities

with respect to several parameters that are included in the model.

In the present paper some aspects of the problem of the joint risk undertaken by a consortium of insurance companies are

examined. The framework used is an m{dimensional di�usion process with constant coe�cients which models the joint risk

process that the companies in the consortium face as a result of mutual reinsurance contracts. The correlation structure of the

m{dimensional di�usion process depends on the design of the reinsurance contracts employed. The aim of the paper is to obtain

expressions for the sensitivity of the joint survival probability of the �rms with respect to the parameters involved in the model

and in particular with respect to the parameters that are related to the details of the contract e.g. the retention parameter.

To this end we will use two di�erent approaches, the Likelihood Ratio Method (essentially a change of measure argument)

and the integration by parts formula of the Malliavin calculus. The analysis is carried out �rst for rather general functionals of

multidimensional di�usions with constant coe�cients and then applied to the reinsurance problem in question.

The expressions for the sensitivities obtained in this paper may in some simple cases be computed analytically whereas in

more complicated situations numerical computation is necessary. In large scale problems they provide e�cient estimators in the

context of Monte Carlo simulation whereby both the quantities (say survival probabilities) and their sensitivities with respect to

parameters are obtained simultaneously. These sensitivities may be used (a) as a �rst approach towards facing the problem of

robustness of the results with respect to the model assumptions and (b) as an extension of the concept of Greeks (i.e. price

sensitivities), which is very successfully used in �nancial risk management, to the problem of reinsurance.

The use of Malliavin calculus for the aim of obtaining sensitivities of survival probabilities in this paper was inspired by the

work of Fourni�e et al. [4] who applied this technique to the problem of providing e�cient estimates for price sensitivities in

�nance, and by Privault and Wei [16] who used Malliavin Calculus techniques to the study of sensitivities of functionals related

to the ruin probability of an insurance �rm. Alternative approaches to obtaining sensitivity estimates may also be used. One
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could use pathwise di�erentiation (together with smoothing) or measure derivatives (likelihood ratio based techniques). For an

overview we refer the interesting reader to Glasserman [6]. For an interesting discussion regarding the connection of Malliavin

techniques to pathwise derivatives and likelihood ratio methods see Chen and Glasserman [3].

2. Di�usions with constant coe�cients in Rm as models for reinsurance problems

We consider a consortium consisting of m insurance companies involved in various reinsurance treaties. We describe the free

reserves of the ith company over the time period [0; T ] by the di�usion process

Xi(t) = ui + �i t +

d∑
r=1

Bi rWr (t); 0 � t � T; (1)

where i = 1; : : : ; m and fWr (t); t � 0g, r = 1; : : : ; d , are independent standard Brownian motions. The coe�cients �i and Bi r

are determined by the characteristics of the insurance portfolios and the reinsurance treaties that have been contracted between

the companies. We assume that these coe�cients depend smoothly on a parameter � which is some operational characteristic

of the reinsurance treaties or the insurance portfolios. (While for simplicity of exposition we will carry out the analysis for scalar

�, in general � may be a vector parameter.) We further assume rank(B) = m so that the di�usion X(t) := (X1(t); : : : ; Xm(t))

is genuinely m{ dimensional.

Suppose now that 0 < t1 < � � � < tn � T are n times of interest where the free reserves of the insurers will be audited. Xi(tk)

denotes then the free reserves of the ith company at time epoch tk . Suppose further that f : Rnm ! R is a (Borel) function of

the free reserves of the m companies over the n time periods. For instance, if we are interested in the event that no company has

negative free reserves at any of the audit times, then f (Xi(tk); i = 1; : : : ; m; k = 1; : : : ; n) =
∏m

i=1

∏n
k=1 I(Xi(tk) > 0). Another

example of practical signi�cance is f (Xi(tk); i = 1; : : : ; m; k = 1; : : : ; n) = �∑m
i=1minf0; Xi(t1); Xi(t2) : : : ; Xi(tn)g which gives

the aggregate severity of ruin.

In the sequel we will use the shorthand [Xi(tk)] := Xi(tk); i = 1; : : : ; m; k = 1; : : : ; n. We are interested in estimating

expectations of cylindrical functionals of X i.e. criteria of the form E	, with

	 := f ([Xi(tk)]); (2)

where f is a Borel function, such that the expectation in (2) exists, as well as their sensitivities with respect to parameters of

interest, @
@�
E	. For problems of high dimensionality, when m and n are large, Monte Carlo techniques become competitive and

even advantageous compared to the numerical evaluation of the multiple integrals involved.

To illustrate how the above di�usion model arises, consider the following risk process involving an insurer and a reinsurer.

Claims arrive according to a Poisson process fN(t); t � 0g with rate �. The claim sizes, fCkg, k = 1; 2; : : :, form an i.i.d.

sequence of random variables, independent of the Poisson process, with distribution function F . The above risk process is

shared by an insurer and a reinsurer according to the following reinsurance contract: If the claim size is y , the insurer retains

a part h1(y) where h1 : R+ ! R+ is a Borel function with 0 � h1(y) � y for all y � 0, while the reinsurer covers the rest

h2(y) = y � h1(y). Let u1; r1; u2; r2, be the initial free reserves and premium rates for the insurer and reinsurer respectively.

Denote by X̃(t) =
(
X̃1(t); X̃2(t)

)
, t � 0 the free reserves process vector for the insurer and the reinsurer. Then

X̃i(t) = ui + ri t �
N(t)∑
k=1

hi(Ck); i = 1; 2:

A quantity of interest is the probability of failure of the reinsurance scheme, that is the probability that, within some given time

horizon [0; T ], at least one of the two �rms is ruined. Equivalently we can consider the probability that both �rms survive, i.e.

P

(
inf

t2[0;T ]
X̃1(t) > 0; inf

t2[0;T ]
X̃2(t) > 0

)
: (3)

The following theorem (see [15] or [17]) provides the required di�usion approximation.

Theorem 2.1 ([15], [17]), The free reserves process fX̃(t); t � 0g can be approximated by means of a di�usion process

fX(t); t � 0g, starting at u = (u1; u2)
>, with a constant drift vector

� =

[
r1 � �E[h1(C)]

r2 � �E[h2(C)]

]
(4)

and a constant covariance matrix

V = BB
> = �

[
E[h21(C)] E[h1(C)h2(C)]

E[h1(C)h2(C)] E[h22(C)]

]
: (5)
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In the statement of the above theorem C is a \generic" claim having distribution function F . Also, note that the matrix B is

not uniquely determined from (5). Hence X̃(t) is approximated by X(t) which satis�es the stochastic di�erential equation

dX(t) = �dt + BdW (t); X(0) = u: (6)

It is evident from the statement of Theorem 2.1 that the coe�cients in the di�usion approximation will depend on the particular

choice of reinsurance scheme. In certain cases, it is possible to obtain an explicit expression for these coe�cients in terms of the

parameters of the reinsurance scheme as the following example shows.

A reinsurance scheme often used in practice is the excess of loss scheme in which h1(y) = y ^ � and h2(y) := max(y � �; 0)

for some � > 0. This means that the insurer covers the whole loss up to level �. The remaining part, if the loss is greater than

�, is covered by the reinsurer. In this case, according to Theorem 2.1, the drift is

� =

(
r1 � �

∫ �

0

�F (y)dy ; r2 � �

∫ 1

�

�F (y)dy

)>
(7)

with �F (y) := 1� F (y), and the covariance matrix is

V = BB
> = �

[
2
∫ �

0
y �F (y)dy �

∫1
�

�F (y)dy

�
∫1
�

�F (y)dy 2
∫1
�
(y � �) �F (y)dy

:

]
For a general reinsurance scheme, we will assume that the coe�cients of the di�usion approximation will generally depend on a

parameter � (possibly a vector valued quantity). Therefore the joint risk process may in general be written in the form

X(t) = u + �(�) t + B(�)W (t): (8)

We will consider the following sampled version of the non{ruin probability. For given n 2 N and 0 < t1 < � � � < tn � T let

P := P (X1(tk) > 0; X2(tk) > 0; k = 1; 2; : : : ; n) : (9)

This for all practical purposes can be used instead of (3) for the analysis of the reinsurance scheme and, as we shall see, lends itself

to computationally simple algorithms. We want to obtain an estimator for the quantity @
@�
E
[∏n

k=1 I(X1(tk) > 0; X2(tk) > 0)
]
.

2.1. Sensitivity analysis for cylindrical functionals of di�usions

Estimating the sensitivity of the expectation of functionals of the type (2) using Monte Carlo techniques presents serious problems

if one attempts to use �nite di�erence estimators. Suppose that we perform N pairs of independent simulation experiments,

each pair consisting of a simulation at the nominal value of the parameter, �, and one at a perturbed value � + �. Thus

(	i(�);	i(� + ��)) are i.i.d. vectors, though the two components of the vectors are not necessarily independent, since one may

use variance reduction techniques, such as common random numbers. Then the Finite Di�erence Monte Carlo estimate for the

sensitivity of J with respect to the parameter �, J 0� =
d
d�
J(�) becomes

@̂J

@�
=

1

N�

N∑
i=1

	i(� + �)�	i(�): (10)

While the above estimator is easy to implement, the variance and bias properties are not satisfactory. See for instance [6] for a

discussion of some of the statistical and numerical issues involved. Suppose that f is a su�ciently smooth function. Let fXtg
be the di�usion process (6) with coe�cients depending smoothly on a parameter � de�ned in (6). In this case a \derivative

process" X 0(t) := @
@�
X(t) can be de�ned path wise by direct di�erentiation and is given by X 0(t) = @��t + @�BW (t). When the

drift and variance coe�cients depend both on the parameter � and the state of the process Xt this \derivative process" is given

by the �rst variation process which is obtained as a solution of a certain linear SDE (see [14] and [4]). More will be mentioned

about this in x4. For a smooth function f an e�cient Monte Carlo estimator can be obtained provided that

@

@�
E[f (X)] = E[rf (X)X 0]: (11)

Of course the above relationship hinges upon the interchangeability of expectation and di�erentiation. If this does not hold, as

is the case when f is a discontinuous function, the above approach cannot be used.

There are two widely used techniques available when (11) fails to hold. The �rst, known as the likelihood ratio method (see

[6]) is applicable when the joint density of (X(t1); : : : ; X(tn)) is known, whereas the second, based on the integration by parts

formula of Malliavin calculus (see [4] and the references therein), can be used even when this density is unknown. Both these

techniques sidestep the statistical and numerical problems of the �nite di�erence estimators by establishing a relationship of the

form
@

@�
E[f (X)] = E[f (X)H] (12)
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where the weight H is a random variable that can be determined from the sample path of fXtg. Thus the right hand side of

(12) can be estimated by means of ordinary Monte Carlo techniques as an average over many realizations of the process fXtg
without having to resort to �nite di�erence estimators. We next show how this is possible in di�usions with constant coe�cients

when the distribution of fXtg is known. In section x4 we also briey sketch the Malliavin calculus approach (see also [11]).

A third possibility when the performance criterion in question is of the form E[f (Xt1)], i.e. when the functional of interest

depends on the value of fXt ; t � 0g at a single point, is via the Feynman-Kac equation. We refer the reader to [7] for a

description of this approach.

2.2. Sensitivity via the Likelihood Ratio

Suppose that (X1; : : : ; X�) is a �{dimensional Gaussian vector with mean � 2 R� and nonsingular covariance matrix V . Suppose

that f : R� ! R is a bounded Borel function and assume that � and V depend smoothly on a real parameter �. Consider the

performance criterion

J(�) := Ef (X1; : : : ; X�) =

∫
R�

f (x1; : : : ; x�)g(x; �)dx where g(x; �) =
1

(2�)�=2jV j1=2 e
� 1

2 (x��)>V �1(x��) :

Then @�J(�) =
∫
R� f (x)@�g(x; �)dx = E [f (X)@� log g(X; �)] and thus (12) holds with

H = @� log g(X; �): (13)

Taking into account that @�V
�1 = �V �1@�V V �1 and @�jV j = jV jtr(V �1@�V ) (see [19]) we have

@� log g(x; �) = @��
>
V
�1(x � �) +

1

2

(
(x � �)>V �1(@�V )V

�1(x � �) � tr(V �1@�V )
)
: (14)

3. Sensitivity analysis of cylindrical functionals of multidimensional di�usions with constant

coe�cients

We now use the above ideas in the context of di�usions (1) discussed in section 2 and obtain estimators for the sensitivity of

the expectations of the functionals considered there. We proceed to give an explicit representation for weight H in this case.

Theorem 3.1 If 	 = f ([Xi(tk)]) is a cylindrical functional of the multidimensional di�usion with constant coe�cients de�ned

in (1) whose coe�cients are continuously di�erentiable functions of � and f a Borel function then the sensitivity of E	 is given

by the expression
d

d�
J(�) = E [f (X(t1); : : : ; X(tn))H] (15)

with

H = �
>
� (BB

>)�1BWtn +

n∑
k=1

(
(Wtk �Wtk�1)

>B>
� (BB

>)�1(Wtk �Wtk�1)

tk � tk�1
� tr

(
B
>(BB>)�1B�

))
:

In the above �� and B� denote the derivatives of the drift vector and variance matrix B with respect to the parameter �

The proof can be obtained directly using (14) noting that V = BB>.
As a simple illustration of the above theorems consider the case where m = r = n = 1. Then 	 = f (X(t)) where X(t) =

u + �(�)t + �(�)W (t) and, applying (15), we have

@

@�
E	 =

��

t�
E[	W

2(t)] +
��

�
E[	W (t)]� ��

�
E[	]:

When 	 = I(X(t) > 0) the above expression becomes

@

@�
P(X(t) > 0) = E

[
I(X(t) > 0)

��(�)

�(�)
W (t)

]
+ E

[
I(X(t) > 0)

��(�)

t�(�)
(W 2(t)� t)

]
:

Evaluating the above expectations we obtain

@

@�
P(X(t) > 0) =

�(�)��(�)t � ��(�)(u + �(�)t)

�2(�)
p
2�t

e
� (u+�(�)t)2

2�2(�) :

This result can of course also be obtained by di�erentiating with respect to � the explicit expression P(X(t) > 0) = �
(

u+�(�)t

�(�)
p
t

)
,

where � is the standard normal distribution function.
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The above proposition (with a convenient choice for B), or (14) used directly, also provides the appropriate weight for the

sensitivity of the survival probability in the insurer and the reinsurer problem discussed in x2. Consider the joint risk process, after
the adoption of a reinsurance scheme, parameterized by a parameter M, as modeled by the bivariate di�usion process (8). Here

we apply the results of the previous section in order to obtain an estimator of the sensitivity of the joint survival probability with

respect to the parameter � i.e.

@

@�
E
[∏n

k=1 I
(
X1(tk) > 0; X2(tk) > 0

)]
= E[

[∏n
k=1 I

(
X1(tk) > 0; X2(tk) > 0

)]
H]

with H given either by theorem 1 or, equivalently, by (14) with � and V given by (4) and (5) respectively and

@�� = �
(� �F (�) ; � �F (�)

)
; @�V = �

[
2� �F (�)

∫1
�

�F (y)dy � � �F (�)∫1
�

�F (y)dy � � �F (�) �2 ∫1
�

�F (y)dy

]

4. Sensitivity estimates via the Malliavin Calculus for dynamic reinsurance contracts

The estimates derived above were obtained by taking advantage of the fact that the joint density of X(t1); : : : ; X(tn) is known

(in fact, gaussian). Thus a change of measure argument leads to an integrating factor that could be directly estimated from the

sample path. In this section we give an alternative approach based on the integration by parts formula of the Malliavin calculus

(see [14], [11], [4]) that can be applied even in situations where the above joint density is unknown.

The Malliavin calculus approach does not lead to a unique sensitivity estimator. The estimators obtained typically depend on

arbitrary functions or processes typically depend on arbitrary functions or processes (see [4], [11]). Typically these are chosen

so as to reduce the variance of the resulting estimators or to simplify their form and reduce their computational requirements.

Perhaps not surprisingly it can be shown (see [5]) that the (generally unknown) weight @
@�
log g� is the one that minimizes the

variance of the estimator.

Suppose that the reinsurance contracts between the members of the consortium depend not only of the size of the claims but

also on the free reserves of the companies. More speci�cally, assume that there exist Borel functions hi : R
m+1
+ ! R, i = 1; : : : ; m,

such that hi(c; x) � 0 and
∑m

i=1 hi(x; c) = c for all c � 0, x = (x1; : : : ; xm) 2 Rm
+ . Assume further that hi(c; x) is continuous

in x for all c. For each x 2 Rm
+ let V (x) be the m �m matrix with elements Vi j(x) = �E[hi(C; x)hj(C; x)]. We will assume that

the reinsurance contracts hi are such that V satis�es the following assumption (see [4]).

Assumption 4.1 (Uniform Ellipticity) There exists � > 0 such that y>V (x)y � �y>y for all y 2 Rm and x 2 Rm
+ .

While this assumption is not necessary in order to obtain sensitivity estimates using the Malliavin calculus (see [18]) it simpli�es

the form of the estimates. To illustrate its signi�cance note that y>V (x)y =
∑m

i=1

∑m
j=1 �yiyjE[hi(C; x)hj(C; x)] and consider

zone reinsurance contracts de�ned as follows.

Let bi , i = 0; : : : ; n, be smooth real functions de�ned on Rm
+ such that, for each x 2 Rm

+ , 0 � b0(x) < b1(x) < b2(x) < � � � <
bn(x) and let hi(c; x) = (bi(x) ^ c � bi�1(x))

+. Thus, the ith reinsurer becomes involved only when the claim size c exceeds

bi�1 and then pays only up to the amount bi � bi�1. In the model examined here the levels bi are assumed to depend smoothly

on the size of the free reserves of the companies, x . Taking into account the representation hi(c; x) = (bi(x) ^ c � bi�1(x))
+ =∫ bi (x)

bi�1(x)
I(c > u)du we see using Fubini's theorem that Vi j(x) =

∫ bi
bi�1

∫ bj
bj�1

E[I(C > u)I(C > v)]dudv which for i < j reduces to

Vi j(x) = (bi � bi�1)
∫ bj
bj�1

F (u)du, i < j . (To simplify the notation we have dropped the dependence on x .) The diagonal elements

of the matrix are given by

Vi i(x) =

∫ bi

bi�1

∫ bi

bi�1

E[I(C > u)I(C > v)]dudv = 2

∫ bi

bi�1

∫ u

bi�1

E[I(C > u)]dvdu = 2

∫ bi

bi�1

(u � bi�1)F (u)du:

It can easily be shown that for such a reinsurance policy Assumption 4.1 is satis�ed. Proportional reinsurance schemes on the

other hand, i.e. contracts for which hi(c; x) = cgi(x) (for at least two values of the index i) fail to satisfy the assumption. As

an example, when the claims are exponentially distributed with rate a > 0 the elements of the covariance matrix become

Vi j =
�

a
(bi � bi�1)

(
e
�abj�1 � e

�abj
)
; for i < j and Vi i =

�

a2

(
e
�abi�1 � (1 + a(bi � bi�1))e

�abi
)
:

Arguing as in x2 we see that the drift vector is given by �i(x) = ri � �E[hi(C; x)]. Choose B so that BB> = V . Then the

di�usion process in Rm that arises as the solution of the SDE

dXt = �(Xt)dt + B(Xt)dWt ; X0 = u (16)

can be used to model the free reserves of the reinsurance consortium. � : Rm ! R
m and B : Rm ! R

m
m are assumed continuous

and bounded (supx2Rm k�(x)k <1 and supx2Rm kB(x)k <1).

Under the above assumptions the �rst variation process f�t ; t � 0g of (16) (see [4]) is the unique solution of

d�t = M(Xt)�tdt +

m∑
j=1

Sj(Xt)�tdWj(t); �0 = I (17)
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4.1. Sensitivity with respect to the initial free reserves vector u

Let  2 Rm and consider the family of solutions of (16) parametrized by �, fX�
t ; t � 0g as the solution of (16) with initial

condition X0 = u + �. For each given � this represents the perturbed path of di�usion when the initial free reserves vector

u has been changed in the direction . The integration by parts formula of the Malliavin calculus can be used to provide the

appropriate weight H for the sensitivity of cylindrical funtionals [4].

Theorem 4.1 Let � : [0; T ]! R be any function in L2[0; T ] such that
∫ ti
0
�(s)ds = 1, i = 1; : : : ; n. Under the above assumptions

d

d�
E[f (Xu+�

t1
; : : : ; X

u+�
tn )] = E

[
f (Xt1 ; : : : ; Xtn)

∫ T

0

�(s)�>s (B
>(Xs))

�1
dWs

]
: (18)

Note that the weight obtained depends on an arbitrary function �. This can be chosen so as to minimize the variance of estimator

obtained. It should be pointed out that even though an explicit expression for the �rst variation process f�sg is di�cult to obtain

in closed form (except in the scalar case m = 1) it can easily be obtained numerically, in parallel with the di�usion process fXsg.
Thus the value of the Itô integral in (18) can be readily obtained for each sample path, leading to an e�cient sensitivity estimator.

Finally we point out that Malliavin calculus techniques for estimating the sensitivity of cylindrical functionals of di�usions with

respect to parameters of the drift or the variance coe�cients are provided in [4] (see also [18]). These typically result to weights

that involve stochastic integrals in the sense of Skorokhod (see [14]).

5. Conclusion

We have studied the problem of sensitivity of functionals of a reinsurance scheme, in the di�usion approximation, with respect

to the parameters of the scheme, using likelihood ratio techniques and the techniques of Malliavin calculus. In particular we have

studied the sensitivity of the joint survival probability of m �rms, with respect to the contract design, and provided expressions

for it. The sensitivities can be understood as analogues of the greeks in �nancial contracts, thus providing the reinsurer and

the insurer with a feeling of the risk undertaken by entering the contract. The sensitivity estimates where obtained in explicit

form suitable for direct implementation using either numerical techniques or Monte Carlo methods. Future work along these

lines includes extending these results to more general functionals using Girsanov's theorem instead of the elementary change of

measure arguments used in this paper and further investigation of the possibilities provided by the Malliavin calculus techniques.
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