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Abstract

We examine Push and Pull production control systems under a make-to-
order policy with safety stock. We compute the distribution of the waiting
time until a demand is satisfied, as well as flow time distributions and service
levels for both systems. Work-in-process levels are determined as well. The
analysis is carried out under Markovian assumptions and the explicit results
on flow times depend on non-overtake conditions that are satisfied for single
machine stations.

1 Introduction

This paper is a first step in an attempt to model the performance of various Push
and Pull production strategies and the way they respond to external demands. These
demands could represent either outside orders or signals from downstream cells in the
same plant. The production line is modelled as a series of single machine stations
with exponential processing times, external demands are Poisson, and, in this paper,
two production control schemes are examined: A Push scheme with safety stock S
and a Pull scheme with limited Work-in-process and safety stock S.

In the Push scheme each time a demand arrives it immediately authorizes the
release of a new job. The demand is either immediately satisfied from the stock or
it is backloged. The Pull scheme examined is similar to CONWIP (see [12, 11, 13]).
The main difference is that instead of the requirement that the WIP in the system
remain constant we require that the total work-in-process including the Finished
Goods Inventory (FGI) remain constant and equal to S. External demands, if not
immediately satisfied, are again backloged. In this scheme the arrival of a demand
authorizes the release of a new job only when the work in process is less than S or
equivalently the finished goods inventory is greater than zero. Proper operation of
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this scheme, which of course depends crucially upon the right choice for S, results in
the same benefits in terms of increased system control as other pull systems (e.g. see
[2, 6, 10, 9, 8, 12, 13]).

A number of performance criteria are considered, namely average WIP, the prob-
ability that a demand will be backloged, and the mean time to satisfy a demand.
We also examine mean flow time as well as flow time variability and obtain explicit
expressions in terms of the parameters of the system.

2 Systems under a Push Policy with Safety Stock

In this section, we examine in detail the push policy described above and obtain
explicit expressions for its performance. The system consists of M single–machine
stations in tandem, the processing times are exponential (with rates µi, i = 1, . . . ,M),
and the external demands are Poisson with rate λ. We will assume that the system is

stable i.e. ρi
def
= λ/µi < 1 for all i. Finished jobs wait in the FGI buffer and, when a

demand arrives, a new job will always be released to join the queue at the first station.
Furthermore, if the FGI buffer is not empty, the demand is satisfied immediately and
a finished job is removed from the system, otherwise the demand is backloged. We
assume that initially there are S finished jobs in FGI (the safety stock) and no WIP.
With this initial condition the work in process, (i.e. the unfinished jobs in the M
stations) together with the finished jobs in the buffer is always greater than or equal
to S.

Consider now the stationary version of this process. Restricting our attention
to the M stations (and disregarding FGI), this system behaves as an open Jackson
network. Let X i

t be the WIP at machine i at time t and define

Xt =
M∑
i=1

X i
t , (1)

the total WIP in the system. Since the system is stationary,

P (X1
0 = n1, · · · , XM

0 = nM) =
M∏
i=1

(1 − ρi)ρi
ni . (2)

The negative part of X0 − S, Y0 = (X0 − S)−, is the finished goods inventory while
the positive part, Z0 = (X0 −S)+ is the number of backloged demands. Let τ denote
the mean time to fill a demand in steady state. Applying Little’s law to the finished
goods inventory buffer, we obtain

λτ = E(X0 − S)+.

We proceed to compute τ explicitly in terms of the parameters of the system:

P (X0 = k) =
∑

{~n : n1+···+nM=k}

M∏
i=1

ρni
i (1 − ρi) = G(M, k)

M∏
i=1

(1 − ρi),



with G(M, k) given by:

G(M, k) =
∑

{~n : n1+···+nM=k}

M∏
i=1

ρni
i .

Therefore,

E(Xt − S)− =
S∑

k=0

(S − k)P (X0 = k)

=
S∑

k=0

(S − k)G(M, k)
M∏
i=1

(1 − ρi)

=
M∏
i=1

(1 − ρi)
S∑

k=0

(S − k)G(M, k) .

Since (X0 − S)+ = X0 − S + (X0 − S)− and EX0 =
∑M

i=1
ρi

1−ρi
, we get

τ =
1

λ

{
M∑
i=1

ρi

1 − ρi

− S +
M∏
i=1

(1 − ρi)
S∑

k=0

(S − k)G(M, k)

}
.

Anticipating (7) which is established in the next section,

τ =
1

λ

{
M∑
i=1

ρi

1 − ρi

− S +
M∏
i=1

(1 − ρi)
M∑

m=1

S − (S + 1)ρm + ρS+1
m

(1 − ρm)2
∏

l 6=m(1 − ρl/ρm)

}
. (3)

2.1 Customer service criteria

In this framework we can address a number of related issues pertaining to the level
of service: The probability that a demand will be satisfied immediately is given by
P (S − X0 > 0) = P (X0 < S). In view of (1) and (2), the distribution of X0

is the convolution of N independent geometric random variables (because of the
independence of the number of customers in each station). To simplify the analysis
we examine only the case where all stations have different utilizations. Then

P (X0 = k) =
M∑
i=1

ρk
i

∏M
l=1(1 − ρl)∏

l 6=i(1 − ρl/ρi)
. (4)

The derivation of (4) is interesting since it does not make use of convolutions
directly. The partial fractions expansion through which it is obtained is shown here
in the case where ρi 6= ρj for i 6= j. The z-transform of X0 can then be written as

EzX0 =
M∏
i=1

1 − ρi

1 − zρi

=
M∑
i=1

Ai

1 − zρi

or
M∏
i=1

(1 − ρi) =
M∑
i=1

Ai

∏
l 6=i

(1 − zρl) .



Letting z = ρ−1
i gives

Ai =

∏M
l=1(1 − ρl)∏

l 6=i(1 − ρl/ρi)
, i = 1, 2, . . . ,M.

Hence,

E[zX0 ] =
M∑
i=1

1

1 − zρi

∏M
l=1(1 − ρl)∏

l 6=i(1 − ρl/ρi)
, (5)

from which we obtain (4).

An alternative for computing the distribution of X0 uses the normalization con-
stants for CQNs for which a number of efficient computational algorithms exist.

P (X0 = k) =
∑

~n:n1+···+nM=k

M∏
i=1

(1 − ρi)ρ
ni
i

= G(M, k)
M∏
i=1

(1 − ρi) . (6)

A comparison between (4) and (6) suggests the following expression for the normal-
ization constant in a CQN

G(M, k) =
M∑
i=1

ρk
i∏

l 6=i(1 − ρl/ρi)
. (7)

The above closed form expression for the normalization constant was first obtained
in [7] (see also [5]).

2.2 Probability that a demand will be satisfied immediately

The probability that a demand will be satisfied immediately is given by

P (X0 < S) =
S−1∑
k=0

P (X0 = k)

=
M∏
i=1

(1 − ρi)
S−1∑
k=0

G(M, k)

=
M∑
i=1

S−1∑
k=0

ρk
i

∏M
l=1(1 − ρl)∏

l 6=i(1 − ρl/ρi)

=
M∑
i=1

(1 − ρS
i )

∏
l 6=i

1 − ρl

1 − ρl/ρi

. (8)

2.3 Total WIP in an open system

From the above analysis we can easily obtain an expression for the distribution of the
total WIP in an open system:

P (X0 ≤ n) =
M∏
i=1

(1 − ρi)
n∑

k=0

G(M, k) = G(M + 1, n)
M∏
i=1

(1 − ρi),



where G(M+1, n) is the normalization constant of a CQN with n customers and M+1
stations with mean service times ρ1, . . . , ρM , 1, or equivalently µ−1

1 , . . . , µ−1
M , λ−1. In

view of (7)

G(M, n) =
M∑

m=1

ρn
m

(1 − 1/ρm)
∏

l 6=m(1 − ρl/ρm)
+

1∏M
m=1(1 − ρl)

(9)

and hence

P (X0 ≤ n) = 1 −
M∑

m=1

ρn
m

(1/ρm − 1)
∏
l 6=m

(1 − ρl/ρm)
.

3 Limited WIP systems with safety stock

We now consider a make–to–order system with safety stock under a Limited WIP
policy. As before the cell consists of M single–machine stations (exponential process-
ing times with rates µi). External (or down stream) demands are Poisson with rate λ
and, when the system starts, there are S finished parts in Finished Goods Inventory
(FGI) and no parts are being processed. Denote by X i

t the number of parts in process
or waiting in front of machine i at time t, and by Xt =

∑M
i=1 X i

t the total WIP. When
a demand arrives, if there is a part in FGI then it is satisfied immediately and a
new part is authorized to start processing at (or join the queue in front of) station
1. If however upon the arrival of the demand no parts are available in FGI then the
demand is backloged until a part is finished. Backloged demands are satisfied on a
FCFS basis. Furthermore, a backloged demand does not authorize the production of
a new part. Let Yt denote the number of parts in FGI with negative values of Yt

corresponding to the number of backloged orders. Under the above policy, Xt ≤ S
with equality holding whenever Yt ≤ 0 (i.e. whenever there are no parts in FGI but,
possibly, a demand backlog).

To analyze the performance of this policy we consider now a system, equivalent
to the one just described under our Markovian assumptions. It consists of an open
tandem network with M single–server exponential stations (with the same processing
rates). This system has a global buffer of size S (i.e. the total number of customers in
the network, Xt, is constrained to be ≤ S. Customers arrive from outside according to
a Poisson process with rate λ and if upon arrival the number of parts in the network is
equal to S then they wait in front of the global buffer according to a FCFS discipline.
As soon as a customer finishes processing at station M , a customer waiting outside
the global buffer is immediately admitted and joins the queue, or starts processing, at
station 1. Let Zt be the total number of customers at time t, including those waiting
outside the buffer. When Zt ≤ S in this equivalent system, the original system has
no backloged demands, Zt parts in process (WIP) and S − Zt parts in FGI. When
Zt > S, there are S parts in process (the maximum allowed), Zt − S unsatisfied
demands, and of course no parts in FGI.

In the next section we provide some results concerning the distribution of inter-
output times in cyclic, single–server CQNs, which will be necessary in analyzing the



performance of the above policy.

3.1 The interoutput distribution for cyclic CQNs

Consider a Closed Queueing Network consisting of M single server stations with
processing rates µi and k customers. Let Tn denote the point process of successive
outputs from the last station (i.e. the process of finished parts) and (X1

t , . . . , XM
t )

(defined as a process with right–continuous paths the state of the system. Suppose
that the system is stationary under P and denote by P ∗ the Palm transformation of
P with respect to {Tn}. E∗ denotes expectation w.r.t. P ∗. We will compute E∗[e−sT1 ]

and E[e−sT1 ]. (Of course, E[e−sT1 ] = 1−E∗[e−sT1 ]
sE∗[T1]

.) The first Laplace transform can
be obtained from a straight-forward application of the arrival theorem. Indeed, if at
time t = 0 a customer has just left station 1, then

E∗[e−sT1|XM
0 > 0] =

µM

µM + s
,

and, generally,

E∗[e−sT1 |XM
0 = 0, XM−1

0 = 0, . . . , X i
0 > 0] =

M∏
j=i

µj

µj + s
.

The above argument simply takes into account the possibility that the last M − i+1
stations may be idle. From the arrival theorem,

P ∗(X1
0 > 0) =

ρ1G(M, k − 2)

G(M, k − 1)
,

and

P ∗(XM
0 = 0, . . . , X i+1

0 = 0, Xi > 0) =
ρiG(i, k − 2)

G(M, k − 1)
.

Hence,

E0[e−sT1 ] =
M∑
i=1

ρiG(i, k − 2)

G(M, k − 1)

M∏
j=i

µj

µj + s
.

The same argument can be used to obtain the expression

E[e−sT1 ] =
M∑
i=1

ρiG(i, k − 1)

G(M, k)

M∏
j=i

µj

µj + s

directly. In particular,

αk
def
= E∗T1 =

M∑
i=1

ρiG(i, k − 2)

G(M, k − 1)

(
1

µi

+ · · · + 1

µM

)
, (10)

and

βk
def
= ET1 =

M∑
i=1

ρiG(i, k − 1)

G(M, k)

(
1

µi

+ · · · + 1

µM

)
. (11)



4 Flow time distributions for Push and Pull sys-

tems

The Pull strategy with WIP limited above by N can be modelled in the markovian
case as an open queueing network with a global buffer of size N . Demands arrive
according to a Poisson process and are admitted to the system only if the total
number of customers present, Xt, is less than N . Otherwise they wait outside the
global buffer. If at time t Xt ≤ N then no demands are backlogged and N − Xt

represents finished goods inventory. If, on the other hand, Xt > N then Xt − N
represents the number of backlogged demands. If the probability that a demand is
backlogged is small the operation of this system can be adequately approximated by
a closed queueing network.

For a closed queueing network, from Boxma, Kelly, and Könheim (1984), and
Daduna (1982), it follows that, if Ti is the flow time through the i’th station, the
joint Laplace transform for the flow times of a tagged customer through the stations
satisfies the following product form relationship

E[e−s1T1−···−sMTM ] =
∑

~∈S(M,N−1)

p(j1, . . . , jM)
M∏
i=1

(
µi

µi + si

)ji+1

, (12)

where S(M, N) = {~ : j1 + · · · + jM = N}. (The above holds provided that a non-
overtake condition holds, which of course is the case for cyclic single server networks.)
Setting ρi = 1/µi, the rhs of the above equation can be written as

∑
~∈S(M,N−1)

ρj1
1 · · · ρjM

M

G(M, N − 1)

M∏
i=1

(
µi

µi + si

)ji+1

,

or, equivalently,

M∏
i=1

(
µi

µi + si

) ∑
~∈S(M,N−1)

M∏
i=1

(
1

µi + si

)ji 1

G(M, N − 1)
. (13)

The first factor in the above expression corresponds to the joint Laplace transform
of the processing times for a job while the second to the joint Laplace transform of
waiting times at the stations. Setting s1 = · · · = sM = s in (13) and taking into
account (7) we obtain the following expression for the Laplace transform of the cycle
time:

Ee−sT =

M∑
m=1

αm

(µm + s)N

M∑
m=1

αm

µN
m

, (14)



where

αm =
∏
l 6=m

1

µl − µm

. (15)

From (14) we readily obtain the following expressions for the moments of the cycle
time:

ET k = N(N + 1) · · · (N + k − 1)

M∑
m=1

αm µ−(N+k)
m

M∑
m=1

αm µ−N
m

, k = 1, 2, . . . . (16)

The throughput of the closed system with N customers can easily be computed from
the first moment of the cycle time (16) and Little’s Law:

λ(N) =

M∑
m=1

αm µ−N
m

M∑
m=1

αm µ−(N+1)
m

. (17)

From (16), (17) we also obtain the following version of Little’s Law for the moments
of the cycle time in a closed network:

λ(N)λ(N + 1) · · ·λ(N + k − 1) ET k = N(N + 1) · · · (N + k − 1) . (18)

The coefficient of variation of the cycle time with N customers in the system can
be written as

Cv(N) =

√√√√(1 +
1

N

)
λ(N)

λ(N + 1)
− 1 . (19)

Given that λ(N) is increasing in N we have the (asymptotically tight) bound:

Cv(N) ≤
√

1

N
.

For the corresponding open system the Laplace transform of the flow time is of
course

E[e−sTO ] =
M∏

m=1

µm − λ

µm − λ + s
, (20)

where λ is given by (17). We compare the two systems assuming that they have the
same throughput i.e. with λ = λ(N).
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