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Abstract

We examine a family of GI/GI/1 queueing processes generated by a parametric family of
service time distributions, F (x, θ), and we show that under suitable conditions the correspond-
ing customer stationary expectation of the system time is twice continuously differentiable with
respect to θ. Expressions for the derivatives are given which are suitable for single run derivative
estimation. These results are extended to parameters of the interarrival time distribution and ex-
pressions for the corresponding second derivatives (as well as partial second derivatives involving
both interarrival and service time parameters) are also obtained. Finally we present perturba-
tion analysis algorithms based on these expressions along with simulation results demonstrating
their performance.

KEYWORDS: SENSITIVITY ANALYSIS, SECOND DERIVATIVES ESTIMATION.

1 Introduction

Consider a GI/GI/1 queue with service time distribution belonging to a parametric family F (x, θ),

θ ∈ [a, b]. Assume the system to be stable for all θ in [a, b] and denote by T (θ) a random variable

distributed according to the steady state distribution of the system time of a customer. We present

a sample path construction of two such queueing processes on the same probability space, one with

service time distribution F (x, θ) and the other with F (x, θ + ∆θ), starting both with the arrival

of a customer to an empty system, and obtain an exact expression for the limit of the difference

1
n

∑n
i=1[Ti(θ + ∆θ) − Ti(θ)] as n → ∞ where Ti(θ) is the system time of the ith customer in the

system with service time distribution F (x, θ).
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Analyzing the limit of that difference we establish the existence of d
dθET , obtain for it an expres-

sion suitable for estimation from a single simulation experiment, and show that the corresponding

Perturbation Analysis (PA) estimates are strongly consistent. Under additional assumptions we

also show that the second derivative d2

dθ2ET exists and obtain strongly consistent PA estimates for

it as well. Extension of these results to vector parameters leads to efficient PA algorithms for esti-

mating the gradient and Hessian matrix of the response time from a single experiment without the

use of finite differences. We also present analogous results for parameters of the interarrival time

distribution as well as for families of queues parametrized with respect to both the interarrival and

the service time distribution. In this latter case we give expressions for the corresponding mixed

partial derivatives.

The algorithm for first derivatives was originally given in Suri and Zazanis [29] and its conver-

gence properties were established there for M/G/1 queues. (See also Zazanis, [32]). Since this paper

was first submitted for publication, a number of related results have appeared in the literature.

Hu [15] established the differentiability of ET (θ) and the strong consistency of the first derivative

estimates under the assumption that the service time distribution has the SSCX property (Strong

Stochastic Convexity). This result for the first derivative is also implicit in Glasserman, Hu, and

Strickland [9]. Finally, Konstantopoulos and Zazanis [4, 5], and Brémaud and Lasgouttes [3] ex-

amine PA algorithms in a stationary and ergodic framework.

Our proof of the differentiability of ET (θ) is based on direct sample path arguments without re-

lying on restrictive convexity assumptions and our strong consistency results for the corresponding

PA estimates are obtained under natural moment conditions. Our sample path approach involv-

ing an auxiliary queueing system is specifically tailored to queueing systems and thus allows us

to establish the first derivative result under weaker moment conditions compared to more general
1Acknowledgements: We would like to thank an anonymous referee for detailed comments. This work was partly

supported by the U.S. Office of Naval Research Contracts N00014-75-C-0648 and N00014-79-C-0776, and by N.S.F.
Grant ENG82-13680.
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GSMP results (Glasserman, Hu, and Strickland [9]). More important, it provides a way of obtaining

similar results for higher derivatives which in this paper is exploited for the purpose of establishing

the existence of second derivatives and obtaining strongly consistent estimators for them from a

single sample path. For a review of PA techniques the reader is referred to Suri [27], Glasserman

[7], Ho and Cao [14], and the references therein.

The corresponding finite difference derivative estimates involve two or three experiments on the

system: If T̂ (θ) is an estimate of ET (θ) obtained from an experiment with parameter value θ, the

simplest finite difference estimates are T̂ ′ = T̂ (θ+∆θ)−T̂ (θ−∆θ)
2∆θ and T̂ ′′ = T̂ (θ+∆θ)−2T̂ (θ)+T̂ (θ−∆θ)

∆θ2 . The

advantage in the number of experiments becomes significant when θ is an N -dimensional vector.

Estimating the entries of the N × N Hessian matrix by means of finite differences would require

2N2 + 1 simulation experiments whereas the PA algorithm we propose still requires only one. An

equally important, though less obvious, advantage of PA estimates is that they are significantly

less noisy than their finite difference counterparts (Zazanis and Suri [31]).

One could also obtain second derivative estimates using Likelihood Ratio (LR) methods (Glynn

[10], Reiman and Weiss [20], Rubinstein [23]). However it is noted in Reiman and Weiss [20] that

second derivatives estimated by LR methods are likely to be noisy. As the experimental results

in part II of this paper indicate, our estimates have surprisingly low variance and thus could be

used very effectively for optimization purposes. So far, the first derivative information from PA

algorithms has been used to obtain efficient algorithms for multiparameter optimization of the per-

formance of complex discrete event systems (Ho and Cao [13]) including fast optimization during

a single simulation run (Suri and Zazanis [29], Suri and Leung [28], L’Ecuyer [18]). However, in

optimization of deterministic systems, Newton algorithms are known to be superior to algorithms

that only use first derivatives. The availability of low variance estimates for the Hessian could make

possible the development of stochastic approximation algorithms using this information to achieve

improved convergence rates. Finally we point out that Reiman and Simon [21] have proposed an

alternative way for estimating second (and higher) derivatives for systems in light traffic driven by
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a Poisson process.

2 Parametric families of service time distributions and stochastic
service functions

Consider a GI/GI/1 queueing system with interarrival distribution G(x) and service time distribu-

tion F (x, θ) depending on a parameter θ ∈ [a, b]. Let F−1(u, θ) be defined by

F−1(u, θ) = inf{x : F (x, θ) > u} . (1)

Let U be a random variable uniformly distributed in [0, 1] and X(θ) = F−1(U, θ). In this fashion

we have determined a family of random variables indexed by θ, {X(θ) ; θ ∈ [a, b]}, satisfying

P (X(θ) ≤ x) = F (x, θ) for all θ ∈ [a, b]. We will call X(θ) constructed in this fashion a stochastic

service function. Suppose that the following condition is satisfied:

Condition C.1 The derivative dX
dθ (θ) = lim∆θ→0

X(θ+∆θ)−X(θ)
∆θ exists and is a continuous function

of θ ∈ [a, b] w.p.1.

Additionally, for the purpose of estimating second derivatives, we require the following

Condition C.2 The second derivative, d2X
dθ2 (θ) = lim∆θ→0

1
∆θ [dX

dθ (θ + ∆θ)− dX
dθ (θ)], exists and is

continuous for all θ ∈ [a, b] w.p.1.

While in general {X(θ); θ ∈ [a, b]} may not satisfy C.1 and C.2, simple sufficient conditions to

ensure this can be given in terms of F (x, θ): Suppose that F (x, θ) is absolutely continuous for all

θ with density f(x, θ) = D1F
def= ∂F (x,θ)

∂x and that D2F
def= ∂F

∂θ exists for all (x, θ) ∈ R+ × [a, b]. Let

Λθ = {ω : f(X(θ, ω), θ) = 0}. Then P (Λθ) = 0 and from the chain rule together with (1), it follows

that dX
dθ exists on Ω \Λθ and is given by −D2F (X,θ)

D1F (X,θ) . On Λθ we can arbitrarily set dX
dθ = 0 and thus

we have
dX

dθ
= − D2F (X, θ)

D1F (X, θ)
w.p.1. (2)
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Similarly, assuming that F (x, θ) is twice continuously differentiable w.r.t. (x, θ) ∈ R+ × [a, b], we

have

d2X

dθ2
= − D22 F (D1F )2 + D11F (D2F )2 − 2D12F D1F D2F

(D1F )3
w.p. 1, (3)

where D11F
def= ∂2F

∂x2 and similarly for the other partial derivatives. The above expressions for dX
dθ

and d2X
dθ2 are necessary for the implementation of the PA algorithm we propose in §12. Despite the

fact that in general they can be complicated, they assume simple forms for two cases particularly

important in applications as shown in the following two examples.

Example 2.1: Suppose that θ is a location parameter of the service time distribution. Then the

distribution of X − θ does not depend on θ and thus, for all ω, X(ω, θ) has the form X(ω, θ) =

θ + ζ1(ω) which in turn implies that dX
dθ = 1 and d2X

dθ2 = 0.

Example 2.2: Suppose that θ is a scale parameter, i.e. that the distribution of X
θ is independent

of θ. Then, X(ω, θ) has the form X(ω, θ) = θζ2(ω), and thus dX
dθ = ζ2 = X

θ and d2X
dθ2 = 0.

In the final example, θ is neither a location nor a scale parameter:

Example 2.3: Consider the service time distribution

F (x, θ) =


x(x+ θ) if 0 ≤ x < 1

2(
√

4 + θ2 − θ)

1 if 1
2(
√

4 + θ2 − θ) < x ,

with θ > 0. From (2) and (3), dX
dθ = − X

2X+θ and d2X
dθ2 = X

(2X+θ)2
. (Notice that 2X + θ > 0 w.p.1.)

3 Assumptions

The following assumptions define the class of systems within which we shall confine ourselves. They

are divided into two groups, the second group containing the additional assumptions required for

obtaining expressions for second derivatives.
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We will assume that the parametric family of service time distributions F (x, θ) is such that the

corresponding stochastic service function X(θ) satisfies condition C.1 and furthermore that the

following assumptions hold:

Assumption A.1 Let χ(ω) = supθ∈[a,b]X(θ, ω) for all ω. Then Eχ < EA < ∞ where A is a

random variable distributed according to the interarrival time distribution G.

Assumption A.2 E[χ2] <∞ and E[ξ3] <∞ with ξ(ω) = supθ∈[a,b] |dX
dθ (θ, ω)|.

If there exists θ∗ ∈ [a, b] such that X(θ) ≤ X(θ∗) w.p.1 for all θ ∈ [a, b] then assumption A.1 simply

states that the family of queueing systems with service distribution F (x, θ) are stable for all values

on θ in that interval. Similarly Eχ2 <∞ in A.2 guarantees that ET (θ) <∞ for all θ ∈ [a, b] (e.g.

see Asmussen [1]).

To obtain second derivative estimates, we need additionally condition C.2 and the following

assumptions:

Assumption A.3 The interarrival distribution G is absolutely continuous with density g which

we will assume right continuous, and has a bounded hazard function, g(x)
1−G(x) ≤ α < ∞, for all

x ∈ [0,∞).

Assumption A.4 There exists ε > 0 such that E[eεχ] < ∞ and E[eεξ] < ∞. Furthermore, if

ψ(ω) = supθ∈[a,b] |d
2X

dθ2 (θ, ω)|, E|ψ|3 <∞.

When C.1 holds, X(θ, ω) and dX
dθ (θ, ω) are w.p.1 continuous functions of θ on [a, b] and hence χ and

ξ are well defined random variables. When C.2 holds as well, then d2X
dθ2 (θ, ω) is also a continuous

function of θ w.p.1 and ψ is well defined.

The following remarks will be useful in the sequel.

Remark 1: Let ∆X = X(θ+∆θ)−X(θ). An immediate consequence of A.2 is that |∆X| ≤ ξ|∆θ|.

Remark 2: In view of remark 1, A.4 implies that E[eε
∆X
∆θ ] <∞, and since X(θ) ≤ χ, E[eεX(θ)] <∞.
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Most of the analysis in this paper will be carried out under an additional monotonicity assump-

tion:

Assumption M.1 For ∆θ > 0, ∆X = X(θ + ∆θ) − X(θ) ≥ 0 w.p.1. Furthermore, if A is a

random variable distributed according to the interarrival distribution, EX(b) < EA <∞.

This monotonicity assumption (which implies the weaker A.1) is introduced in order to simplify

the sample path analysis that follows. In §8 we show how it can be replaced by A.1.

4 Sample path analysis of the system

For i = 1, 2, . . ., let Ωi = [0, 1], Fi = B[0,1] the Borel σ-field on [0, 1], and Pi the Lebesgue measure

on [0, 1]. Our probability space will be the product space (Ω,F , P ) = (
∏∞

i=1 Ωi,
∏∞

i=1Fi,
∏∞

i=1 Pi).

Let ω = (ω1, ω2, . . .) be an element of Ω and Ui : Ω → [0, 1] the projection mapping Ui(ω) = ωi,

i = 1, 2, . . .. Thus {Ui} is a sequence of i.i.d. random variables, uniformly distributed on [0, 1].

Define

Xi(θ) = F−1(U2i−1, θ) and Ai = G−1(U2i), i = 1, 2, . . . . (4)

Xi(θ) is the service time of the ith customer, Ci, and Ai the interarrival time between Ci and Ci+1.

Assume that the first customer that arrives to the system, C1, finds it empty. Denote by Ti(θ) the

system time (waiting plus service time) of the ith customer. Under assumption A.1 the family of

queueing processes defined in this fashion is stable for all θ ∈ [a, b] and the corresponding sequence

of system times {Ti(θ)} converges in distribution for each θ to a random variable T (θ).

The analysis in this section is based on considering two sample paths, the nominal with param-

eter value θ, and the perturbed with parameter value θ+∆θ. It involves various functionals of these

sample paths, such as the number of customers in the ith busy period, the length of the kth idle

period, etc. Of course, these functionals depend on θ. Whenever the dependence on θ is dropped

this will always signify that they are computed from the nominal sample path (with parameter

value θ).
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Consider the sample path depicted in Fig.1. consisting of m busy periods which we will label

BP1 , BP2, . . . , BPm. Let Nk be the number of customers in BPk, Yk be the length of BPk, and Ik

be the length of the idle period following BPk. Let Mk, k = 0, 1, . . . be the discrete time renewal

process defined by Mk = N1 + · · ·+Nk, for k = 1, 2, . . . , and M0 = 0. Thus C1 initiates BP1 and,

in general, CMk−1+1 initiates BPk. Let us also define

Sk(θ) =
Mk∑

i=Mk−1+1

Ti(θ) , (5)

and

Sk(θ + ∆θ) =
Mk∑

i=Mk−1+1

Ti(θ + ∆θ) . (6)

Notice that we use the same subsequence {Mk} corresponding to parameter value θ in both (5) and

(6). Thus, while Sk(θ) is the area under BPk in the nominal sample path, Sk(θ + ∆θ) is not

necessarily the area under the kth busy period in the perturbed path since busy periods may have

coalesced.

It is well known (Asmussen [1, p.182]) that assumption A.1 implies EN1 < ∞ and furthermore

that the renewal process {Mk} is aperiodic. Hence,
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ET (θ) = lim
m→∞

∑m
k=1 Sk(θ)∑m

k=1Nk
= lim

m→∞

∑m
k=1

∑Mk
i=Mk−1+1 Ti(θ)∑m
k=1Nk

w.p.1 .

Suppose now that the value of θ is increased to θ + ∆θ ≤ b. We also have

ET (θ + ∆θ) = lim
n→∞

1
n

n∑
i=1

Ti(θ + ∆θ) = lim
m→∞

1
Mm

Mm∑
i=1

Ti(θ + ∆θ) w.p.1 , (7)

the first equality following from the ergodicity of the system. The second equality in (7) is less

obvious since {Mk} is a random subsequence not corresponding in general to the regenerative cycles

of the system at parameter θ+∆θ. It can be justified using Neuveu’s cycle formula (e.g. see Baccelli

and Brémaud [2]) and the ergodicity of the system. In Lemma 7 of the Appendix an elementary

renewal-theoretic proof of (7) is provided.

If we let

∆Sk = Sk(θ + ∆θ)− Sk(θ) =
Mk∑

i=Mk−1+1

Ti(θ + ∆θ)− Ti(θ) ≥ 0 ,

we can rewrite (7) as

ET (θ + ∆θ) = lim
m→∞

∑m
k=1 Sk(θ + ∆θ)∑m

k=1Nk
= lim

m→∞

∑m
k=1 Sk(θ)∑m

k=1Nk
+ lim

m→∞

∑m
k=1 ∆Sk∑m
k=1Nk

(8)

= ET (θ) + lim
m→∞

∑m
k=1 ∆Sk∑m
k=1Nk

w.p.1 .

Now we calculate the change in the total system time for all customers in these m busy periods

when the value of the parameter θ changes to θ + ∆θ. To this effect consider customer Ci who

belongs to the kth busy period, BPk, (i.e. Mk−1 < i ≤ Mk). When the value of θ is increased to

θ + ∆θ there are in general three sources of delay for Ci:

(i) The delay ∆Xi = Xi(θ + ∆θ)−Xi(θ) in Ci’s own service time.

(ii) The delay caused by changes in the service times of customers CMk−1+1, . . . , Ci−1 i.e. of all

the preceding customers belonging to the same busy period when the parameter value is θ.
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(iii) A delay arising from the possibility that accumulated perturbations, introduced in BPk−1

and the busy periods prior to it, may cause it to coalesce with BPk. In this case, CMk−1+1 will

not find the system empty when the value of the parameter is increased to θ + ∆θ and as a result

all the customers belonging to BPk will have to wait for an additional amount of time. It will be

useful to think of (i) and (ii) as the local effects of the perturbations introduced in the sample path

while (iii) represents the global effects. We proceed to examine these effects next.

The effect of the first two sources of delay in the system time of Ci as described above is easily

seen to be a change in Ti(θ) equal to ∆XMk−1+1 + ∆XMk−1+2 + · · · + ∆Xi. Next, let us evaluate

the effect of the third source (which for customers in BP1 is of course 0). As a result of the

perturbations in the service times of the customers in BP1, its length is increased by

∆Y1 = ∆X1 + · · ·+ ∆XN1 .

Obviously, as long as ∆Y1 < I1, this has no effect on the system time of the customers in the next

busy period. However, if ∆Y1 ≥ I1, then the two busy periods coalesce and as a result the system

time of every customer in BP2 is increased by ∆Y1 − I1. Using the notation x+ = max(0, x) for

the positive part of a real number x, the effect of coalescence of the two busy periods on Ti(θ),

M1 < i ≤M2, is given by (∆Y1 − I1)+. Thus

∆Ti = Ti(θ + ∆θ)− Ti(θ) = (∆Y1 − I1)+ +
i∑

j=M1+1

∆Xj for M1 < i ≤M2 . (9)

Summing (9) from i = M1 +1 to M2 we get the total change in the system time of all the customers

of BP2 as

∆S2 = N2 (∆Y1 − I1)+ +
M2∑

i=M1+1

i∑
j=M1+1

∆Xj .

There is only one way for perturbations introduced in BPk to cause a delay in customers of

BPl (with k < l), namely that the intervening l − k idle periods disappear that all the l − k + 1

busy periods coalesce into a single busy period as a result of these perturbations. To be specific,

consider Fig.1 which depicts a sample path consisting of three busy periods, BP1, BP2, BP3. Let
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∆Yk =
Mk∑

i=Mk−1+1

∆Xi . (10)

BP1 and BP2 will coalesce if and only if ∆Y1 ≥ I1. It is also clear that BP2 and BP3 will coalesce

and BP1 and BP2 will not if and only if ∆Y2 ≥ I2 and ∆Y1 < I1. Finally, all three will coalesce

into one busy period if and only if ∆Y1 ≥ I1 and ∆Y2 + ∆Y1 ≥ I2 + I1. Hence, the delay for the

customers of BP3 caused by perturbations in BP2 and BP1 is given by

max(0, ∆Y2 − I2, ∆Y2 + ∆Y1 − I2 − I1) .

Generally, for k busy periods, we can easily check that the effect of perturbations introduced in all

the busy periods prior to BPk on the customers of BPk is V0 ≡ 0 when k = 1, and

Vk−1 = max(0, ∆Yk−1 − Ik−1, ∆Yk−1 + ∆Yk−2 − Ik−1 − Ik−2, . . . , (11)

∆Yk−1 + ∆Yk−2 + · · ·+ ∆Y1 − Ik−1 − Ik−2 − · · · − I1) , k ≥ 2 .

Hence, in general, the change in system time for Ci is given by

∆Ti = Vk−1 +
i∑

j=Mk−1+1

∆Xj , Mk−1 < i ≤Mk , (12)

and consequently

∆Sk =
Mk∑

i=Mk−1+1

∆Ti = NkVk−1 +
Mk∑

i=Mk−1+1

i∑
j=Mk−1+1

∆Xj . (13)

Notice that (11) implies that Vk−1, k = 1, 2, . . ., can be interpreted as the waiting time of the

kth customer in an auxiliary queueing system in which ∆Y1,∆Y2, . . . is the service time sequence

and I1, I2, . . . is the interarrival time sequence. In general Ij depends on ∆Yj unless the arrival

process to the original system is Poisson. From (8) and (13) we have then

ET (θ + ∆θ)− ET (θ) = lim
m→∞

1∑m
k=1Nk

m∑
k=1

Mk∑
i=Mk−1+1

i∑
j=Mk−1+1

∆Xj (14)

+ lim
m→∞

∑m−1
k=1 Nk+1Vk∑m

k=1Nk
w.p.1 .
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From the strong law of large numbers the first term in the right hand side (rhs) of (14) is equal

to

1
EN1

E[
N1∑
i=1

i∑
j=1

∆Xj ] w.p.1.

The evaluation of the second limit on the rhs of (14) is not as straightforward since the sequence

{VkNk+1; k = 1, 2, . . .}, is not regenerative w.r.t. the renewal process {Mk}. This second term

which incorporates the global (“non-infinitesimal” or nonlinear) effects of the perturbations intro-

duced in the sample path is considered in the next section.

5 Global effects of perturbations and the auxiliary queueing sys-
tem

The condition for the stability of the auxiliary queueing system is E[∆Y1 − I1] < 0. It is easy

to show that the auxiliary system is always stable when the original system, with service time

distribution F (x, θ + ∆θ), is stable. Indeed, using Wald’s lemma repeatedly,

E∆Y1 − EI1 = EN1(θ)[EX1(θ + ∆θ)− EX1(θ)]− EN1(θ)[EA1 − EX1(θ)]

= EN1(θ)[EX1(θ + ∆θ)− EA1] < 0 . (15)

The last inequality follows from the fact that a ≤ θ + ∆θ ≤ b and A.1 which postulates that

EX1(θ) ≤ EA1 for all θ ∈ [a, b]. From (15) follows that the auxiliary queueing system is stable, i.e.

that

V (θ,∆θ) def= sup(0, ∆Y1 − I1, ∆Y1 + ∆Y2 − I1 − I2, . . .) (16)

is finite w.p. 1. (In the sequel, where no confusion arises, the dependence of V on θ, ∆θ, will not

be made explicit.) Let

Φi =
Mi∑

j=Mi−1+1

ξj , i = 1, 2, . . . , (17)

where ξj = sup[a,b]
dXj

dθ . Then

∆Yi ≤ Φi∆θ . (18)
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Since E[Φ2
1] ≤ ∞ (see Lemma 9 in the Appendix), EV <∞ (Asmussen [1]).

Write
m−1∑
k=1

VkNk+1 =
m−1∑
k=1

VkE[N1] +
m−1∑
k=1

Vk(Nk+1 − E[N1]) . (19)

Notice first that

lim
m→∞

1
m− 1

m−1∑
k=1

VkE[N1] = E[V ]E[N1] < ∞ w.p.1, (20)

where V is the r.v. defined in (16), because of the ergodicity of the auxiliary system and the

finiteness of moments assumption A.2. On the other hand, as it is shown in Lemma 12 of the

Appendix, we can use a martingale stability theorem to prove that

lim
m→∞

1
m− 1

m−1∑
k=1

Vk(Nk+1 − E[N1]) = 0 w.p.1. (21)

From (19), (20) and (21) follows that

lim
m→∞

∑m−1
k=1 VkNk+1∑m

k=1Nk
= E[V ] w.p.1. (22)

Combining (14) and (22) gives

ET (θ + ∆θ) − ET (θ) =
1

E[N1]
E[

N1∑
i=1

i∑
j=1

∆Xj ] + E[V ] . (23)

In (23) we established that the contribution of the global effects of perturbations is given by the

term E[V ]. Now we state three lemmas that characterize the behavior of E[V ] as ∆θ ↓ 0.

Lemma 1 When the original system satisfies C.1, M.1, and A.2, for the auxiliary system defined

above, lim∆θ↓0
1

∆θE[V ] = 0.

In view of this lemma and (23) we do not expect E[V ] to contribute to the value of the right

derivative D+ET (θ).
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Proof: We need to establish that

lim
∆θ↓0

E[ sup( 0,
∆Y1

∆θ
− I1

∆θ
,

∆Y1

∆θ
+

∆Y2

∆θ
− I1

∆θ
− I2

∆θ
, . . .)] = 0 .

From (18) we have ∆Yi
∆θ ≤ Φi and thus

0 ≤ E[ sup( 0 ,
∆Y1

∆θ
− I1

∆θ
, . . .) ] ≤ E[ sup( 0 , Φ1 −

I1
∆θ

, . . .)] . (24)

Since E[Φ2
1] < ∞ (see Lemma 9 in the Appendix), the expectation on the last term of (24) is

finite (Asmussen [1]). Letting ∆θ ↓ 0, the last term of the above inequality goes to 0 by monotone

convergence and the lemma follows. 2

The behavior of E[V ] as ∆θ ↓ 0 is characterized more precisely in the following

Lemma 2 Under assumptions C.1, M.1, A.2, A.3, and A.4, for sufficiently small ∆θ > 0, there

is a positive L <∞ such that

0 < E[V ]− E[(∆Y1 − I1)+] ≤ L∆θ3 .

This suggests that, for the purpose of establishing the existence of d2

dθ2ET (θ) and obtaining an

expression for it, we can substitute E[V ] with E(∆Y1− I1)+, a considerably more tractable expres-

sion.

Proof: Let K∗(γ,∆θ) = E[exp{γ(∆Y1
∆θ −

I1
∆θ )}]. Let Z1 be the age of the arrival process at the end

of the first busy period. Then

K∗(γ,∆θ) = E[eγ
∆Y1
∆θ E[e−γ

I1
∆θ | Z1] ] , (25)

since ∆Y1 and I1 are conditionally independent given Z1. We next show that

E[exp{−γ I1
∆θ

} | Z1] ≤
α

γ/∆θ + α
=

∆θα
γ + ∆θα

. (26)

Since the conditional distribution of I1 given Z1 has density g(Z1+x)
1−G(Z1) , the conditional expec-

tation on the lhs of (26) is
∫∞
0 e−xγ/∆θ g(Z1+x)

1−G(Z1)dx which, after integration by parts, gives 1 −
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∫∞
0

γ
∆θe

−xγ/∆θ 1−G(Z1+x)
1−G(Z1) dx. This, together with the inequality 1−G(Z1+x)

1−G(Z1) = exp(−
∫ Z1+x
Z1

g(ξ)
1−G(ξ)dξ) ≥

exp(−
∫ Z1+x
Z1

αdξ = exp(−αx), gives inequality (26). Combining (25) and (26) we obtain

K∗(γ,∆θ) ≤ E[exp{γ∆Y1

∆θ
}] ∆θα
γ + ∆θα

.

In the Appendix (Lemma 11) we show that there exists ε > 0 such that E[exp{γ∆Y1
∆θ }] ≤ K for

0 < γ < ε. Hence, for 0 < γ < ε

K∗(γ,∆θ) ≤ K
∆θα

γ + ∆θα

From this follows that K∗(γ,∆θ) < 1/2 for 0 < γ < ε and ∆θ < γ/(2αK). But then from

Kingman’s inequality (Kingman [16]),

0 ≤ E[sup(0 ,
∆Y1

∆θ
− I1

∆θ
, . . .)] − E(

∆Y1

∆θ
− I1

∆θ
)+ ≤ [K∗(γ,∆θ)]2

2eγ[1−K∗(γ,∆θ)]
.

Fix γ < ε and let ∆θ < γ/(2αK). Then,

0 ≤ 1
∆θ

EV − E(
∆Y1

∆θ
− I1

∆θ
)+ <

K
2
α2

eγ3
∆θ2 . (27)

Multiplying (27) by ∆θ we obtain the inequality of Lemma 2 with L = K
2
α2

eγ3 . 2

Finally, we examine the limiting behavior of E(∆Y1 − I1)+ when ∆θ ↓ 0.

Lemma 3 Let Z1 be the age of the arrival process at the end of the busy period. Under C.1, M.1,

A.2, and A.3,

lim
∆θ↓0

1
∆θ2

E(∆Y1 − I1)+ =
1
2
E[

g(Z1)
1−G(Z1)

(
N1∑
i=1

dXi

dθ
)2] . (28)

Taken together, Lemmas 2 and 3 suggest that the contribution of E[V ] to the second derivative of

ET is given by (28).

Proof: We start by conditioning on Z1 and ∆Y1. Then, w.p. 1,

E(∆Y1 − I1)+ = E[ E[(∆Y1 − I1)+|∆Y1, Z1] ] , (29)
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where Z1 is the time that has elapsed since the last arrival, at the instant when BP1 ends (which

in a FCFS system coincides with the system time of the last customer in the busy period). Since

the interarrival time distribution is absolutely continuous with density g(·) (by Assumption A.3),

the conditional density of the length of the idle period I1 given Z1 is g(Z1+x)
1−G(Z1) for x ≥ 0 and the

conditional expectation in (29) can be written as

E[(∆Y1 − I1)+|∆Y1, Z1] =
∫ ∞

0
(∆Y1 − x)+ g(Z1+x)

1−G(Z1)
dx w.p. 1 (30)

= ∆θ2
∫ ∞

0
(∆Y1

∆θ − y)+ g(Z1+y∆θ)
1−G(Z1)

dy ,

where in the second integral we have made the change of variables x = y∆θ. Notice that g(Z1+x)
1−G(Z1) =

g(Z1+x)
1−G(Z1+x)

1−G(Z1+x)
1−G(Z1) ≤ α since by A.3 the interarrival distribution has hazard rate bounded above

by α. Hence the quantity inside the integral in the last term of (30) is dominated by α(∆Y1
∆θ − y)+.

Since

E[
∫ ∞

0
(
∆Y1

∆θ
− y)+ αdy ] =

α

2
E(

∆Y1

∆θ
)2 <

α

2
EΦ2

1 < ∞ ,

(the last inequality following from ∆Y1
∆θ ≤ Φ1 and Lemma 9 in the Appendix) we can apply the

Dominated Convergence Theorem to obtain

lim∆θ↓0E[
∫∞
0 (∆Y1

∆θ − y)+ g(Z1+y∆θ)
1−G(Z1) dy ] = E[

∫∞
0 lim∆θ↓0(∆Y1

∆θ − y)+ g(Z1+y∆θ)
1−G(Z1) dy ]

= E[ g(Z1)
1−G(Z1)

∫∞
0 (dY1

dθ − y)+dy ] = 1
2E[ g(Z1)

1−G(Z1)

(∑N1
i=1

dXi
dθ

)2
] . (31)

From (29) and (31) Lemma 3 follows. 2
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6 Differentiability and expressions for the steady state derivatives

In this section we establish the existence of d
dθET and (under additional conditions) of d2

dθ2ET and

obtain expressions for them in terms of expectations that can be estimated from a single simulation

run. As a first step we show that, under assumptions M.1 and A.2, ET (θ) is continuous on [a, b].

The proof of differentiability, presented in Theorem 2, is based on the results of the sample path

analysis of §4 and §5 which relied on the monotonicity assumption M.1 and the positivity of the

increment ∆θ. We show that, under the same assumptions, the right derivative D+ET (θ) exists,

obtain an expression for it, and show that it is a continuous function of θ. Since a continuous

function with a continuous right derivative must be differentiable (a special case of Lemma 14) the

differentiability of ET (θ) is established. This indirect argument is necessary in order to avoid a

complicated sample path analysis involving negative perturbations. Second derivatives are dealt

with similarly.

Throughout this section the monotonicity assumption M.1 is maintained. It will be relaxed in

§8.

Theorem 1 For a GI/GI/1 queue satisfying C.1, M.1, and A.2, the expected system time in

steady state, ET (θ), is continuous on [a, b].

Proof: Under C.1, A.1, A.2, and M.1, we have shown that

ET (θ+∆θ)−ET (θ) =
1

E[N1(θ)]
E[

N1(θ)∑
i=1

i∑
j=1

Xj(θ+∆θ)−Xj(θ)]+EV (θ,∆θ) for ∆θ ≥ 0 . (32)

(This is equation 23.) Combining this with inequality (97) established in Lemma 14 we obtain for

all ∆θ, positive or negative, such that |∆θ| ≤ min(θ − a, b− θ),

|ET (θ + ∆θ)− ET (θ)| ≤ 1
E[N1(θ)]

E[
N1(θ)∑
i=1

i∑
j=1

|Xj(θ + ∆θ)−Xj(θ)|] + EV (θ, |∆θ|) . (33)
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As an immediate consequence of A.2 (see Remark 1) |Xj(θ+∆θ)−Xj(θ)| ≤ ξj |∆θ|. Furthermore,

E[
N1∑
i=1

i∑
j=1

ξj ] ≤ E[N1

N1∑
i=1

ξi] ≤ (EΦ2
1)

1/2(EN2
1 )1/2 < ∞ (34)

with Φ1 =
∑N1

i=1 ξi. The first inequality above holds because ξj > 0 w.p.1, the second follows from

the Cauchy-Schwartz inequality, while the last is a result of Lemmas 8 and 9. Hence

|ET (θ + ∆θ)− ET (θ)| ≤ |∆θ|
E[N1(θ)]

E[
N1(θ)∑
i=1

i∑
j=1

ξj ] + EV (θ, |∆θ|) . (35)

Letting |∆θ| → 0, the theorem follows immediately from Lemma 1. 2

Theorem 2 For a GI/GI/1 queue satisfying C.1, M.1, and A.2, the expected system time in

steady state, ET (θ), is continuously differentiable for θ ∈ [a, b] with

d

dθ
ET (θ) =

E[
∑N1

i=1

∑i
j=1

dXj

dθ ]
E[N1]

. (36)

Proof: The outline of the proof is as follows:

(i) We first show that ET (θ) is a right differentiable function of θ on [a, b).

(ii) We next show that the right derivative D+ET (θ) is continuous on [a, b) (and hence Riemann-

integrable).

(iii) In the final step of the proof, we use the fact that a continuous function with Riemann-

integrable right derivative must be continuously differentiable.

(i) Right differentiability of ET (θ): Dividing both sides of (32) by ∆θ we obtain

1
∆θ

[ET (θ + ∆θ) − ET (θ)] =
1

E[N1]
E[

N1∑
i=1

i∑
j=1

∆Xj

∆θ
] +

1
∆θ

E[V ] . (37)

Arguing as in the proof of Theorem 1, the expression inside the expectation in the first term on

the rhs of (37) is bounded by
N1∑
i=1

i∑
j=1

∆Xj

∆θ
≤

N1∑
i=1

i∑
j=1

ξj . (38)
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In (34) we have shown that the rhs of the above inequality has finite expectation. We can therefore

use the Dominated Convergence Theorem to obtain

lim
∆θ→0

E[
N1∑
i=1

i∑
j=1

∆Xj

∆θ
] = E[

N1∑
i=1

i∑
j=1

dXj

dθ
] . (39)

On the other hand, in view of Lemma 1, as ∆θ ↓ 0 the second term in the rhs of (37) converges

to zero. Hence it follows that ET (θ) has a right derivative w.r.t. θ, D+ET
def= lim∆θ↓0

1
∆θ [ET (θ +

∆θ)− ET (θ)], given by

D+ET =
E[

∑N1
i=1

∑i
j=1

dXj

dθ ]
E[N1]

. (40)

Notice that to establish (40) we made no use of C.2, A.3, or A.4. We also note that the above

dominated convergence argument insures that D+ET (θ) <∞.

(ii) Continuity of D+ET (θ): Since N1(θ) ≥ 1 w.p.1 for all θ ∈ [a, b], we need only show that the

numerator and the denominator on the rhs of (40) are continuous functions of θ. We start with the

observation that,

lim
δ→0

N1(θ + δ) = N1(θ) w.p.1, (41)

and

lim
δ→0

N1(θ+δ)∑
i=1

i∑
j=1

dX

dθ
(θ + δ) =

N1(θ)∑
i=1

i∑
j=1

dX

dθ
(θ) w.p.1, (42)

where in (42) we have also used C.1. The above equations hold both for positive and negative δ.

Once again we will use the Dominated Convergence Theorem to show that (41) and (42) imply

lim
δ→0

E[N1(θ + δ)] = E[N1(θ)] , (43)

and

lim
δ→0

E[
N1(θ+δ)∑

i=1

i∑
j=1

dX

dθ
(θ + δ)] = E

N1(θ)∑
i=1

i∑
j=1

dX

dθ
(θ)] (44)
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respectively, and hence establish the continuity of D+ET (θ). Indeed, for |δ| < min(θ − a, b− θ),

N1(θ + δ) ≤ N(b) w.p.1, (45)

and EN1(b) <∞ as a consequence of M.1.

To obtain a dominating random variable for the lhs of (42) we use the fact that |dXi
dθ (θ)| ≤ ξi

w.p.1 for all θ ∈ [a, b] (assumption A.2) together with (45) to get

|
N1(θ+δ)∑

i=1

i∑
j=1

dXj

dθ
(θ + δ) | ≤ N1(b)

N(b)∑
i=1

ξi . (46)

Using the Cauchy-Schwartz inequality we obtain

E
[
N1(b)

∑N1(b)
i=1 ξi

]
≤

(
EN2

1 (b)
)1/2

(
E

[∑N1(b)
i=1 ξi

]2
)1/2

< ∞, (47)

the last inequality following from Lemmas 8 and 9 of the Appendix.

Thus we have established the continuity of D+ET (θ) on [a, b). We also note that the above

inequality gives a bound for the rhs of (40) for all θ ∈ [a, b]. D+ET (θ) can be defined at b by

continuity.

(iii) Differentiability of ET (θ): Since D+ET (θ) exists and is finite and continuous on [a, b),

at least two of the Dini derivatives, lim suph↓0
ET (θ+h)−ET (θ)

h , and lim infh↓0
ET (θ+h)−ET (θ)

h , are fi-

nite and both equal to D+ET (θ). Hence they are continuous and bounded on [a, b) and therefore

Riemann-integrable. This allows us to use Lemma 14 to infer that d
dθET exists and is equal to

D+ET for all θ ∈ (a, b). 2

When θ is a location parameter of the service time distribution, dX
dθ = 1 and (40) becomes

dET

dθ
=

E[N2
1 ] + E[N1]
2E[N1]

. (48)

In the case of a scale parameter, dX
dθ = X

θ and the corresponding expression is

dET

dθ
=

E[
∑N1

i=1

∑i
j=1Xj ]

θE[N1]
. (49)
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In view of examples 1 and 2, in both of the above cases, C.1 is satisfied automatically. Also,

assumption A.2 is reduced to a simple moment condition: E[X(b)2] < ∞ or E[X(b)3] < ∞ for a

location or scale parameter respectively. In applications, location and scale parameters arise natu-

rally and the simplicity of (48) and (49) illustrate the ease of implementation of the corresponding

perturbation analysis algorithms.

Theorem 3 For a GI/GI/1 queue satisfying C.1, C.2, and assumptions M.1, A.2, A.3 and A.4,

the expected system time in steady state ET (θ) is twice continuously differentiable for θ ∈ [a, b] with

second derivative given by

d2

dθ2
ET (θ) =

E[
∑N1

i=1

∑i
j=1

d2Xj

dθ2 ]
E[N1]

+ E[
g(Z1)

1−G(Z1)
(

N1∑
i=1

dXi

dθ
)2] , (50)

where Z1 is the age of the arrival process at the end of the busy period.

Proof: From (23), and Lemmas 2, and 3 it follows that

ET (θ+∆θ)− ET (θ) =
E[

∑N1
i=1

∑i
j=1 ∆Xj ]

E[N1]
+

1
2
E[

g(Z1)
1−G(Z1)

(
N1∑
i=1

dXi

dθ
)2 ]∆θ2 + o(∆θ2) . (51)

Since d2X
dθ2 (θ) is assumed to be continuous in [a, b] (Condition C.2), Taylor’s theorem gives ∆Xj =

∆θ dXj

dθ (θ)+ 1
2∆θ2 d2Xj

dθ2 (θ+βj∆θ) with βj ∈ [0, 1] (depending in general on ω, θ, and ∆θ) and hence,

E[
N1∑
i=1

i∑
j=1

(
∆Xj

∆θ
− dXj

dθ
)] =

∆θ
2
E[

N1∑
i=1

i∑
j=1

d2Xj

dθ2
(θ + βj∆θ)] . (52)

Arguing as in the proof of Theorem 2, the quantity inside the expectation on the rhs of (51) is

dominated by
∑N1

i=1

∑i
j=1 ψj (because of A.4) which in turn is dominated by N1

∑N1
i=1 |ψi|. Hence

E
[∑N1

i=1

∑i
j=1 ψj

]
≤ E[N1

∑N1
i=1 |ψi| ] ≤

(
EN2

1

)1/2
(
E

[∑N1
i=1 |ψi|

]2
)1/2

<∞ ,
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the second inequality following from Cauchy-Schwartz, while the last following from Lemmas 8 and

9 of the Appendix. From (52), the Dominated Convergence Theorem, and the continuity of d2X
dθ2 (θ)

we obtain

lim
∆θ↓0

1
∆θ

E[
N1∑
i=1

i∑
j=1

∆Xj

∆θ
− dXj

dθ
] = lim

∆θ↓0

1
2
E[

N1∑
i=1

i∑
j=1

d2Xj

dθ2
(θ+ βj∆θ)] =

1
2
E[

N1∑
i=1

i∑
j=1

d2Xj

dθ2
] . (53)

This allows us to write (51) as

ET (θ + ∆θ) − ET (θ) = 1
E[N1] E[

∑N1
i=1

∑i
j=1

dXj

dθ ]∆θ (54)

+ 1
2

(
E[ g(Z1)

1−G(Z1)(
∑N1

i=1
dXi
dθ )2] + 1

E[N1]E[
∑N1

i=1

∑i
j=1

d2Xj

dθ2 ]
)

∆θ2 + o(∆θ2) .

To simplify the notation let h(θ) = d
dθET (θ) and q(θ) be the quantity inside the parenthesis in the

second term of the above expansion. Using a dominated convergence argument similar to that in

the proof of Theorem 2, we can easily show that q(θ) is continuous. We also have

ET (θ + 2∆θ)− ET (θ) = h(θ)2∆θ + 2q(θ)∆θ2 + o(∆θ2), (55)

ET (θ + 2∆θ)− ET (θ + ∆θ) = h(θ + ∆θ)∆θ +
1
2
q(θ)∆θ2 + o(∆θ2). (56)

Subtracting (54) from (55) we obtain lim∆θ↓0
ET (θ+2∆θ)−2ET (θ+∆θ)+ET (θ)

∆θ2 = q(θ) while subtracting

(54) from (56), we see that 1
∆θ [g(θ + ∆θ)− g(θ)] = 1

∆θ2 [ET (θ + 2∆θ)− 2ET (θ + ∆θ) + ET (θ)] +

1
2 [q(θ + ∆θ) − q(θ)] + o(1). Letting ∆θ ↓ 0, in view of the previous equation and the continuity

of q(θ) we see that the right derivative D+h(θ) exists and is equal to q(θ). Using Lemma 14 and

arguing along the lines of Theorem 2 we conclude that ET (θ) is twice continuously differentiable

with second derivative

d2ET

dθ2
=

1
E[N1]

E[
N1∑
i=1

i∑
j=1

d2Xj

dθ2
] + E[

g(Z1)
1−G(Z1)

(
N1∑
i=1

dXi

dθ
)2] . (57)

2
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As before, location and scale parameters yield especially simple expressions: When θ is a location

parameter of the service time distribution

d2ET

dθ2
= E[

g(Z1)
1−G(Z1)

N2
1 ] , (58)

and when θ is a scale parameter

d2ET

dθ2
=

1
θ2
E[

g(Z1)
1−G(Z1)

Y 2
1 ] , (59)

where Y1 is the length of the busy period. For location and scale parameters, and more generally,

whenever d2X(θ)
dθ2 = 0, (50), (58) and (59) reveal that the second derivative of ET is obtained simply

by taking into account the “interactions” between adjacent busy periods. (In fact, Lemma 3 of §3

is a formalization of this idea.)

7 Vector parameters of the service time distribution: Gradient
and Hessian Estimation

In this section we describe briefly an extension of the above results to vector parameters. While

conceptually straightforward, this extension is important both in applications and in extending

the results of the previous section to service time distributions satisfying A.1 instead of the more

restrictive monotonicity assumption M.1. We start by giving the vector parameter equivalents of

the conditions in §2.

Let θ = (θ1, . . . , θk), θ ∈ B def= [a1, b1] × · · · × [ak, bk]. As in §2 let U be a random variable

uniformly distributed in [0, 1], and F−1(u, θ) = inf{v : F (v, θ) > u}. Then X(θ) def= F−1(U, θ)

satisfies P (X(θ) ≤ x) = F (x, θ). We will assume that it satisfies the following conditions:

Condition VC.1 The partial derivatives DlX(θ), l = 1, . . . , k, exist and are continuous functions

of θ ∈ B w.p.1.
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Condition VC.2 The partial derivatives DlrX(θ), l, r = 1, . . . , k, exist and are continuous func-

tions of θ ∈ B w.p.1.

We also introduce the vector parameter counterparts of assumptions M.1, A.1, A.2, and A.4.

For economy of notation we will use the same symbols as in §3 whenever no confusion arises.

Assumption VM.1 X(θ1, . . . θk) is monotonic in each θl, l = 1, 2, . . . k, w.p.1. Without loss of

generality we will assume that for some k1 ∈ {1, 2, . . . , k}, X is nondecreasing in θ1, . . . θk1, and

nonincreasing in θk1+1, . . . , θk. Furthermore, if A is a random variable distributed according to the

interarrival distribution, EX(b1, . . . , bk1 , ak1+1, . . . , ak) < EA <∞.

As we shall see, the above monotonicity assumption can be replaced with the following, less

restrictive,

Assumption VA.1 Let χ = supθ∈BX(θ). Then Eχ < EA < ∞ where A is a random variable

distributed according to the interarrival distribution G.

Assumption VA.2 Let ξ = sup
θ∈B

k∑
l=1

|DlX(θ)|. Then E[χ2] <∞ and E[ξ3] <∞.

Assumption VA.4 There exists ε > 0 such that E[eεχ] < ∞ and E[eεξ] < ∞. Furthermore, if

ψ = supθ∈B

∑k
r,l=1 |DlrX(θ)|, E|ψ|3 <∞.

The following theorem is obtained by an analysis entirely analogous to that of sections 4 and 5.

Theorem 4 For a GI/GI/1 system with service time distribution F (x, θ) satisfying conditions

VC.1 and assumptions VM.1 and VA.2, the expected system time in steady state is continuously

differentiable with gradient

∂ET

∂θl
=

E[
∑N1

i=1

∑i
j=1DlXj ]

E[N1]
l = 1, 2, . . . , k.

24



If in addition VC.2, and assumptions A.3, and VA.4 hold, the expected system time in steady

state is twice continuously differentiable with Hessian matrix given by

∂2ET

∂θl∂θr
=

E[
∑N1

j=1

∑i
j=1DlrXj ]

E[N1]
+ E[

g(Z1)
1−G(Z1)

(
N1∑
i=1

DlXi) (
N1∑
i=1

DrXi)] r, l = 1, 2, . . . , k. (60)

Proof: The analysis is carried out for each component of θ separately, following §4 and 5. If X(θ)

is nonincreasing in θl, then we choose ∆θl < 0 and obtain a left derivative D−
l ET (θ). Establishing

the continuity of D+
l ET (θ) for l ∈ {1, 2, . . . k1} and that of D−

l ET (θ) for l ∈ {k1 + 1, . . . k} as in

§4.1, we conclude that the partial derivatives ∂ET
∂θl

exist and are continuous and hence that ET (θ)

is differentiable. 2

8 Relaxing the monotonicity assumption

The main idea here is to convert a scalar parameter θ ∈ [a, b] which does not satisfy the monotonicity

assumption M.1 into a vector parameter (θ1, θ2) which satisfies VM.1.

Suppose we are given a stochastic service time function X(θ), θ ∈ [a, b] satisfying C.1. Let

dX
dθ = (dX

dθ )+ − (dX
dθ )− = 1(dX

dθ > 0)dX
dθ + 1(dX

dθ < 0)dX
dθ where (dX

dθ )+ and (dX
dθ )− denote the positive

and negative part respectively of the derivative dX
dθ at θ. Define a stochastic service time function

of two variables, by means of

X̃(θ1, θ2, ω) = X(a, ω) +
∫ θ1
a (dX

du (u, ω))+du −
∫ θ2
a (dX

du (u, ω))−du for all ω ∈ Ω (61)

= X(a, ω) +
∫ θ1
a 1(dX

du (u, ω) > 0)dX
du (u, ω)du +

∫ θ2
a 1(dX

du (u, ω) < 0)dX
du (u, ω)du

and (θ1, θ2) ∈ D def= {a ≤ θ1 ≤ b ; a ≤ θ2 ≤ θ1}. Thus the rhs of (61) is nonnegative w.p.1.

Furthermore X(θ) = X̃(θ, θ) w.p.1 and X̃ satisfies VM.1.

Example: Consider the family of uniform distributions with mean m and spread 2θ, θ ∈ [0,m]:

F (x, θ) =


0 if x < m− θ

(x+ θ −m)/2θ if m− θ ≤ x < m+ θ
1 if m+ θ ≤ x .
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On the probability space ([0, 1],B[0,1], L[0,1]), the last two parts of the triplet designating the Borel

sets on [0,1] and the Lebesgue measure on that same interval respectively, the corresponding

stochastic service function would be X(θ, ω) = m + θ(2ω − 1). Then (dX
dθ (θ, ω))+ = (2ω − 1)+,

(dX
dθ (θ, ω))− = (2ω−1)−, and for 0 ≤ θi ≤ 2m, i = 1, 2, X̃(θ1, θ2, ω) = m+θ1(2ω−1)+−θ2(2ω−1)−,

ω ∈ [0, 1].

We can now state the following corollary to Theorem 4:

Corollary 1 In Theorem 2, assumption M.1 can be replaced by A.1.

Proof: Given a queueing process with interarrival times {Ai(ω)} and service times {Xi(θ, ω)},

we construct for each ω and each (θ1, θ2) ∈ D a new queueing process with the same interarrival

sequence {Ai(ω)} and service time sequence {X̃i(θ1, θ2, ω)} with X̃i(θ1, θ2, ω) given by (61). Let

{T̃i(θ1, θ2, ω)} be the corresponding sequence of system times. Notice that, for any θ ∈ [a, b],

X̃i(θ, θ) = X(θ) w.p. 1 and hence that T̃i(θ, θ) = Ti(θ) w.p. 1, assuming that both systems start

empty with the arrival of a customer at time t = 0. The new system with the vector parameter

however satisfies the monotonicity assumption VM.1. In particular we have D1X̃i = 1(dXi
dθ >

0)dXi
dθ , D2X̃i = 1(dXi

dθ < 0)dXi
dθ , and hence

dET

dθ
= D1ET̃ (θ, θ) +D2ET̃ (θ, θ) =

1
E[N1]

E[
N1∑
i=1

i∑
j=1

D1X̃j ] +
1

E[N1]
E[

N1∑
i=1

i∑
j=1

D2X̃j ]

= 1
E[N1]E[

∑N1
i=1

∑i
j=1 1(dXj

dθ > 0)dXj

dθ + 1(dXj

dθ < 0)dXj

dθ ] = 1
E[N1]E[

∑N1
i=1

∑i
j=1

dXj

dθ (θ)] .

2

The same approach allows us to relax the monotonicity assumption in our second derivative results:

Corollary 2 Theorem 3 also holds with assumption M.1 replaced by A.1.

Proof: Define X̃(θ1, θ2), T̃ (θ1, θ2), as in Corollary 1. From (61) it is easy to see that w.p.1

D11X̃(θ, θ) = 1(
dX

dθ
> 0)

d2X

dθ2
, (62)

D12X̃(θ, θ) = D21X̃(θ, θ) = 0,

D22X̃(θ, θ) = 1(
dX

dθ
< 0)

d2X

dθ2
.
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Hence, from Theorems 2 and 3,

d2ET

dθ2
(θ) = D11ET̃ (θ, θ) +D22ET̃ (θ, θ) + 2D12ET̃ (θ, θ) (63)

=
E[

∑N1
j=1

∑i
j=1D11X̃j(θ, θ)]
E[N1]

+ E

[
g(Z1)

1−G(Z1)

(∑N1
i=1D1X̃i(θ, θ)

)2
]

+
E[

∑N1
j=1

∑i
j=1D22X̃j(θ, θ)]
E[N1]

+ E

[
g(Z1)

1−G(Z1)

(∑N1
i=1D2X̃i(θ, θ)

)2
]

+ 2
E[

∑N1
j=1

∑i
j=1D12X̃j(θ, θ)]
E[N1]

+ 2E
[

g(Z1)
1−G(Z1)

(∑N1
i=1D1X̃i(θ, θ)

) (∑N1
i=1D2X̃i(θ, θ)

)]
.

From (62) we get D11X̃i +D22X̃i = d2Xi
dθ2 . Also, N1∑

i=1

D1X̃i

2

+

 N1∑
i=1

D2X̃i

2

+2

 N1∑
i=1

D1X̃i

  N1∑
i=1

D2X̃i

 =

 N1∑
i=1

D1X̃i +D2X̃i

2

=

 N1∑
i=1

dX

dθ

2

.

From the above two equations and (63) the proof of the corollary follows. 2

Extending the above ideas to vector parameters is straightforward. If X(θ1, . . . , θk) satisfies

VA.1, we can define using the same approach a stochastic service function depending on 2k pa-

rameters, say X(θ+
1 , . . . , θ

+
k ; θ−1 , . . . , θ

−
k ), which satisfies VM.1. We will state without proof

Corollary 3 Theorem 4 also holds with assumption VM.1 replaced by VA.1. 2

9 Derivatives with respect to parameters of the interarrival time
distribution

We start by introducing the following assumptions:

Consider a parametric family of GI/GI/1 queueing processes with service and interarrival time

distributions F (x) and G(x, η), η ∈ [c, d], respectively. Define

A(η) = G−1(U, η) (64)

where U is uniformly distributed in [0, 1]. We use the same notation as in §4. In order to avoid

the proliferation of complicated notation we shall recycle χ, ξ, ψ, and α, used in assumptions A.1
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through A.4 and use them with new meaning in the corresponding assumptions of this section. We

will assume that the family of interarrival time distributions G(x, η) is such that the corresponding

random interarrival function A(η) satisfies condition C.1 and the assumptions that follow:

Assumption IA.1 If χ(ω) = infη∈[c,d]A(η, ω) for all ω, then EX < Eχ.

If there exists η∗ ∈ [c, d] such that A(η) ≥ A(η∗) w.p.1 for all η ∈ [c, d] then the above assumption

is simply a stability condition for the corresponding family of queueing processes.

Assumption IA.2 If ξ(ω) = infη∈[c,d] |dA
dη (η, ω)| then E[ξ3] <∞.

To obtain second derivative estimates A(η) must satisfy, in addition to the above, C.2 and the

following two assumptions:

Assumption IA.3 For all η ∈ [c, d] the interarrival distribution G(x, η) is absolutely continuous

with density g(x, η), which without loss of generality we will assume right continuous, and has

hazard function uniformly bounded in [c, d]: supη∈[c,d]
g(x,η)

1−G(x,η) ≤ α <∞, for all x ∈ [0,∞).

Assumption IA.4 There exists ε > 0 such that E[eεχ] < ∞ and E[eεξ] < ∞. Furthermore, if

ψ(ω) = supη∈[c,d] |d
2A

dη2 (η, ω)|, E|ψ|3 <∞.

We will again base the sample path analysis that follows on an additional monotonicity assump-

tion which will be relaxed in the sequel:

Assumption MIA.1 A(η + ∆η) ≤ A(η) w.p.1 for ∆η > 0.

(Notice that to keep the analysis parallel to that of §3 we assume that A(η) is nonincreasing in η

w.p.1. As a result, a change from η to η+∆η in the parameter may cause busy periods to coalesce,

but not to break up.)

An important point in which the analysis for interarrival time parameters differs from that of

§4 and 5 is the behavior of the associated system which is more complicated. In the following

28



paragraphs we briefly describe the arguments highlighting the differences between the two cases

and providing some details.

On the same probability space as in §4 we define

Xi = F−1(U2i−1) and Ai = G−1(U2i, η), i = 1, 2, . . . .

We examine again two sample paths, the nominal with interarrival parameter value η and the

perturbed with η+ ∆η, both starting with the arrival of the first customer, C1, to an empty system

at time t = 0. Let Ti(η) be the system time of the ith customer and ∆Ti = Ti(η + ∆η) − Ti(η).

Ni is the number of customers in the ith busy period and Mk = N1 + N2 + · · · + Nk, M0 = 0,

is the discrete time renewal process of the indices of customers whose departure terminates busy

periods. These quantities depend of course on η but, unless the dependence is made explicit, they

are determined from the nominal sample path. Hence when we refer to the index of the customer

who terminates the kth busy period in the nominal sample path we may write either Mk(η) or Mk,

whereas for the index of the customer who terminates the kth busy period of the perturbed path

we will always write Mk(η + ∆η).

Let ∆Ai = Ai(η + ∆η)−Ai(η), and define

Bk(η) =
Mk∑

i=Mk−1+1

Ai(η), Bk(η + ∆η) =
Mk∑

i=Mk−1+1

Ai(η + ∆η),

k = 1, 2, . . ., and

∆Bk
def= −

Mk∑
i=Mk−1+1

∆Ai , k = 1, 2, . . . . (65)

Notice that for convenience we define ∆Bk to be positive. (In view of MIA ∆Ai ≤ 0 w.p.1.) Bk(η)

is the length of the kth busy cycle in the nominal sample path. However, this is not necessarily the

case with Bk(η + ∆η) since both are defined with respect to Mk. Similarly let

Sk(η) =
Mk∑

i=Mk−1+1

Ti(η), Sk(η + ∆η) =
Mk∑

i=Mk−1+1

Ti(η + ∆η),
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k = 1, 2, . . ., and

∆Sk
def=

Mk∑
i=Mk−1+1

∆Ti , k = 1, 2, . . . , (66)

The change in the system time of the ith customer is given by

∆Ti = −
i−1∑

j=Mk−1+1

∆Aj + Vk−1 for Mk−1 + 1 ≤ i ≤Mk+1 , (67)

where the above sum is taken to be 0 if empty and Vk−1 is the waiting time of the kth customer in

an auxiliary system given by

Vk = max(0, ∆Bk − Ik, ∆Bk + ∆Bk−1 − Ik − Ik−1, . . . , (68)

∆Bk + ∆Bk−1 + · · ·+ ∆B1 − Ik − Ik−1 − · · · − I1) .

As in §4 the auxiliary process defined by (68) will be stable provided that E∆B1 < EI1 or equiva-

lently EX1 < EA1(η+∆η) (i.e. as long as the parameter change in the interarrival time distribution

does not make the system unstable). We can also show that E∆B2
1 < ∞ and hence, as k → ∞,

that Vk converges in distribution to a random variable V with EV <∞.

An analysis similar to §4 yields

ET (η + ∆η)− ET (η) = − 1
E[N1]

E[
N1−1∑
i=1

i∑
j=1

∆Aj ] + E[V ] . (69)

10 Analysis of the auxiliary system

This section consists of three lemmas, similar to their counterparts in §5. There are however enough

differences both in the proofs and in the final results to warrant repetition.

Lemma 4 For the auxiliary system defined above, lim∆η→0
1

∆ηE[V ] = 0.

The proof of Lemma 4 is similar to that of Lemma 1 and we will omit it.

Next we prove the counterpart of Lemma 2:
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Lemma 5 For any r ∈ (0, 1) and sufficiently small ∆η > 0 there is a positive L <∞ such that

0 < E[V ]− E[(∆B1 − I1)+] ≤ L∆η2+r . (70)

Notice that, unlike Lemma 2, here the exponent of ∆η can be arbitrarily close to 3, but not exactly.

Proof: As in the proof of Lemma 2 we will use Kingman’s inequality (Kingman [16]). The only

complication that arises here is the fact that ∆B1 and I1 are not conditionally independent given Z1,

the age of the interarrival process at the end of the busy period. DefineK∗(γ,∆η) = E[eγ(
∆B1
∆η

− I1
∆η )].

Using Hölder’s inequality we obtain

K∗(γ,∆η) ≤ [Eepγ
∆B1
∆η ]1/p [Ee−qγ

I1
∆η ]1/q (71)

for any p and q such that 1/p+ 1/q = 1. As in the proof of Lemma 2, to compute the second term

in the right hand side of (71) we first condition on the age of the arrival process at the end of the

busy period, Z1. This gives the inequality E[exp{−qγ I1
∆η} | Z1] ≤ ∆ηα

qγ+∆ηα . Hence

K∗(γ,∆η) ≤ [E exp{pγ∆B1

∆η
}]1/p[

∆ηα
qγ + ∆ηα

]1/q . (72)

From Lemma 10 of the Appendix with obvious changes in the notation it follows that E[exp{γ∆B1
∆η }] ≤

K for γ < ε. Hence, letting K̃ = K
1/p

(
α
qγ

)1/q
, for 0 < γ < ε,

K∗(γ,∆η) ≤ K̃∆η1/q . (73)

From this follows that K∗(γ,∆η) < 1/2 for γ and ∆η small enough (namely for 0 < γ < ε/p and

∆η < (K̃/2)q). But then from Kingman’s inequality (Kingman [16]),

0 ≤ E[sup(0 ,
∆B1

∆η
− I1

∆η
, . . .)] − E(

∆B1

∆η
− I1

∆η
)+ ≤ [K∗(γ,∆η)]2

2eγ[1−K∗(γ,∆η)]
. (74)

Fix γ < ε/p and let ∆η < (K̃/2)q. Then,

0 ≤ 1
∆η

EV − E(
∆B1

∆η
− I1

∆η
)+ <

K̃2

eγ
∆η2/q (75)
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From (75), for any r ∈ (0, 1), q = 2/(1 + r), ∆η < (K̃/2)q, and L = (K̃)2/eγ, we obtain (70). This

concludes the proof. 2

Finally, the limiting behavior of E(∆B1 − I1)+ when ∆η → 0 is characterized by the following

Lemma 6 Let Z1 be the age of the arrival process at the end of the busy period. Then,

lim∆η→0
1

∆η2E(∆B1 − I1)+ = 1
2E[ g(Z1)

1−G(Z1) (
∑N1−1

i=1
dAi
dη + dAN1

dη |AN1
=Z1)

2] . (76)

where
dAN1

dη
|AN1

=Z1

def= lim
δ→0

G−1
η+δ(Gη(Z1)) − Z1

δ
.

(In the above definition and in what follows we use Gη(x) as a more compact notation for G(x, η).)

The presence of the term dAN1
dη |AN1

=Z1 in (76) does not come as a surprise since (∆B1 − I1)+ is

positive only on {I1 < ∆B1} and as ∆η → 0, ∆B1 → 0 w.p.1 and hence AN1 → Z1 w.p.1.

Proof: Let Z1 be the time that has elapsed since the last arrival, at the instant when BP1 ends. To

compute the limit in (76) we condition on the information available at the end of the busy period

and more specifically on
∑N1−1

i=1 ∆Ai and Z1. To simplify the notation define ∆R1 = −
∑N1−1

i=1 ∆Ai.

Then

E(∆B1 − I1)+ = E[ E[(∆R1 + ∆AN1 − I1)+|∆R1, Z1] ] . (77)

Turning our attention to the conditional expectation in (77) and taking into account that

AN1 = Z1 + I1 and that

∆AN1 = G−1
η+∆η(Gη(AN1))−AN1 = G−1

η+∆η(Gη(I1 + Z1))− Z1 − I1 ,

we can rewrite (77) as

∫ ∞

0
[∆R1 +G−1

η+∆η(Gη(Z1 + x))− Z1 − x]+ gη(Z1+x)
1−Gη(Z1)dx . (78)
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Let DR1(x)
def= −

∑N1−1
i=1

dAi
dη (x) denote the value of the derivative d

dηR1 evaluated at η = x. Using

Taylor’s theorem, we get ∆R1 = DR1(η + β∆η), where β ∈ [0, 1], depending in general on η, ∆η,

and ω. This together with the change of variable y = x/∆η in (78) gives

∫ ∞

0
[DR1(η + β∆η)∆η +G−1

η+∆η(Gη(Z1 + y∆η))− Z1 − y∆η]+ gη(Z1+y∆η)
1−Gη(Z1) ∆ηdy . (79)

We thus have

lim
∆η↓0

1
∆η2 E [E[(∆R1 + ∆AN1 − I1)+|∆R1, Z1] ] =

= lim
∆η↓0

E[
∫∞
0 [DR1(η + β∆η) + 1

∆η (G−1
η+∆η(Gη(Z1 + y∆η))− Z1) − y]+ gη(Z1+y∆η)

1−Gη(Z1) dy ] . (80)

From assumption IA.2 we have

DR1(η + β∆η) ≤
N1−1∑
i=1

ξi w.p.1,

and from IA.2 and the triangular inequality,

|G−1
η+∆η(Gη(Z1 + y∆η))− Z1| ≤ |G−1

η+∆η(Gη(Z1 + y∆η))− Z1 − y∆η| + y∆η

≤ ξN∆η + y∆η w.p.1.

Hence, arguing as in Lemma 3 we can show that the quantity inside the integral on the rhs of (80),

for ∆η ≤ 1
2 is dominated by 2α(

∑N1
i=1 ξi−y)+. Since E

∫∞
0 2α(

∑N1
i=1 ξi−y)+dy = αE(

∑N1
i=1 ξi)

2 <∞

(by Lemma 8 of the appendix), an appeal to the Dominated Convergence Theorem shows that we

can pass the limit inside the expectation and the integral in (80) to obtain

E[
∫ ∞

0
(DR1(η) + lim

∆η↓0

1
∆η

[G−1
η+∆η(Gη(Z1)− Z1)− y]+

gη(Z1)
1−Gη(Z1)

dy ,

which is equal to the rhs of (76). 2
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Theorem 5 Suppose that A(η) satisfies C.1 and assumptions IA.1 and IA.2. Then the expected

system time in steady state, ET (η), is continuously differentiable with respect to η ∈ [c, d] with

dET

dη
= −

E[
∑N1−1

i=1

∑i
j=1

dAj

dη ]

E[N1]
. (81)

Furthermore, if in addition to the above A(η) satisfies IA.3 and IA.4 then ET (η) is twice contin-

uously differentiable on [c, d] with

d2ET

dη2
= −

E[
∑N1−1

i=1

∑i
j=1

d2Aj

dη2 ]

E[N1]
+ E[

g(Z1, η)
1−G(Z1, η)

(
N1−1∑
i=1

dAi

dη
+
dAN1

dη
|AN1

=Z1)
2 ] . (82)

The proof follows from (69) and Lemmas 4 through 6, proceeding along the same steps as in

the proof of Theorems 2 and 3. After obtaining a right derivative D+ET (η), a continuity argu-

ment for it is used to show differentiability as in §6. To extend the result beyond the realm of the

monotonicity assumption MIA, we can use an argument similar to that presented in §8.

11 Queues with parametric families of interarrival and service
time distributions

Consider a family of GI/GI/1 queueing processes with interarrival time distribution G(x, η) and

service time distribution F (x, θ), (η, θ) ∈ [c, d]× [a, b]. For the purpose of derivative estimation we

can of course consider one of the two parameters fixed and vary the other, thereby transforming the

problem to a case already addressed. However for the purpose of estimating the partial derivative

∂2

∂η∂θET we have no recourse but to repeat the steps described in §4 and §9 with both parameters

changed at the same time. We briefly sketch the approach: With ∆Yk and ∆Bk defined in (8) and

(65) let

EV (∆η,∆θ) def= E sup(0,∆B1 + ∆Y1 − I1,∆B1 + ∆B2 + ∆Y1 + ∆Y2 − I1 − I2, . . .) (83)
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If we set ∆η = 0 in (83) we obtain the expectation of the rhs of (13). ∆θ = 0 would give the last

term of (69))

Let ∆ =
√

∆η2 + ∆θ2. Following the same steps as before we obtain

ET (η + ∆η, θ + ∆θ)− ET (η, θ) =
1

EN1
E[

N1∑
i=1

i∑
j=1

∆Xj ] (84)

− 1
EN1

E[
N1−1∑
i=1

i∑
j=1

∆Aj ] + EV (∆θ,∆η) .

To establish the existence of ∂2

∂θ∂ηET it is enough to show that the following iterated limit exists

and is a continuous function of (η, θ) ∈ [c, d]× [a, b].

lim
∆θ↓0

lim
∆η↓0

1
∆θ∆η

[ ET (η + ∆η, θ + ∆θ)− ET (η, θ + ∆θ)] − ET (η + ∆η, θ) + ET (η, θ)] . (85)

Taking into account (84), (20), and (69) we can show that the quantity inside the iterated limits

in (85) is equal to

EV (∆η,∆θ)− EV (0,∆θ)] − EV (∆η, 0) = E(∆B1 + ∆Y1 − I1)+ − E(∆Y1 − I1)+ (86)

− E(∆B1 − I1)+ + o(∆2) ,

where in the last equality we have used Lemma 2, Lemma 4, and its obvious counterpart for

EV (∆η,∆θ). It remains to compute

lim
∆θ↓0

lim
∆η↓0

1
∆θ∆η

[
E(∆B1 + ∆Y1 − I1)+ − E(∆Y1 − I1)+ − E(∆B1 − I1)+

]
.

The analysis is similar to that of Lemma 5. We summarize the results in the following

Theorem 6 If the system satisfies C.1, C.2, assumptions A.1 - A.4, and IA.1 -IA.4 then

ET (θ, η) is twice continuously differentiable with

∂2ET

∂η∂θ
= E

 g(Z1, η)
1−G(Z1, η)

 N1∑
j=1

dXi

dθ

 N1−1∑
i=1

dAi

dη
+
dAN1

dη
|AN1

=Z1

  . (87)

The continuity of the rhs of (87) is established by means of arguments similar to those of §4. It

also guarantees the equality ∂2

∂θ∂ηET = ∂2

∂η∂θET .
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12 Perturbation Analysis Algorithms

Here we present perturbation analysis algorithms that provide strongly consistent estimates of the

first and second derivative of ET . Algorithm 1 describes a standard regenerative procedure for

estimating dET
dθ and d2ET

dθ2 from observations on a single sample path consisting of m busy periods.

Algorithm 1

Start with arrival to idle system

INITIALIZE:

Set the following variables to zero: DX, DDX, SDX, SDDX, BP, n, nbp

Set m= number of busy periods to be observed

NEXT-SERVICE:

Observe next service time X

n = n+ 1

DX = DX + dx
dθ

DDX = DDX + d2X
dθ2

SDX = SDX +DX

SDDX = SDDX +DDX

NEXT-ARRIVAL:

If arrival finds system idle then

Z = Length of last interarrival time – Idle period

BP = BP + g(Z)
1−G(Z) (DX)2

DX = 0

DDX = 0

nbp = nbp+ 1

If arrival finds system busy do nothing

STOPPING CRITERION

If nbp < m then go to NEXT-SERVICE

FINAL VALUE

T1(m) = SDX
n

T2(m) = SDDX
n + BP

m
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Print T1(m) , T2(m).

STOP

The outputs T1(m) and T2(m) printed by Algorithm 1 are respectively, the PA estimates for the

first and second derivatives of ET with respect to θ based on observing m busy periods. Note that

T1 is the same estimate stated in Suri and Zazanis [29].

The following is a corollary to Theorems 2 and 3.

Corollary 4 For a system satisfying C.1, A.1, and A.2, the output T1(m) of Algorithm 1 is a

strongly consistent estimate of dET
dθ . If in addition C.2, A.3, and A.4 are satisfied, T2(m) is a

strongly consistent estimate of d2ET
dθ2 .

Proof: With the notation of §3, the total number of customers in m busy periods is equal to∑m
k=1Nk and the output of Algorithm 1 is given by

T1(m) =
1∑m

k=1Nk

m∑
k=1

[∑Mk
i=Mk−1+1

∑i
j=Mk−1+1

dXj

dθ

]
, (88)

and

T2(m) =
1∑m

k=1Nk

m∑
k=1

[∑Mk
i=Mk−1+1

∑i
j=Mk−1+1

d2Xj

dθ2

]
+

1
m

m∑
k=1

[
g(Zk)

1−G(Zk)

(∑Mk
i=Mk−1+1

dXi
dθ

)2
]
. (89)

Each one of the three quantities indexed by k inside the square brackets in (88) and (89) form

an i.i.d. sequence of random variables, k = 1, 2, . . . ,m, since they are obtained from consecutive

busy periods. Consider the following inequalities:

|
Mk∑

i=Mk−1+1

i∑
j=Mk−1+1

dXj

dθ
| ≤ Nk

Mk∑
i=Mk−1+1

ξi = NkΦk ,

|
Mk∑

i=Mk−1+1

i∑
j=Mk−1+1

d2Xj

dθ2
| ≤ Nk

Mk∑
i=Mk−1+1

ψi = NkΨk ,
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and
g(Zk)

1−G(Zk)

 Mk∑
i=Mk−1+1

dXi

dθ

2

≤ α

 Mk∑
i=Mk−1+1

ξi

2

= αΦ2
k.

Since by Lemma 7 of the Appendix EN2
k <∞ and by Lemma 8 EΦ2

k <∞ and EΨ2
k <∞, it follows

from the Cauchy-Schwartz inequality that the lhs of the above inequalities have finite expectations.

The corollary follows then from the Strong Law of Large Numbers and Theorems 2 and 3. 2

Algorithm 2 shows that estimating Hessian matrices simply involves using additional variables

accumulating quantities computed from each busy period but does not complicate in any other way

our task. This fact, which is clear from (44),(82), and (87) results in considerable computational

savings. (For simplicity only two entries of the Hessian are estimated in Algorithm 2).

Algorithm 2

Start with arrival to idle system

INITIALIZE:

Set the following variables to zero:

DX1, DX2, DA, SDA, DDX, SDDX, BPA, BPX, nbp, n

Set m =number of busy periods to be observed

NEXT-SERVICE:

Observe next service time X(θ1, θ2)

n = n+ 1

DX1 = DX1 + ∂X
∂θ1

DX2 = DX2 + ∂X
∂θ2

DDX = DDX + ∂2X
∂θ1∂θ2

SDDX = SDDX +DDX

NEXT-ARRIVAL:

Observe next interarrival time A(η).

If arrival finds system busy then

DA = DA+ dA
dη

SDA = SDA+DA

DDA = DDA+ d2A
dη2

SDDA = SDDA+DDA
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If arrival finds system idle then

Z =Length of last interarrival time - Length of idle period

BPX12 = BPX12 + g(Z)
1−G(Z)(DX1)(DX2)

BPA = BPA+ g(Z)
1−G(Z)(DA)2

DX1 = 0, DX2 = 0, DDX = 0, DA = 0, DDA = 0

nbp = nbp+ 1

STOPPING CRITERION

If nbp < m then go to NEXT-SERVICE

FINAL VALUE

T12(m) = SDDX
n + BPX

M (An estimate for ∂2ET
∂θ1∂θ2

).

TA(m) = SDDA
n + BPA

m (An estimate for ∂2ET
∂η2 ).

Print T12(m), TA(m).

STOP

Corollary 5 If VC.2, VA.2, A3, and VA.4 hold, Algorithm 2 gives a strongly consistent esitmate

of the Hessian matrix.

The proof is similar to that of Corollary 3 we will omit it.

13 Experimental Results

The results presented here were obtained by simulating a GI/GI/1 queue using regenerative tech-

niques along with the bias reduction method of Meketon and Heidelberger [19]. The length of the

sample paths was approximately 100000 customers and the confidence intervals were at a 95% level.

In Table 1 we present the output of the PA algorithm for an M/G/1 queue with arrival rate a−1

and service time distribution uniform in [θ − δ, θ + δ] and we compare the PA derivative estimates

with the true values obtained from the P-K formula (Kleinrock [17]). Experiments were done for

(a, θ, δ) equal to (100, 20, 16), (100, 50, 40), and (100, 80, 64), corresponding to traffic intensities

ρ = 0.2, 0.5, and 0.8. With three parameters, a, θ, and δ, the Hessian matrix of ET has six different

entries and if we were to use finite difference estimates we would need 19 experiments for each value
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of ρ instead of a single one required by our approach. It is interesting to notice the accuracy of the

results and the surprisingly tight confidence intervals.

In Table 2 we present results for an analytically intractable system with interarrival times

uniformly distributed in [a−δ, a+δ] and service times with the following triangular density function

f(x, θ) =


x/θ2 if 0 ≤ x < θ

2/θ − x/θ2 if θ ≤ x < 2θ
0 otherwise .

The nominal experiment is observed for parameter values a = 100, δ = 80, θ = 70. Since no analytic

results are available, we compare the PA estimates with finite difference estimates. The first row of

the table shows the PA estimates, while the second shows the finite difference estimates obtained

using increments ∆θ = 3,∆a = 5,∆δ = 10. Thus the second row required 19 experiments while

the first row was obtained from a single one.

In addition to the fact that the PA estimates required 19 times fewer experiments, it is interest-

ing to notice the extent to which PA estimates outperform the conventional symmetric difference

estimate T ′′SD. In fact the confidence intervals of the former are an order of magnitude smaller than

that of the latter. This is not accidental. As a matter of fact, in Zazanis and Suri [31], it is shown

that the Mean Square Error (MSE) of T ′′PA goes to zero as O( 1
m) when the number of busy periods

in the sample path m goes to infinity. On the other hand, the MSE of T ′′SD goes to zero at best as

O( 1
M1/3 ). This demonstrates the asymptotic superiority of the PA estimate from a numerical point

of view as well.

These experimental results also suggest that algorithms 1 and 2 may provide unbiased estimates

for a wider class of distributions than those restricted by A.1 - A.4 (since the hazard rate for the

arrival density is not bounded in this example).
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Table 1: Results for an M/G/1 Queue

Traffic Intensity ρ = 0.2 0.5 0.8

∂2T

∂θ2

PA

P-K Formula

1.97± 0.02
×10−2

1.97

8.23± 0.26
×10−2

8.43

1.44± 0.18

1.42

∂2T

∂δ2

PA

P-K Formula

4.13± 0.04
×10−3

4.17

6.59± 0.14
×10−3

6.70

1.68± 0.11
×10−2

1.67

∂2T

∂α2

PA

P-K Formula

9.45± 0.13
×10−4

9.48

2.38± 0.08
×10−2

2.43

0.98± 0.13

0.97

∂2T

∂θδ

PA

P-K Formula

8.20± 0.21
×10−4

8.33

5.23± 0.27
×10−3

5.33

5.42± 0.90
×10−2

5.33

∂2T

∂θα

PA

P-K Formula

−4.07± 0.05
×10−3

−4.07

−4.34± 0.14
×10−2

−4.43

−1.18± 0.15

−1.17

∂2T

∂δα

PA

P-K Formula

−7.92± 0.85
×10−4

−8.33

−5.18± 0.46
×10−3

−5.33

−5.44± 1.10
×10−2

−5.33
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Table 2: Results for a GI/GI/1 Queue

Partial derivatives Symmetric Difference Perturbation Analysis
(SD) estimate (PA) estimate

∂2T

∂θ2
1.73 ± 2.48 × 10−1 1.32 ± 0.09 × 10−1

∂2T

∂α2
1.22 ± 0.78 × 10−1 1.01 ± 0.07 × 10−1

∂2T

∂δ2
8.9 ± 19.0 × 10−3 10.5 ± 0.51 × 10−3

∂2T

∂θ∂α
−1.27 ± 0.31 × 10−1 −1.17 ± 0.08 × 10−1

∂2T

∂θ∂δ
2.62 ± 1.44 × 10−2 −3.05 ± 0.20 × 10−2

∂2T

∂δ∂α
−3.0 ± 0.9 × 10−2 −2.98 ± 0.18 × 10−2

14 APPENDIX

We begin by establishing (7) which we repeat here for ease of reference.

Lemma 7 Under assumptions A.1 and A.2,

ET (θ + ∆θ) = limn→∞
1
n

∑n
i=1 Ti(θ + ∆θ) = limm→∞

1
Mm(θ)

∑Mm(θ)
i=1 Ti(θ + ∆θ) w.p. 1. (7)

Proof: Define the counting process corresponding to the discrete time renewal process {Mk(θ); k =

0, 1, 2 . . .} via Rn(θ) =
∑∞

k=0 1{Mk(θ) < n}, for n = 1, 2, . . .. (Thus Rn(θ) = l iff at parameter

value θ the n’th customer, Cn, belongs to the lth busy period). For typographical convenience the
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number of customers in the busy period which contains customer Cn will be denoted by NRn(θ)

(instead of NRn(θ)(θ)). Let us also denote by Jn(θ) the index of the customer who initiates the

busy period in which Cn belongs. With the above convention, we write as Jn(θ) = MRn−1(θ) + 1.

We also denote by Qk(θ) the area under the kth busy period as a function of θ (not to be confused

with Sk(θ) defined in §4). Then QRn(θ + ∆θ) def=
∑MRn (θ+∆θ)

i=MRn−1(θ+∆θ)+1 Ti(θ + ∆θ) is the area under

the busy period in which Cn belongs at parameter value θ + ∆θ.

To establish Lemma 7 it suffices to show that the second limit in (70) exists and equals the

first. Indeed the first limit can be written as

lim
n→∞

Jn(θ)− 1
n

 1
Jn(θ)− 1

Jn(θ)−1∑
i=1

Ti(θ + ∆θ) +
1

Jn(θ)− 1

n∑
i=Jn(θ)

Ti(θ + ∆θ)

 . (90)

As a consequence of the above definitions limn→∞
1

Jn(θ)−1

∑Jn(θ)−1
i=1 Ti(θ + ∆θ) exists iff the limit

on the rhs of (70) exists and in that case they have the same value. We first establish that

lim
n→∞

Jn(θ)
n

= 1 w.p. 1. (91)

In view of the inequality Jn ≤ n < Jn +NRn it suffices to show that limn→∞
NRn

n = 0 w.p. 1. This

in turn follows readily from the fact that, with probability one, Rn ≤ n, limn→∞Rn = ∞, and

limk→∞Nk/k = 0. (Since the r.v.’s {Nk} have the same marginal distribution and EN1 <∞, the

last claim is a direct consequence of the Borel-Cantelli lemma).

Similarly, for ∆θ > 0, a monotonicity argument shows that Jn(θ+∆θ) ≤ Jn(θ) w.p. 1 and hence

the inequality
∑n

i=Jn(θ) Ti(θ+ ∆θ) ≤
∑Jn(θ+∆θ)+Nn(θ+∆θ)

i=Jn(θ+∆θ) Ti(θ+ ∆θ) = QRn(θ+ ∆θ) holds w.p. 1.

The second term inside the parenthesis of (90) is dominated by Rn(θ+∆θ)
Jn(θ)−1

1
Rn(θ+∆θ)QRn(θ+∆θ) and

is nonnegative. Since {Qk(θ + ∆θ)} is an i.i.d. sequence and limn→∞Rn(θ + ∆θ) = ∞ w.p. 1, the

argument of the preceding paragraph applies again and 1
Jn(θ)−1

∑n
i=Jn(θ) Ti(θ+ ∆θ) is thus seen to

vanish w.p. 1 as n→∞. In view of (91) and the remarks that precede it, the proof of the lemma

is complete. 2
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Lemma 8 Under assumption A.2, EN1(θ)2 <∞ for all θ ∈ [a, b].

Proof: A.2 guarantees that EX1(θ)2 < ∞ which implies that EN1(θ)2 < ∞ on [a, b] (see Wolff

[30]). 2

Lemma 9 Let Φ1 =
∑N1

i=1 ξi, Ψ1 =
∑N1

i=1 ψi. Assumption A.2 implies that EΦ2
1 < ∞, and as-

sumption A.4 that EΨ2
1 <∞.

Proof: EN2
1 < ∞ (Lemma 5). From this and the fact that Eξ31 ≤ ∞ it follows that EΦ2

1 ≤ ∞.

(See Gut [11, p.22].) The proof of the second statement is identical. 2

We continue with an elementary inequality for N1, the number of customers in the busy period

of a GI/GI/1 queue:

Lemma 10 Under assumptions A.1, A.2, and A.4,

P (N1(θ) > k) ≤ lk, with 0 < l < 1 , (92)

for θ ∈ [a, b].

Proof: The difference between interarrival and service times can be bounded for all θ ∈ [a, b] as

follows: Xi(θ)−Ai ≤ χi −Ai
def= Γi. Then

P (N1(θ) > k) = P (
i∑

j=1

Xj(θ)−Aj > 0, i = 1, 2, . . . , k) ≤ P (
k∑

j=1

Xj(θ)−Aj > 0)

≤ P (
k∑

j=1

Γj > 0) .

From Chernoff’s theorem [6] we have

P (
k∑

j=1

Γj > 0 ) ≤ lk , (93)
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with l = inft∈R+ E[etΓ1 ] < 1. (The existence of such l is guaranteed by A.4. Because of the

definition of Γi, Inequality (92) holds for all θ ∈ [a, b]). 2

Now we are ready to state and prove

Lemma 11 For a stable GI/GI/1 queue with service time satisfying assumptions A.2, and A.4,

there exists γ > 0 such that

E[eγ
∑N1

i=1
ξi ] ≤ K <∞ . (94)

Proof: It is enough to show that, for sufficiently large u, there exist positive c and A such that

P (
∑N1

i=1 ξi > u) ≤ Ae−cu. Let a > E[ξi] and k be an integer such that

ka ≤ u < (k + 1)a .

Then,

P (
N1∑
i=1

ξi > u) ≤ P (
k∑

i=1

ξi > ka) + P (N1 > k) .

Also, let m(a) = inft∈R+ E[et[ξ1−a]]. Clearly since a > E[ξ1], m(a) < 1. Using Chernoff’s theorem

once more we get

P (
k∑

i=1

ξi > ka) ≤ [m(a)]k ≤ 1
m(a)

e−ua−1| log m(a)| = A1e
−uc1 ,

with c1 = a−1| logm(a)|. On the other hand, from Lemma 10 it readily follows that

P (N1 > k) ≤ A2e
−uc2 .

From the above follows that

P (
N1∑
i=1

ξi > u ) < Ae−cu . (95)

This establishes the existence of K <∞ such that (94) holds. 2

The next lemma provides the martingale stability argument which establishes (21).
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Lemma 12 Under assumptions A.1 and A.2 (21) holds, i.e.

1
m− 1

m−1∑
k=1

Vk(Nk+1 − EN1) → 0 w.p.1 .

Proof: From Lemma 8 EN2
1 < ∞, hence EN3/2

1 < ∞. However, EΦ3
1 ≤ 2c3E[ξ1]3EN

3/2
1 , where

c3 is a numerical constant (Gut [11, p.20]). Using A.2 we conclude that EΦ3
1 < ∞. From this

follows that the second moment of the steady state distribution of the auxiliary system is finite,

i.e. EV 2 < ∞.

Now let {Fk ; k = 1, 2, ...} be the history of the process until the end of the k’ th busy cycle. From

(11) we check that Vk is Fk- measurable and a moment’s reflection shows that Vk(Nk+1 −EN1) is

a Fk- martingale difference sequence. Now use the independence of Nk+1 and Vk and the fact that

EV 2
k < EV 2 < ∞ which follows from the stochastic monotonicity of Vk and the finiteness of EΦ3

1

established in the previous paragraph:

∞∑
k=1

1
k2
E[V 2

k (Nk+1 − EN1)]2 = Var(N1)
∞∑

k=1

EV 2
k

k2
(96)

< Var(N1) EV 2
∞∑

k=1

1
k2

< ∞ .

From (96) and a standard martingale stability argument (Stout [25, p.5]) we conclude that (21)

holds. 2

The final two lemmas presented here are needed in the proof of Theorems 1 and 2. The first

states an inequality necessary in establishing the continuity of ET (θ) while the second is a standard

result from real analysis presented without proof.

Lemma 13 Under M.1 the following inequality holds for θ − a ≥ ∆θ ≥ 0:

0 ≥ ET (θ −∆θ)− ET (θ) ≥
E[

∑N1
i=1

∑i
j=1Xj(θ −∆θ)−Xj(θ)]

E[N1]
. (97)
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Proof: Our analysis here parallels that of sections 4 and 5 and examines the effect of negative

perturbations introduced to the sample path of the system. It is not carried out at the same level

of detail since our aim here is simply to establish inequality (97). With the same notation, we have

the following counterpart of (12)

0 ≥ Ti(θ −∆θ)− Ti(θ) ≥
i∑

j=Mk−1+1

Xj(θ −∆θ)−Xj(θ) , for Mk−1 < i ≤Mk . (98)

Inequality (98) expresses the fact that, when perturbations are negative, busy periods cannot

coalesce. Hence, the change in the system time of customer Ci is negative with absolute value

equal to
∑i

j=Mk−1+1 |Xj(θ − ∆θ) − Xj(θ)|, if BPk, the busy period in which Ci belongs in the

unperturbed sample path does not break up, or smaller if it does. The counterpart of (13) becomes

0 ≥ ∆Sk = Sk(θ −∆θ)− Sk(θ) =
Mk∑

i=Mk−1+1

Ti(θ −∆θ)− Ti(θ)

≥
Mk∑

i=Mk−1+1

i∑
j=Mk−1+1

Xj(θ −∆θ)−Xj(θ) . (99)

Summing the terms of the above inequality for k = 1, . . . ,m, dividing both sides by
∑m

k=1Nk and

letting m→∞ yields (97). The details of the argument are similar to those in section 4. 2

Lemma 14 [22, p.95] Let f : [a, b] → R be continuous. Let one of the Dini derivatives of f be

Riemann integrable. Then so are the others, and all Dini derivatives are equal a.e. on [a, b]. If D̃f

denotes any one of the four Dini derivatives of f , then

∫ y

x
D̃f(t)dt = f(y)− f(x) (x, y ∈ [a, b]) .

2
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