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Abstract

Perturbation analysis estimators for expectations of possibly discontinuous functions of
the time-stationary workload were derived in [2]. The expressions obtained however may
not be valid if the customer-stationary distribution of the workload has atoms (at points
other than zero). This was pointed out by Brémaud and Lasgouttes in [1]. In this note
we clearly state the additional condition required for the validity of the expressions in [2].
We furthermore show how our approximation scheme can also be used to obtain the correct
expressions for the right and left derivatives given in [1].
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1 Introduction and statement of theorem

In a recently published article [2] perturbation analysis derivative estimators are constructed
for expectations of functionals of stationary performance measures for a G/G/1 queue. More
specifically, letW0(θ) be the work in the system in steady-state, parametrized by a real parameter
θ via its service process in a smooth way and f : R+ → R be a locally bounded variation function.
(For the relevant notation and assumptions we refer the reader to [2].) Then the derivative of
φf (θ) := Ef(W0(θ)) is claimed to be given by formula (14) of [2], which we repeat here for
convenience:

φ′f (θ) :=
∂

∂θ
Ef(W0(θ)) = λE0W ′

0(θ)[f(W0(θ))− f(Wt1−(θ))]. (1)

It has been recently pointed out to us [1] that this formula may fail to hold in some special
cases. In fact, in [1] these cases are treated at length in a way that deals directly with a general
increasing function f instead of an approximating scheme fn → f , as in [2]. The technical
conditions utilized in [1] are exactly those of [2]. The purpose of this article is to correct the
error in [2] and show that the approximating scheme works just as well.

We stress at the outset that the following additional condition should have been included
in [2] to ensure the validity of (1):
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C Let Af be the set of points at which f jumps. Let A+
θ (respectively A−θ ) be the

atoms of the distribution of W0+(θ) (respectively W0−(θ)) under the Palm measure
P 0. Suppose that, for some fixed parameter θ,

Af ∩ (A+
θ ∪A

−
θ ) = ∅ . (2)

In Section 2 we show the validity of the following

Theorem 1 Suppose that conditions A1–A4 of Theorem 2 of [2] hold. Furthermore suppose
that condition C introduced above holds. Then the derivative of Ef(W0(θ)) exists and is given
by formula (1).

In Section 3 we note that, even if C fails to hold, φf is Lipschitz continuous and therefore its
derivative exists almost everywhere.

2 Proof of Theorem 1

The method that we use is essentially as in the proof of Theorem 2 of our earlier paper [2].
We shall first show that if condition C fails to hold then, as shown in [1], both left and right
derivatives of φf (θ), denoted by D+φf (θ) and D−φf (θ) respectively, exist and are given by the
expressions

D+φf (θ) = λE0[W ′
0[f(W0)− f(Wt1−)] + (W ′

0)
+µf{W0} − (W ′

t1−)−µf{Wt1−}], (3)

D−φf (θ) = λE0[W ′
0[f(W0)− f(Wt1−)]− (W ′

0)
−µf{W0}+ (W ′

t1−)+µf{Wt1−}], (4)

where the dependence on θ is omitted for readability, the workload process Wt(θ) is defined
to be right-continuous, and µf{x} = limε↓0[f(x + ε) − f(x − ε)]. After (3), (4) have been
established, it is apparent that, in presence of condition C, the terms E0[(W ′

0)
+µf{W0}] and

E0[(W ′
t1−)−µf{Wt1−}] are both equal to zero.

We start, as in [2], with a simple function of the form f(w) = 1(w > x). Using the Palm
construction of [2] we have

1
δ
[P (W0(θ + δ) > x)− P (W0(θ) > x)] = λ∗bE

∗
b

∫ T1(b)

T0(b)

1
δ
[1(Wt(θ + δ) > x)− 1(Wt(θ) > x)]dt

=: λ∗bE
∗
b I(δ). (5)

This is formula (10) of [2]. Omitting θ for readability whenever no confusion arises and letting

Ri(δ) =
Wti(θ + δ)−Wti(θ)

δ
, (6)

the quantity inside the expectation of (5) is exactly equal to

I(δ) =
∑

T0(b)≤ti<T1(b)

[Ri(δ) 1{Wti > x,Wti+1− < x}

+ Ri(δ)+1{Wti = x} −Ri(δ)−1{Wti+1− = x}
]
, (7)
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provided that δ (generally dependent on the sample path) is sufficiently small. From this it is
clear that

lim
δ↓0

I(δ) =
∑

T0(b)≤ti<T1(b)

[W ′
ti1{Wti > x,Wti+1− < x}

+ (W ′
ti)

+1{Wti = x} − (W ′
ti)
−1{Wti+1− = x}], (8)

lim
δ↑0

I(δ) =
∑

T0(b)≤ti<T1(b)

[W ′
ti1{Wti > x,Wti+1− < x}

− (W ′
ti)
−1{Wti = x}+ (W ′

ti)
+1{Wti+1− = x}]. (9)

The last two terms in formulas (8) and (9), were not included in [2]. These terms correspond to
the cases in which the workload process immediately after or immediately before the arrival of a
customer is exactly equal to x.

We observe next that the Dominated Convergence Theorem still holds (the bound on
I(δ) obtained in [2] remains intact) and we can interchange limit and expectation in (5). An
application of the Cycle Formula yields, in each case, formulas (3) and (4) for the specific function
f(w) = 1(w > x). This establishes (3) and (4) for simple functions f (finite linear combinations
of indicator functions).

Consider now a general locally bounded variation function f : R+ → R. Without loss
of generality we consider f to be nonnegative and increasing. Then f can be approximated
from below by an increasing sequence of increasing elementary functions fn that converge to f
uniformly over compact sets. For each fn formulas (3) and (4) hold. The right derivative is
given by the expression

D+φfn(θ) = λE0Yn(θ), (10)

where
Yn(θ) = W ′

0[fn(W0)− fn(Wt1−)] + (W ′
0)

+µfn{W0} − (W ′
t1−)−µfn{Wt1−}.

We claim that D+φf (θ) exists and is given by

D+φf (θ) = λE0Y (θ), (11)

where
Y (θ) = W ′

0[f(W0)− f(Wt1−)] + (W ′
0)

+µf{W0} − (W ′
t1−)−µf{Wt1−}.

From Theorem 2 of the Appendix we realize that in order to establish (11) one needs to show
that φfn converges uniformly to φf and that

sup
θ
E0|Yn(θ)− Y (θ)| → 0. (12)

For (12) it is enough to show that

E0 sup
θ
|fn(W0(θ))− f(W0(θ))| → 0, (13)

E0 sup
θ
|fn(Wt1−(θ))− f(Wt1−(θ))| → 0, (14)

E0 sup
θ
|µfn{W0(θ)} − µf{W0(θ)}| → 0, (15)
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E0 sup
θ
|µfn{Wt1−(θ)} − µf{Wt1−(θ)}| → 0. (16)

The proofs of (13), (14) are as in [2] while the proof of (16) follows from that of (15) to which
we now turn our attention. Let Zn := supθ |µfn{W0(θ)} − µf{W0(θ)}| be the quantity inside
the expectation of (15). We need to show that E0Zn → 0. Write

E0Zn = E0[Zn1{W0(b) ≤ K}] + E0[Zn1{W0(b) > K}]. (17)

The fact that f is nonnegative and increasing and W0(θ) ≤ W0(b) together with the triangle
inequality imply that Zn ≤ 2f(W0(b)). Thus for K large the second term of (17) can be made
arbitrarily small. As for the first term of (17), we observe that

sup
x
|µfn{x} − µf{x}| → 0. (18)

Thus, on the event {W0(b) ≤ K}, we have Zn → 0 and the Dominated Convergence Theorem
can now be applied in the same manner as in [2] to show that the first term of (17) also converges
to zero. Finally we note that the uniform convergence of φfn to φf follows easily from (12) and
Lemma 1 of the Appendix.

3 Conclusions

1. The additional condition of Theorem 2 of our earlier paper [2] needed for the existence of the
derivative of EW0(θ) is condition C. We showed that this is the case by using the approximating
procedure of [2].

2. Even if C fails to hold, the function EW0(θ) is Lipschitz continuous in θ. This is due to the
argument given in Lemma 1 of the Appendix. Therefore EW0(θ) is absolutely continuous and
its derivative exists almost everywhere.

4 Appendix

Let φf , φfn be as in Section 2.

Lemma 1 The function φfn is Lipschitz continuous, i.e., |φfn(x)− φfn(y)| ≤ L|x− y| where L
does not depend on n. In particular, φfn is absolutely continuous.

Proof. (10) together with some obvious inequalities and the fact that fn ≤ f and f is increasing
indicate that Yn is bounded above by 2f(W0(b)) supθ |W ′

0| almost surely. Cauchy-Schwartz gives
|D+φfn(θ)| ≤ 2λ(E0f(W0(b))2)1/2 (E0(supθ |W ′

0|)2)1/2, the right-hand-side being finite as a
result of the assumptions A1–A4 in [2]. The same bound works for the left derivative as well.
These inequalities establish the Lipschitz property of φfn .

The following is a right-derivative version of a rather standard theorem (see, for instance,
[3, p.152-153]) adapted to suit our purposes.

Theorem 2 Suppose χn is a sequence of absolutely continuous functions converging to χ uni-
formly on [a, b]. Suppose that the right derivatives D+χn converge uniformly to some function
ψ. Then D+χ exists and D+χ = ψ.

4



Proof. Fix θ and for δ > 0 define

γn(δ) =
χn(θ + δ)− χn(θ)

δ
. (19)

From the absolute continuity follows that γn(δ) = 1
δ

∫ θ+δ
θ D+χn(u)du. Choose n0 such that

|D+χm(u) −D+χn(u)| < ε for n,m ≥ n0 and all u ∈ [a, b]. Then, from (19) we have |γm(δ) −
γn(δ)| ≤ ε. Hence {γn(δ)} converges uniformly on (0, b− θ] and thus

lim
n→∞

D+χn(θ) = lim
n→∞

lim
δ↓0

γn(δ) = lim
δ↓0

lim
n→∞

γn(δ) = D+χ(θ),

the interchange of the limits in the middle being justified by uniform convergence (via a 3ε
argument).

The same theorem holds for left derivatives.
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