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Abstract

We consider Markov-dependent multi-type sequences and study various kinds of runs (includ-
ing overlapping, non-overlapping, exact, etc.) by examining additive functionals based on state visits
and transitions in an appropriately constructed Markov chain. We establish multivariate Central Limit
Theorems for the number of these runs and obtain the covariance matrix of the limiting multivariate
normal distribution in closed form using the potential matrix. Finally we briefly discuss applications
of these results in reliability theory and molecular biology.
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1 Introduction

The study of success runs is important both in statistical theory (e.g. hypothesis testing) and in applica-
tions of statistics in various areas, most notably quality control, reliability theory, and molecular biology.
For a comprehensive review of the literature on runs we refer the reader to Balakrishnan and Koutras
[3] and Fu and Lou [10]. In a sequence of binary (success or failure) trials, a success run of length k
is the occurrence of k consecutive successes. Given a realization of n trials there are several different
ways of counting the number of success runs of length k, depending on whether overlapping in counting
is allowed or not. The choice of definition depends on the specific application. The most frequently
used enumeration schemes result in the following statistics (citations in parentheses refer to works where
these statistics have been defined):

Nn,k, the number of non-overlapping consecutive k successes until the nth trial (Feller [8]);

Gn,k, the number of success runs of size greater than or equal to k until the nth trial (Gibbons [15]);

Mn,k, the number of overlapping consecutive k successes until the nth trial (Ling [20]);

Jn,k, the number of runs consisting of exactly k successes until the nth trial (Mood [23]).
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Finally, another run-related statistic frequently of interest is Sn,k, the number of successes in success
runs of length k or greater until the nth trial. In the last decades significant research interest has been
focused on the study of the distribution of the number of runs (and more general patterns) in sequences
of Markov-dependent multi-type trials.

Let ξ0, ξ1, . . . , ξn be trials from a time homogeneous Markov chain on the finite alphabet S =
{s1, s2, . . . , sd}. We are interested in the joint statistics of the number of runs of all symbols, of
length kl for sl, l = 1, . . . , d. These may be counted in any of the ways discussed above, i.e. over-
lapping, non-overlapping, exact, etc. and give rise to vector counts of dimension d. More specifi-
cally, let N l

n,kl
denote the number of non-overlapping runs of sl of length kl, and k := (k1, . . . , kd).

Then Nn,k = (N1
n,k1

, . . . , Nd
n,kd

) is the d-dimensional random vector of counts of non-overlapping
runs for each symbol in a string of length n. Similarly we define vector counts of runs of the other
kinds discussed, namely Gn,k, Mn,k, Jn,k, and Sn,k, as d-dimensional random vectors. In this paper
we present a Central Limit Theorem (CLT) and a corresponding normal approximation for Nn,k and
(Gn,k,Mn,k,Jn,k,Sn,k).

Fu [9] studied multi-state trials by examining the joint distribution of runs and patterns using the
method of the embedding Markov chain (see [3], [10]). Using the same method Doi and Yamamoto
[7] obtained the joint distribution of the number of runs of c symbols in the sequence of trials from
an alphabet of c + 1 symbols. A recursive method for the evaluation of the joint distribution of Nn,k,
Mn,k,Gn,k, and Jn,k in a sequence of multi-state trials is given in Han and Aki [16]. They extended the
concept of Markov chain embeddable variables of binomial type introduced by Koutras and Alexandrou
[18] to Markov chain embeddable variables of multinomial type. Shinde and Kotwal [25] studied the
same multivariate distributions together with the multi-type version ofXn,k, the number of l-overlapping
success runs of length k in n trials, by using conditional probability generating functions in the sequence
of Markov-dependent multi-type trials. Inoue and Aki [17] develop formulae for the derivation of the
probability generating function and the higher order moments of the number of runs of different lengths
and different kinds. An approximation based on compound Poisson limit theorems for overlapping runs
in multi-type trials is given by Chryssaphinou and Vagelatou [6]. Fu and Lou [11] apply the finite
Markov chain embedding technique together with renewal-theoretic techniques to obtain a CLT and a
corresponding normal approximation for the number of non-overlapping and overlapping occurrences of
a simple or compound pattern in i.i.d. multi-type trials.

Recently Mytalas and Zazanis [24] investigated the joint distribution of Nn,k, Mn,k, Gn,k, and Jn,k
for Markov dependent binary trials, showed that it obeys a multivariate CLT and obtained a closed form
expression for the covariance matrix of the limiting multivariate normal distribution. They also obtained
a multivariate CLT for the joint number of non-overlapping runs of various sizes (Nn,k1 , . . . , Nn,kl) and
its covariance matrix. In this paper we apply the same methodology extending the results to multi-type
trials obtaining the asymptotic form of the joint distributions Gn,k, Mn,k, Jn,k, Sn,k and Nn,k. We
also provide applications in biological sequence homology and in reliability theory.

2 Potential matrix methodology: Theoretical tools and description

In this section we give a brief discussion of the potential matrix methodology for the computation of
the covariance matrix in CLT approximations of the number of various types of runs in long strings of
Markov dependent trials. This method was introduced in [24], to which we refer the reader for a more
detailed exposition.
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Let {Xn} be a time-homogeneous, irreducible, aperiodic, positive recurrent Markov chain on a finite
or countable state space X . Let P denote its transition probability matrix and, as usual, Pnij := P(Xn =
j|X0 = i).

Zij =

∞∑
n=1

(
Pnij − πj

)
+ δij , i, j ∈ X , (1)

denote the elements of the recurrent potential matrix of {Xn}, also known as the fundamental matrix
(see [2]). δij is the Kroneker symbol, equal to 1 if i = j and 0 otherwise. The convergence of the series
under our assumptions is a standard result (see for instance [5]).

Suppose we are interested in obtaining multivariate normal approximations for the joint distribution
of the number of ν different kinds of runs (or other related statistics of interest) in a string of n symbols
(trials) of a finite alphabet {s1, . . . , sd} coming from a markovian source. The proposed methodology
involves the following steps:

1. Construct a Markov Chain {Xn} on an appropriate (finite or countable) state space and with a
properly chosen irreducible, aperiodic, and positive recurrent transition probability matrix so that ν1 of
the run counts can be obtained by counting the number of visits in various states and ν2 by counting
the number of state transitions of {Xn} where of course ν1 + ν2 = ν. This involves the determi-
nation of reward function f = (f1, . . . , fν1) : X → Rν1 based on state visits and a reward func-
tion g = (g1, . . . , gν2) : X × X → Rν2 based on transitions such that the run counts in a string
of length n are obtained as additive functionals of the Markov chain, i.e. Sn =

∑n−1
m=0 f(Xm) and

T n =
∑n−1

m=0 g(Xm, Xm+1). The components fλ and gλ are typically indicator functions and their
choice depends on that of the Markov chain {Xn} which is not unique.

2. When
∑

i∈X πifκ(i) =: µfκ <∞,
∑

i∈X πif
2
κ(i) <∞ for κ = 1, 2, . . . , ν1, and correspondingly∑

(i,j)∈X×X πiPijgλ(i, j) := µgλ < ∞,
∑

(i,j)∈X×X πiPijg
2
λ(i, j) < ∞, for λ = 1, . . . , ν2, a Strong

Law of Large Numbers and a multivariate CLT holds for {(Sn,T n)}n∈N. Under these conditions, with
µf := (µf1 , . . . , µ

f
ν1), µg := (µg1, . . . , µ

g
ν2),

n−1/2
(

(Sn,T n)− n(µf ,µg)
)

d→ N (0,V ). (2)

3. The meansµf andµg are typically easy to compute in terms of the stationary distribution of {Xn}.
On the other hand the ν × ν covariance matrix V in the multivariate CLT (2) is harder to determine and
herein lies the main idea of the method which determines the covariance matrix by means of the potential
matrix Z of the Markov chain {Xn} and its stationary distribution π. The following expressions hold
(see [2] and [24])

lim
n→∞

1

n
Var(Sκn) = 2

∑
i,j∈X

fκ(i)fκ(j)πiZij −

(∑
i∈X

fκ(i)πi

)2

−
∑
i,j∈X

f2κ(i)πi, (3)

κ = 1, . . . , ν1.

lim
n→∞

1

n
Var(T λn ) = 2

∑
l1,l2,k1,k2∈X

gλ(l1, l2)gλ(k1, k2)πl1Pl1l2Zl2k1Pk1k2

−3

 ∑
l1,l2∈X

gλ(l1, l2)πl1Pl1l2

2

+
∑

l1,l2∈X
g2λ(l1, l2)πl1Pl1l2 , λ = 1, . . . , ν2. (4)
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Corresponding expressions are given below for the covariances:

lim
n→∞

1

n
Cov(Sκn, S

λ
n) =

∑
i,j∈X

fκ(i)fλ(j) (πiZij + πjZji) −
∑
i∈X

fκ(i)fλ(i)πi

−
∑
i∈X

fκ(i)πi
∑
j∈X

fλ(j)πj , κ, λ = 1, . . . , ν1, κ 6= λ, (5)

lim
n→∞

1

n
Cov(T κn , T

λ
n ) =

∑
l1,l2,k1,k2∈X

gκ(l1, l2)gλ(k1, k2)Pl1l2Pk1k2 (πl1Zl2k1 + πk1Zk2l1)

+
∑

l1,l2∈X
gκ(l1, l2)gλ(l1, l2)πl1Pl1l2 − 3

∑
l1,l2∈X

gκ(l1, l2)πl1Pl1l2
∑

k1,k2∈X
gλ(k1, k2)πk1Pk1k2 (6)

κ, λ = 1, . . . , ν2, κ 6= λ,

lim
n→∞

1

n
Cov(Sκn, T

λ
n ) =

∑
i,j,k∈X

fκ(i)gλ(j, k) (πiZij + πjZki)Pjk (7)

−2
∑
i∈X

πifκ(i)
∑
i,j∈X

gλ(i, j)πiPij , κ = 1, . . . , ν1, λ = 1, . . . , ν2.

4. What remains is the determination of the stationary distribution π of the Markov chain {Xn},
which in many cases can obtained easily in closed form, and that of the potential matrix Z. In [24] this
was obtained by means of its connection to mean transition times:

Zij = Zjj − πjEiτj , i 6= j, (8)

Zii = πiEπτi. (9)

where τi = inf{n > 0;Xn = i}, Ei denotes conditional expectation given that X0 = i, and Eπ
expectation assuming that X0 is distributed according to the stationary distribution π (see [5]). The
same approach is followed here since the mean transition times Eiτj can be obtained explicitly taking
advantage of the special structure of the Markov chain considered. If this is not possible one can obtain
the elements of the transition matrix numerically by means of the relationship Z = (I−P +�)−1 where
� is a square matrix having all rows equal to the stationary probability row vector π.

3 A Markov Chain for Multi-type Runs

Consider a sequence of trials {ξn;n ∈ N} with values in the finite set S = {s1, s2, . . . , sd} which forms
an irreducible Markov chain with transition probability matrix P with elements plr, l, r = 1, . . . , d. To
avoid trivialities we will assume that pll > 0 for all l. Denote the stationary probability distribution by
η and the mean transition time from state r to state l by µlr. These can be obtained from the system
1 +

∑
r 6=t prtµtl = µrl, for r, l = 1, . . . , d.

A special case of particular interest to which we shall occasionally refer is that of independent trials
where the d symbols occur independently with probability pl > 0 for the occurrence of sl, l = 1, . . . , d,
with

∑d
l=1 pl. In this case prl = pl, the stationary distribution is given by ηl = pl, and the mean transition

times by µrl = p−1l for l, r = 1, . . . , d.
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3.1 A Markov chain for runsGn,k,Mn,k, Jn,k, Sn,k

Construct a Markov chain {Xn;n ∈ N} with state space U = {(r, i); r = 1, . . . , d; i = 1, . . . , kr + 1}.
The labeling of the states reflects the fact that we visualize the state space as consisting of d branches, one
for each type of source symbol. Thus state (r, i) signifies that the last symbol was sr and that, looking
back, i consecutive occurrences of sr have occurred. As soon as a different symbol appears, say sl, we
move to state (l, 1) since this is the beginning of a run of sl. By ordering the elements of the state space
lexicographically, the transition probability matrix P̃ of {Xn} can be partitioned in blocks as follows

P̃ =


B11 B12 · · · B1d

B21 B22 · · · B2d
...

. . .
...

Bd1 Bd2 · · · Bdd

 . (10)

The diagonal blocks Brr are square (kr + 1)× (kr + 1) matrices describing state transitions within the
same run while the off-diagonal blocks Brl are rectangular (kr + 1)× (kl + 1) matrices describing tran-
sitions from states (r, i), i = 1, . . . , kr, to state (l, 1) which occur whenever a run of sr’s is interrupted
by the occurrence of an sl. These blocks have the form

Brr =


0 prr 0 · · · 0
0 0 prr · · · 0

. . .
0 0 0 · · · prr
0 0 0 · · · prr

 , Brl =


prl 0 · · · 0
prl 0 · · · 0
...

...
...

prl 0 · · · 0

 l 6= r. (11)

All elements of Brr are zero except for [Brr]i,i+1 = prr for i = 1, 2, . . . , kr and [Brr]kr+1,kr+1 = prr.
All elements of Brl are zero except for [Brr]i,1 = prr for i = 1, 2, . . . , kr + 1. The Markov chain {Xn}
with the above transition probability matrix is irreducible, aperiodic, and positive recurrent in view of
the assumptions on {ξn}. Its stationary distribution is given by

πl,i = ηl(1− pll)pi−1ll , i = 1, 2, . . . , kl, (12)

πl,kl+1 = ηlp
kl
ll .

The total number of runs in n trials for each of the four different kinds of runs and for the d different
type of symbols can be described in terms of additive functionals of the Markov chain {Xn;n ∈ N} as
follows for l = 1, . . . , d:

Gln,kl =
n−1∑
m=0

1 (Xm = (l, kl)) , (13)

M l
n,kl

=
n−1∑
m=0

1 (Xm ∈ {(l, kl), (l, kl + 1)}) , (14)

J ln,kl =
n−1∑
m=0

∑
r 6=l

1 (Xm = (l, kl), Xm+1 = (r, 1)) , (15)

Sln,kl =

n−1∑
m=0

(kl1(Xm = (l, kl) + 1(Xm = (l, kl + 1)) . (16)
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3.2 Mean Transition Times and the Potential Matrix

Let τl,j := min{n > 0 : Xn = (l, j)}, l ∈ {1, . . . , d}, j = 1, 2, . . . , kl + 1. We will denote the mean
transition time between states of the runs chain by mr,i

l,j := Er,iτl,j . These can be easily expressed in
terms of the mean transition times of the source chain as follows:

mr,i
l,j = µrl +

p−j+1
ll − 1

ηl(1− pll)
for l 6= r and ml,i

l,j =



p−j+1
ll − p−i+1

ll

ηl(1− pll)
, 1 ≤ i < j ≤ kl + 1,

p−j+1
ll

ηl(1− pll)
, 1 ≤ j < i ≤ kl + 1.

(17)

Using (9) and the above expressions for the mean transition times the diagonal potential matrix elements
are given by

Z(l,i),(l,i) =


1− pi−1ll (1− ηl)

(
1 + ηl

(
i− 1−

∑
r 6=l µrlηr

))
, if i = 1, . . . , kd,

1
1−pll − p

kl
ll

(
1

1−pll + ηl

(
kl − 1−

∑
t6=l ηtµrl

))
, if i = kd + 1.

The off-diagonal elements are, for j = 1, . . . , kl,

Z(r,i),(l,j) =



ηlp
j−1
ll

(
1− (1− pll)

(
j − 1 + µrl −

∑
t6=l ηtµtl

))
, if r 6= l,

−pj−1ll

(
1− ηl − p−i+1

ll + ηl(1− pll)
(
j − 1−

∑
t6=l ηtµtl

))
, if r = l, i < j,

−pj−1ll

(
1− ηl + ηl(1− pll)

(
j − 1−

∑
t6=l ηtµtl

))
, if r = l, i > j,

and

Z(r,i),(l,kl+1) =


pklll

(
p−i+1
ll −1
1−pll − ηl

(
kl − 1−

∑
t6=l ηtµtl

))
, if r = l,

−ηlpklll
(
kl − 1 + µrl −

∑
t6=l ηtµtl

)
, if r 6= l.

3.3 A Runs Chain forNn,k

To deal with non-overlapping runs we construct the Markov chain {Yn;n ∈ N} with state space V =
{(l, i); l = 1, . . . , d, i = 1, . . . , kl}. Notice that each branch has one fewer state than in the corresponding
state space of §3.1. The transition probability matrix has the same block structure as in (10). However,
here Brr is the kr × kr matrix

Brr =


prr

prr
. . .

prr
prr

 . (18)
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All elements of Brr are zero except for [Brr]i,i+1 = prr for i = 1, 2, . . . , kr − 1 and [Brr]kr,1 = prr.
The off-diagonal blocks Brl are rectangular kr × kl matrices with all elements equal to zero except for
the first column in which every element is equal to prl. The Markov chain {Yn} is irreducible, aperiodic,
and positive recurrent. Its stationary distribution is given by

πl,i =
ηl(1− pll)pi−1ll

1− pklll
, i = 1, 2, . . . , kl, l = 1, . . . , d. (19)

The total number of non-overlapping sl-runs of size kl in n trials can be obtained from {Yn} as

N l
n,kl

=

n−1∑
m=0

1(Ym = (l, kl)). (20)

3.4 Mean Hitting Times and Potential Matrix Elements

The mean transition times for {Yn} are given by

mr,i
l,j = µrl +

p−j+1
ll − 1

ηl(1− pll)
for l 6= r and ml,i

l,j =



p−j+1
ll − p−i+1

ll

ηl(1− pll)
, 1 ≤ i < j ≤ kl,

p−j+1
ll − pkl−i+1

ll

ηl(1− pll)
, 1 ≤ j < i ≤ kl.

(21)

Thus the diagonal elements of the potential matrix are, for l = 1, . . . , d, i = 1, · · · , kl,

Z(l,i),(l,i) =
1− (1− ηl)pi−1ll

ηl(1− pll)
+
ηl(1− pll)pi−1ll

1− pklll

1− i(kl + i− 1)pklll

1− pklll
+
∑
t6=l

ηtµtl


while the off-diagonal elements are, for l, r = 1, . . . , d, i = 1, . . . , kr, j = 1, . . . , kl,

Z(r,i),(l,j) =



1−(1−ηl)pj−1
ll

ηl(1−pll) +
ηl(1−pll)pj−1

ll

(1−pklll )2

(
−j + 1 + (kl + j − 1)pklll

)
−1−pj−1

ll

1−pklll
+

ηl(1−pll)pj−1
ll

1−pklll

(∑
r 6=l µrlηr − µrl

)
, if r 6= l,

1−(1−ηl)pj−1
ll

ηl(1−pll) +
(1−j)ηl(1−pll)pj−1

ll −ηl(1−kl−j)(1−pll)p
kl+j−1

ll

(1−pklll )2
− 1−pj−i

ll

1−pklll

+
ηl(1−pll)pj−1

ll

1−pklll

∑
r 6=l µrlηr, if r = l, i < j,

1−(1−ηl)pj−1
ll

ηl(1−pll) +
(1−j)ηl(1−pll)pj−1

ll −ηl(1−kl−j)(1−pll)p
kl+j−1

ll

(1−pklll )2

−1−pkl+j−i+1

ll

1−pklll
+

ηl(1−pll)pj−1
ll

1−pklll

∑
r 6=l µrlηr, if r = l, i > j.

4 Main Results

Let {Xn} be the Markov chain of §3.1. Using the representations (13)-(16) for the number of runs of
various kinds in a string of length n and the CLT for additive functionals of Markov chains discussed in
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§2 we obtain the multivariate CLT

1

n1/2
(
(Gn,k,Mn,k,Jn,k,Sn,k)− n(µG,µM ,µJ ,µS

) d→ N (0,V ). (22)

The 4d components of the mean vector are given, for l = 1, . . . , d by

µGl = Eπ[1(X0 = (l, kl))] = πl,kl (23)

µMl = Eπ[1(X0 ∈ {(l, kl), (l, kl + 1)}] = πl,kl + πl,kl+1

µJl = Eπ[1(X0 = (l, kl), X1 ∈ {(r, 1), r = 1, . . . , d, r 6= l})] = (1− pll)πl,kl
µSl = Eπ[kl1(X0 = (l, kl)) + 1(X0 = (l, kl + 1))] = klπl,kl + πl,kl+1,

where the stationary probabilities πl,kl , πl,kl+1 are given by (12), (13). The elements of the covariance
matrix V in (22) are given below. They are separated into two groups, covariances between run counts of
the same kind but referring to runs of different symbols, and covariances between runs of different kind
(and possibly of different symbols). They are expressed in terms of the stationary probabilities (12), (13)
and the potential matrix whose elements are given in §3.2. In some of the cases expressions are given for
the special case of independent trials. The expressions for the stationary distribution and the potential
matrix elements in the case of independent trials are given in the Appendix.

Asymptotic Covariance ofGn,k. Using (3) and (5) for additive functionals given by (13) we obtain

lim
n→∞

1

n
Var(Gln,kl) = 2πl,klZ(l,kl),(l,kl) − πl,kl(πl,kl + 1), (24)

lim
n→∞

1

n
Cov(Grn,kr , G

l
n,kl

) = −πl,klπr,kr + πl,klZ(l,kl),(r,kr) + πr,krZ(r,kr),(l,kl). (25)

In the case of independent trials

lim
n→∞

1

n
Var(Gln,kl) = (1− pl)pkll

(
1− (1− pl)pkll (1 + 2kl)

)
,

lim
n→∞

1

n
Cov(Grn,kr , G

l
n,kl

) = pkrr p
kl
l (1− prpl − (1− pl)(1− pr)(kr + kl)) .

Asymptotic Covariance ofMn,k. Again, from (3), (5), and (14) we obtain

lim
n→∞

1

n
Var(Mn,kl) = 2πl,kl(Z(l,kl),(l,kl) + Z(l,kl),(l,kl+1)) + 2πl,kl+1(Z(l,kl),(l,kl+1) + Z(l,kl+1),(l,kl))

−πl,kl(πl,kl + 1)− πl,kl+1(πl,kl+1 + 1)− 2πl,klπl,kl+1,

lim
n→∞

1

n
Cov(Mn,kr ,Mn,kl) = 2πl,kl(Z(l,kl),(r,kr) + Z(l,kl),(r,kr+1))

+2πl,kl+1(Z(l,kl+1),(r,kr) + Z(l,kl+1),(r,kr+1))− (πl,kl + πl,kl+1) (πr,kr + πr,kr+1)

+2πr,kr(Z(r,kr),(l,kl) + Z(r,kr),(l,kl+1)) + 2πr,kr+1(Z(r,kr+1),(l,kl) + Z(r,kr+1),(l,kl+1)).
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Asymptotic Covariance of Jn,k. From (4), (6), and (15) we obtain

lim
n→∞

1

n
Var(Jn,kl) = 2

∑
r,t 6=l

πl,klplrpltZ(r,1)(l,kl) − 3

∑
r 6=l

πl,klplr

2

+
∑
r 6=l

πl,klplr

= 2πl,kl(1− pll)
∑
r 6=l

plrZ(r,1)(l,kl) − 3 (πl,kl(1− pll))
2 + πl,kl(1− pll),

lim
n→∞

1

n
Cov(Jn,klJn,kr) = πl,kl(1− prr)

∑
t6=l

pltZ(t,1)(r,kl) + πr,kr(1− pll)
∑
t6=r

prtZ(t,1),(l,kl)

−3πl,klπr,kr(1− pll)(1− prr).

Asymptotic Covariance of Sn,k. From (3), (5), and (16) we obtain

lim
n→∞

1

n
Var(Sn,kl) = 2klπl,kl(Z(l,kl),(l,kl) + Z(l,kl),(l,kl+1)) + 2klπl,kl+1(Z(l,kl),(l,kl+1) + Z(l,kl+1),(l,kl))

−klπl,kl(klπl,kl + 1)− πl,kl+1(πl,kl+1 + 1)− 2klπl,klπl,kl+1,

lim
n→∞

1

n
Cov(Sn,kr , sn,kl) = 2πl,kl(klkrZ(l,kl),(r,kr) + klZ(l,kl),(r,kr+1))

+2πl,kl+1(krZ(l,kl+1),(r,kr) + Z(l,kl+1),(r,kr+1)) + 2πr,kr(klkrZ(r,kr),(l,kl) + krZ(r,kr),(l,kl+1))

+2πr,kr+1(klZ(r,kr+1),(l,kl) + Z(r,kr+1),(l,kl+1))− (klπl,kl + πl,kl+1) (krπr,kr + πr,kr+1) .

Asymptotic Covariance for Different Kinds of Runs

lim
n→∞

1

n
Cov(Gn,kr

,Mn,kl
) = πl,kl

Z(l,kl),(r,kr) + πl,kl+1Z(l,kl+1),(r,kr) + πr,kr
(Z(r,kr),(l,kl) + Z(r,kr),(l,kl+1))

−πr,kr
(πl,kl

+ πl,kl+1)

lim
n→∞

1

n
Cov(Gn,kr

, Sn,kl
) = klπl,kl

Z(l,kl),(r,kr) + πl,kl+1Z(l,kl+1),(r,kr) + πr,kr
(klZ(r,kr),(l,kl) + Z(r,kr),(l,kl+1))

−πr,kr
(klπl,kl

+ πl,kl+1)

lim
n→∞

1

n
Cov(Mn,kr

, Sn,kl
) = 2klπl,kl

(Z(l,kl),(r,kr) + Z(l,kl),(r,kr+1)) + 2πl,kl+1(Z(l,kl+1),(r,kr) + Z(l,kl+1),(r,kr+1))

+2πr,kr
(klZ(r,kr),(l,kl) + Z(r,kr),(l,kl+1)) + 2πr,kr+1(klZ(r,kr+1),(l,kl) + Z(r,kr+1),(l,kl+1))

− (klπl,kl
+ πl,kl+1) (πr,kr

+ πr,kr+1)

lim
n→∞

1

n
Cov(Jn,kr

, Gn,kl
) =

∑
t 6=r

prt
(
πr,kr

Z(t,1)(l,kl) + πl,kl
Z(l,kl)(r,kr) − 2πl,kl

πr,kr

)

lim
n→∞

1

n
Cov(Jn,kr

,Mn,kl
) =

∑
t 6=r

prt
(
πr,kr

Z(t,1)(l,kl) + πl,kl
Z(l,kl)(r,kr)

)
+
∑
t 6=r

prt
(
πr,kr

Z(t,1)(l,kl+1) + πl,kl+1Z(l,kl+1)(r,kr)

)
− 2

∑
t6=r

prtπr,kr
(πl,kl

+ πl,kl+1)

lim
n→∞

1

n
Cov(Jn,kr

, Sn,kl
) =

∑
t 6=r

prt
(
πr,kr

klZ(t,1)(l,kl) + πl,kl
klZ(l,kl)(r,kr)

)
+
∑
t6=r

prt
(
πr,kr

Z(t,1)(l,kl+1) + πl,kl+1Z(l,kl+1)(r,kr)

)
− 2

∑
t6=r

prtπr,kr
(klπl,kl

+ πl,kl+1)
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4.1 A CLT forNn,k.

Here we deal with the number of exact runs of the symbols sl, l = 1, . . . , d using the Markov chain {Yn}
of §3.3. It holds that n−1/2

(
Nn,k − nµN

) d→ N (0, V N ) where µN = Eπ(1(Y0 = (l, kl)) = πl,kl
(given by (19)). The covariance matrix V N has elements Vrl equal to the asymptotic variances and
covariances

lim
n→∞

1

n
Var(Nn,kl) = 2πl,klZ(l,kl),(l,kl) − πl,kl(πl,kl + 1),

lim
n→∞

1

n
Cov(Nn,kr , Nn,kl) = −πl,klπr,kr + πl,klZ(l,kl),(r,kr) + πr,krZ(r,kr),(l,kl) .

In the above expressions the elements of the potential matrix Z are the ones obtained in §3.4.

5 Applications

Runs of any length Denote by T ln the number of runs of any length of the symbol sl in a string
of length n. Clearly, using the Markov chain of subsection 3.1 with kl = 1, l = 1, . . . , d, we have
T ln = Gln,1 and for the vector statistic T n := (T 1

n , . . . , T
d
n) the results of the previous section apply.

Thus n−1/2(Tn − nµT ) converges in distribution to a multivariate normal. The mean vector is given by
µTl = πl,1. The covariance matrix is given by

lim
n→∞

1

n
Var(T ln,l) = 2πl,1Z(l,1),(l,1) − πl,1(πl,1 + 1)

= ηl(1− pll)[ηl(1 + pll)− 1] + 2η2l (1− ηl)(1− pll)
∑
t6=l

ηlµtl,

lim
n→∞

1

n
Cov(T rn,r, T

l
n,l) = −πl,1πr,1 + πl,1Z(l,1),(r,1) + πr,1Z(r,1),(l,1)

= ηlηr(1− pll)(1− pll)

[
2 + µlr + µrl −

d∑
t=1

ηt(µtl + µtr)

]
.

In the case of independent trials we have

lim
n→∞

1

n
Var(T ln,l) = pl(1− pl)[1− 3pl(1− pl)], lim

n→∞

1

n
Cov(T rn,r, T

l
n,l) = 2prpl(1− pr)(1− pl).

Total number of runs. Summing up the random variables Gln,kl over l = 1, . . . , d we obtain the
statistic Rn denoting the number of runs of all symbols exceeding in length kl for sl. Then, using the
Markov chain of subsection 3.1,

Rn =

n−1∑
m=0

d∑
l=1

1(Xm = (l, kl)).

We have again a CLT with mean µR =
∑d

l=l πl,kl and asymptotic variance

lim
n→∞

1

n
Var(Rn) = 2

d∑
l=1

d∑
r=1

πl,klZ(l,kl)(r,kr) −

(
d∑
l=1

πl,kl

)2

−
d∑
l=1

πl,kl . (26)
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Reliability of general multi-consecutive systems. The statistical analysis of runs has immediate ap-
plications to the so-called multi-consecutive systems in reliability theory. (For a review of the literature
on such systems see [19].) The consecutive k-out-of-n : F system, as originally defined, consists of
n components ordered on a line, each being independently either defective or non-defective. Such a
system fails if and only if there are at least k consecutive failed components. A generalization, the m-
consecutive-k-out-of-n : F system was introduced by Griffith [14]. In this case the system fails when
m non-overlapping runs of k consecutive failed components occur. The exact reliability of this system
has been studied by a number of authors. In particular Godbole [13] derived Poisson approximations
for its reliability under the assumption of Markovian dependence using the Stein-Chen method. A nor-
mal approximation for the reliability of this system is given in Makri and Psillakis [22] in terms of
P(Gn,k < m). Agarwal et al. [1] studied a variation of the m-consecutive-k-out-of-n : F system where
the components exhibit markovian dependence.

Boutsikas and Koutras [4] considered components with d different failure modes and studied the
consecutive k1,k2,. . . ,kd-out-of-n:MFM system (Multi-Failure Mode). It consists of n linearly arranged
components and enters failure mode l whenever at least kl consecutive components are failed in mode
l, l = 1, 2, . . . , d. Reliability bounds based on compound Poisson approximations for the consecutive
k1, k2,. . . ,kd-out-of-n:MFM system with Markov-dependent components were derived by Chryssaphi-
nou and Vaggelatou [6] using the Stein-Chen method.

We extent the concept of consecutive k1, k2, . . . , kd-out-of-n:MFM systems by assuming that the
system consists of n linearly arranged components and enters failure mode l wheneverml runs of kl con-
secutive components fail in mode l = 1, 2, . . . , d. We term this system a consecutive (k1,m1), (k2,m2),
. . . , (kd,md)-out-of-n:MFM system and assume that the state of the components has Markovian de-
pendence. Depending on the system it may be natural to count the number of runs for mode-l failures
either as overlapping or non-overlapping. If s0 stands for normal operation and sl, l = 1, . . . , d for
the d different failure modes then the results of the previous section can be used to obtain normal ap-
proximations for the reliability of such systems. For instance, for non-overlapping runs the reliability
would be P(Nn,k1 < m1, Nn,k2 < m2, . . . , Nn,kd < md), while for overlapping runs it would be
P(Mn,k1 < m1,Mn,k2 < m2, . . . ,Mn,kd < md). The results of the previous section provide directly
normal approximations for the reliability of such systems.

Molecular biology. It has been pointed out in Lou [21] and Fu et al. [12] that Sn,k is useful in problems
that arise in molecular biology and in particular in studying tandem repeats among DNA sequences.
In this problem a binary sequence of successes and failures is derived by aligning two adjacent DNA
sequences one on top of the other. Sn,k denotes the sum of the matches in matching runs of length k or
larger in a sequence of length n. The normal approximation for Sn,k is given in Makri and Psillakis [22]
for Bernoulli trials and by Fu et al. [12] for Markov dependent trials. When the matching process has
markovian correlation and can be described by a two state chain with transition probability matrix[

q0 p0
q p

]
a CLT holds for Sn,k. The asymptotic mean and variance are given by µ = p0pk−1

q+p0
and

lim
n→∞

1

n
Var(Sn,k) = k2qp0pk−1+p0pk(2k−1)

q+p0
+ 2 p0pk

q(q+p0)
− 2

p2kp20(kq+p)
q(q+p0)2

− (1+2k)p2kp20+(4q−p)k2qp20p2k−2+2k3q2p20p
2k−2

(q+p0)2
− 2

p20p
2k+4kqp20p

2k−1+2k2q2p20p
2k−2

(q+p0)3
.
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6 Hidden Markov Sources

A more general model for the multi-type source involves an underlying Markov chain {ζn}, n =
0, 1, 2, . . . with state space S partitioned into subsets Sl, l = 1, . . . , d, so that Sl ∩ Sr = ∅ for l 6= r
and ∪dl=1Sl = S. Let ml := |Sl| denote the cardinality of S and label the elements of S as (q, l) where
q = 1, 2, . . . ,ml and l = 1, 2, . . . , d. Ordering the states of S lexicographically we obtain a partitioned
matrix

P =


P11 P12 · · · P1d

P21 P22 · · · P2d
...

...
...

Pd1 Pd2 · · · Pdd

 (27)

where Prr is the mr ×mr submatrix containing the transition probabilities between states within class
Sr, while Prl, (l 6= r) is the mr × ml rectangular submatrix P containing the transition probabilities
from states in Sr to states in Sl. For n ∈ N let ξn = l when ζn ∈ Sl, l = 1, . . . , d. We will assume that
the matrix P above is irreducible and, for simplicity, aperiodic. We will further assume that none of the
diagonal matrices Prr, r = 1, . . . , d is a zero matrix. We will denote the stationary distribution of {ζn}
by the row vector [η1, . . . , ηl, . . . , ηd] in block form, where ηl is an ml-dimensional row vector.

The process {ξn;n ∈ N} defined above is a sequence of dependent multi-type trials and we will use
the approach of the previous sections in order to obtain a multivariate CLT for the number of success
runs of various types.

Suppose we are interested in l-runs of size kl for l = 1, . . . , d. Construct a Markov chain {Xn},
n ∈ N, on a larger state space, X := {(l, i, q) : l = 1, . . . , d, i = 1, . . . , kl + 1, q = 1, . . . ,ml}. Order
the states of X lexicographically. The transition probability matrix of {Xn} with this ordering can be
written in block form as in (10). Block Brr is an mr(kr + 1) × mr(kr + 1) square matrix while Brl
(r 6= l) an mr(kr + 1)×ml(kl + 1) rectangular matrix given respectively by

Brr =


O Prr O · · · O
O O Prr · · · O

. . .
O O O · · · Prr
O O O · · · Prr

 , Brl =


Prl O · · · O
Prl O · · · O

...
...

...
Prl O · · · O


where O is a matrix of zero elements of appropriate dimensions (an mr ×mr square matrix with zero
elements for Brr and an mr ×ml rectangular submatrix of zeros for Brl).

Under the assumptions on the matrix P in (27) {Xn} is irreducible and aperiodic and we will denote
its stationary distribution by π(l, i, q), l = 1, . . . , L, i = 1, . . . , kl + 1, q = 1, . . . ,ml. It is given by

π(l, i) = ηl(I − Pll)P i−1ll , i = 1, . . . , kl, (28)

π(l, kl + 1) = ηlP
kl
ll , (29)

where π(l, i) is a row vector of dimension ml.

12



The number of the various kinds of runs in a string of length n is then given by

M l
n,kl

=
n−1∑
j=0

ml∑
q=1

1(Xj = (l, kl, q)) + 1(Xj = (l, kl + 1, q)),

Sln,kl =
n−1∑
j=0

ml∑
q=1

kl1(Xj = (l, ki, q)) + 1(Xj = (l, kl + 1, q)),

Gln,kl =
n−1∑
j=0

ml∑
q=1

1(Xj = (l, kl, q)),

J ln,kl =

n−1∑
j=0

ml∑
q=1

d∑
r=1
r 6=l

mr∑
t=1

1(Xj = (l, kl, q), Xj+1 = (r, 1, t)).

7 Appendix: Independent Multi-trials

A special case of particular interest is when the source produces symbols sl independently with proba-
bilities pl, l = 1, . . . , d. Then the stationary distribution of the Markov chain of subsection 3.1 is given,
for l = 1, . . . , d, by

πl,i = (1− pl)pil, i = 1, . . . , kl,

πl,kl+1 = pkl+1
l .

The diagonal potential matrix elements are given by

Z(l,i),(l,i) =


1− i(1− pl)pil, if i = 1, . . . , kl

1−pkl+1

l
1−pl − p

kl+1
l kl, if i = kl + 1.

The off-diagonal elements are, for j = 1, . . . , kl,

Z(r,i),(l,j) =



pjl (1− (1− pl)j), if r 6= l,

pj−il − j(1− pl)pjl , if r = l, i < j,

−j(1− pl)pjl , if r = l, i > j,

and

Z(r,i),(l,kl+1) =


pkl+1
l

p−i
l −1
1−pl − klp

kl+1
l , if r = l,

−klpkl+1
l , if r 6= l.
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