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Abstract

Using the tools of Palm calculus together with the markovian structure of the M/M/s
queue and a reversibility argument we obtain the queue–length distribution observed by the
kth customer who arrives after the time origin to a stationary queue, and similarly by the kth
customer who arrives before the time origin.
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SHORT TITLE: STATIONARY AND PALM VERSION OF THE M/M/s QUEUE

1 Introduction

Consider an M/M/s system with arrival rate λ and service rate µ (with λ < sµ) and let Xt denote

the number of customers in the system at time t, {tn} the Poisson arrival process, and {dn} the

departure process. We assume that {Xt; t ∈ R} is stationary under the probability measure P and

we will denote its stationary distribution by

πi := P(Xt = i), i = 0, 1, 2, . . . .

We also denote by P0
A the Palm transformation of P under {tn} and by P0

D the Palm transformation

of P under {dn}. Expectations with respect to these Palm probability measures will be denoted by

E0
A and E0

D respectively. We will further assume that the sample paths of Xt are right-continuous
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with probability 1. We recall the standard numbering convention regarding point processes (see [1,

p. 3]) according to which P–a.s. · · · t−1 < t0 < 0 < t1 < t2 · · · whereas P0
A(t0 = 0) = 1. As

usual N denotes the natural numbers {1, 2, 3, . . .} and N0 := {0, 1, 2, . . .} the nonnegative integers.

Let us denote by P the transition probability matrix of the embedded Markov chain at departure

epochs. Thus

P k
ij = P0

D(Xdk
= j|Xd0 = i) (1)

is the probability that the kth departure leaves behind j customers in the system, given that the 0th

departure (which, under P0
D, occurs at time 0) leaves behind i customers.

As a result of PASTA, a customer who arrives at t = 0 under the Palm probability sees the

system (excluding himself) in equilibrium, i.e. P0
A(X0− = i) = πi, and similarly the kth cus-

tomer who arrives after t = 0 under the Palm probability also sees the system in equilibrium i.e.

P0
A(Xtk− = i) = πi for k = 1, 2, . . .. However, the first customer who arrives after t = 0 under the

stationary probability P is not typical and hence there is no reason to believe that he sees the system

in equilibrium. This fact has been pointed out, among others, by Kelly [6, p.16]. Here we follow

this line of investigation further.

2 Customer who arrives after a fixed time

We assume that the system is in stationarity and we will obtain an expression for the probability

distribution of the number of customers in the system as observed by the kth customer who arrives

after t = 0. We begin with the following

Lemma 1. Suppose that {Xt; t ∈ R} is the queue-length process of an M/M/s system with arrival

rate λ and service rate µ, stationary under the probability measure P. Then, with ρ = λ/µ,

µE0
D[d1 − d0|X0 = i] =

{
s−1 if i ≥ s,

αi + s−1 if 0 ≤ i < s,
(2)
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where

αi =


s−i−1∑
k=0

ρk

(i + ρ) · · · (i + k + ρ)
+

1
s

(
ρs−i

(i + ρ) · · · (s− 1 + ρ)
− 1

)
if 0 < i < s,

ρ + α1 if i = 0.

(3)

Proof: The case i ≥ s is immediate. The case i < s follows by a straight-forward conditioning

argument and an elementary computation.

We consider now the distribution of customers left behind by the kth departure after time 0.

Lemma 2. Assuming that the queue is stationary, the kth departure after time 0 leaves behind the

queue in stationarity i.e. for k ≥ 1

P(Xdk
= i) = πi. (4)

Proof: Under P the queue-length process Xt is assumed to be stationary. As a result of the skip-

free property of the system P0
A(X0− = j) = P0

D(X0 = j). Also, due to the PASTA property

P0
A(X0− = j) = P(X0 = j). Taken together, these two relations imply that

P0
D(X0 = j) = P(X0 = j). (5)

We have

P 0
D(Xdk

= i) =
∞∑

j=0

P0
D(Xdk

= i|X0 = j)P0
D(X0 = j) (6)

whereas, due to the Strong Markov property, we also have

P0
D(Xdk

= i|X0 = j) = P(Xdk
= i|X0 = j) (7)

From (5), (6), and (7) we have

P 0
D(Xdk

= i) =
∞∑

j=0

P(Xdk
= i|X0 = j)P(X0 = j) = P(Xdk

= i). (8)

However, because of the invariance of P0
D under the shifts θdk

we have

P 0
D(Xdk

= i) = P0
D(Xdk

= i).
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Thus, putting all of the above together completes the proof of the lemma.

The following theorem gives our main result.

Theorem 1. In stationarity, the probability that the kth arriving customer after time 0 sees i cus-

tomers in the system, P(Xtk− = i), where k ∈ N is given by

P(Xtk− = i) = λπiE0
D[dk − dk−1|X0 = i] (9)

= λπi

∞∑
l=0

P k−1
il E0

D[d1 − d0|X0 = l]. (10)

On the other hand for the customers that arrive before the time origin in stationarity we have

P(Xtk− = i) = πi for k = 0,−1,−2,−3, . . .. (11)

Proof: From the Palm inversion formula (see [1]) it follows that

P(Xtk− = i) = λE0
A

∫ t1

t0

1(Xtk− = i)ds = λE0
A[(t1 − t0)1(Xtk− = i)]. (12)

Let us now denote by {X̃t} the process in reversed time by setting X̃t = X−t for all t ∈ R. We also

have t̃n = −d−n+1 and d̃n = −t−n+1 P–a.s. Note however that P0
A–a.s. we have d̃n = −t−n and

also P0
D–a.s. we have t̃n = −d−n.

In view of the above, the expectation in the right hand side of (12) becomes

E0
A[(t1 − t0)1(Xtk− = i)] = E0

A[(t−k − t−k+1)1(Xt0− = i)]

= E0
A[(d̃k − d̃k−1)1(X̃0 = i)]. (13)

Thus from (12), (13), and the reversibility of {Xt} we have

P(Xtk− = i) = λE0
D[(dk − dk−1)1(X0 = i)]

= λE0
D[dk − dk−1 | X0 = i]P0

D(X0 = i). (14)

Taking into account (5) we see that (14) implies (9).
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To obtain (10) use the strong Markov property to write the last expectation in equation (14) as

E0
D[dk − dk−1 | X0 = i] =

∞∑
l=0

P0
D(Xdk−1

= l | Xd0 = i)E0
D[dk − dk−1 | Xdk−1

= l]. (15)

Using the shift-invariance property of P0
D we have that

E0
D[dk − dk−1 | Xdk−1

= l] = E0
D[d1 − d0 | Xd0 = l].

From the above and (1) we can write the right-hand-side of (15) as

∞∑
l=0

P k−1
il E0

D[d1 − d0 | Xd0 = l]. (16)

This completes the proof of (10).

We now turn to arrivals that occurred before the origin. Reversing time we realize that the nth

arrival before time zero, denoted by t−n+1 due to the numbering convention corresponds to the nth

departure after time zero, denoted by dn. Thus an appeal to Lemma 2 establishes (11) and concludes

the proof.

Corollary 1. limk→∞ P(Xtk− = i) = πi.

The corollary is intuitively obvious and is a consequence of a general theorem concerning

stationary and ergodic random marked point processes (see [1, p. xx] and also [7]). The proof

provided here is simple and direct and the argument used will also be useful in the sequel.

Proof: Because of the irreducibility, aperiodicity, and positive recurrence (under the stability con-

dition) of the discrete time Markov chain with transition probability matrix Pij we have

lim
k→∞

P k
il = P0

D(X0 = l) = πl

where the last equality follows by the argument at the end of lemma 2. Also, because E0
D[d1 − d0 |

Xd0 = l] ≤ λ−1 + µ−1 for all l ∈ N and
∑∞

l=0 P k−1
il = 1 < ∞, we can use the Dominated
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Convergence Theorem to conclude that

lim
k→∞

P(Xtk− = i) = λπi lim
k→∞

∞∑
l=0

P k−1
il E0

D[d1 − d0|X0 = l]

= λπi

∞∑
l=0

lim
k→∞

P k−1
il E0

D[d1 − d0|X0 = l]

= λπi

∞∑
l=0

πlE0
D[d1 − d0|X0 = l]

= λπiE0
D[d1 − d0]

= πi.

(In the last equation we have used the fact that E0
D[d1 − d0] = λ−1.)

We next use Lemma 1 in order to obtain an explicit expression for P(Xtk = i). From (2) and

(10) we obtain

P(Xtk− = i) = λπi

∞∑
l=0

P k−1
il

1
sµ

+ λπi

∞∑
l=0

P k−1
il

αl

µ
=

ρ

s
πi + πiρ

s−1∑
l=0

P k−1
il αl.

Taking into account that

πi+1 =
ρ

s
πi, i = s− 1, s, s + 1, . . .

and that

P k−1
il = 0 for i > l + k − 1

we obtain the following

Proposition 1. The probability that the kth arrival after time 0 in a (time–) stationary M/M/s

queue sees i customers is given by the expression

P(Xtk− = i) =



πi+1 if i ≥ s + k − 1,

πi+1 + πiρ

s−1∑
l=i−k+1

P k−1
il αl if k − 1 ≤ i < s + k − 1,

ρ

s
πi + πiρ

s−1∑
l=0

P k−1
il αl if 0 ≤ i < k − 1.
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Specializing the above to the single server system and taking into account that, in that case,

α0 := µE0
D[d1 − d0|X0 = 0]− 1 =

µ

λ
= ρ−1

we obtain the following

Corollary 2. For the M/M/1 queue we have

P(Xtk− = i) =


πi+1 if i ≥ k,

πi+1 + πiP
k−1
i0 if 0 ≤ i ≤ k − 1.

(17)

Finally, time reversal allows us to state a proposition analogous to theorem 1 for the departures.

Corollary 3. Consider an M/M/s system which is stationary under P. The probability that the kth

departure leaves behind i ∈ N0 customers is given by

P(Xdk
= i) =


πi, k = 1, 2, 3, . . . ,

λπiE0
D[d−k+1 − d−k|X0 = i], k = 0,−1,−2,−3, . . . .

3 Absolute continuity and stochastic ordering

Fix k ∈ N. The above results illustrate the fact that the two measures on N0, namely the stationary

measure π and the shifted measure νk defined via νk(B) := P(Xtk− ∈ B), B ⊂ N0, are mutually

absolutely continuous with Radon–Nikodỳm derivative given by

fi :=
νk

i

πi
= λE0

D[dk − dk−1|Xd0 = i]. (18)

This of course is a direct consequence of theorem 1. We will take advantage of this explicit rep-

resentation for fi to show that π stochastically dominates νk in the likelihood ordering sense (see

Ross for a definition and some of the properties of this stochastic order).

Theorem 2. For each k

π ≥LR νk

or, equivalently, the sequence {fi; i ∈ N0} is increasing.
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Proof: Indeed, with φl := E0
D[d1 − d0|X0 = l] can rewrite (10) as

fi = λ

∞∑
l=0

P k−1
il φl.

Clearly φl is an increasing sequence. Also, the family of probability measures on N0, {µi;∈ N0}

defined for each B ⊂ N0 via µi(B) :=
∑

l∈B P k−1
il is stochastically increasing, i.e. for i ≥ j

∞∑
l=m

P k−1
il ≥

∞∑
l=m

P k−1
jl for all m ∈ N0.

The simplest and most elegant way to prove this is via a coupling argument between a system

starting with i customers at 0 and one starting with j customers at 0, as described in [8, p. 417].

Therefore
∑∞

l=0 P k−1
il φl ≥

∑∞
l=0 P k−1

jl φl and thus fi ≥ fj for i ≥ j.

Since likelihood ratio ordering implies ordinary stochastic ordering (see [8]) we have the im-

mediate

Corollary 4. For any k, i ∈ N,

P(Xtk− ≥ i) ≤ P(X0 ≥ i). (19)

The above results are intuitively reasonable since, assuming the system to be stationary, we

expect the first customer who arrives after time 0 to find the system less congested than usual, in

view of the fact that the interarrival time between this customer and the one preceding him is the

sum of two independent exponential random variables with rate λ.

4 The M/M/1 queue and the speed of convergence to stationarity

Since P k−1
i0 = 0 for i ≥ k equation (17) can be restated as

νk
i = πi+1 + πiP

k−1
i0 . (20)

Let p = µ
µ+λ and q = λ

µ+λ . We have the following
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Proposition 2. The generating function Φi(z, w) :=
∑∞

k=0

∑∞
l=0 wkzlP k

il is given by

Φi(z, w) =
(1− z)wpΦi(0, w)− (1− qz)zi+1

qz2 − z + pw
(21)

with

Φi(0, w) =
z1(w)i

1− z1(w)
(22)

where z1(w) = 1−
√

1−4pqw
2q , z2(w) = 1+

√
1−4pqw
2q , are the roots of the equation

qz2 − z + pw = 0. (23)

Proof: Under the measure P0
D we have

Xdn = Xdn−1 + un − 1(Xdn−1 > 0) (24)

where the random variables {un} are independent geometric with distribution P0
D(un = j) = pqj ,

j = 0, 1, 2, . . ., with a corresponding probability generating function p
1−qz . If we set

φi,n(z) := E0
D[zXdn |Xd0 = i]

then from (24) we have

E0
D[zXdn |Xdn−1 ] =

p

1− qz
zXdn−1

−1(Xdn−1
>0)

whence, taking conditional expectation given that Xd0 = i, we obtain the recursive relation

φi,n(z) =
z−1p

1− qz
φi,n−1(z)− (1− z)

z−1p

1− qz
φi,n−1(0), n = 1, 2, . . . . (25)

(Note that φi,n−1(0) = P0
D(Xdn−1 = 0|Xd0 = i) = Pn−1

i0 .) Multiplying both sides of the above

recursion by wn, summing for n = 1, 2, 3, . . ., and taking into account that φi,0(z) = zi, we obtain

after some elementary manipulations (21). The unknown function Φi(0, w) =
∑∞

k=0 wkφi,k(0) can

be determined by noting that one of the two roots of the denominator, z1, satisfies the inequality

|z1| < 1 provided that |w| < 1. Thus, z1 must also be a root of the numerator since for |w| < 1,

|z| < 1, Φi(z, w) cannot have any singularities. We conclude that

Φi(0, w) =
(1− qz1)zi+1

1

(1− z1)wp
.
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z1 being a root of (23) we have that z1 − z2
1q = pw and hence we obtain (22).

From the above we obtain readily the following

Corollary 5. The generating function of the sequence {νk
i ; k = 0, 1, 2, . . .} is given by

∞∑
k=0

νk
i wk =

πi+1

1− w
+ πi

z1(w)i

1− z1(w)
. (26)

The joint generating function Ni(z, w) :=
∑∞

k=0

∑∞
i=0 νk

i wkzi is given by

Ni(z, w) =
ρ(1− ρ)

(1− zρ)(1− w)
+

1
(1− z)(1− wz1(w))

. (27)

In [9] the quantities ∫ ∞

0
(P(Xt = i)− P(Xt = i|X0 = 0)) dt,

i = 0, 1, 2, . . . , and ∫ ∞

0
(EXt − E[Xt|X0 = 0]) dt

have been proposed as natural measures of the speed of convergence of the M/M/s queue to sta-

tionarity and their values have been computed in terms of the parameters of the process. In [3] this

idea has been extended to general birth-and-death processes and in [4] the connection of these ideas

to the fundamental matrix of the Markov process has been pointed out.

Theorem 3. The quantity
∑∞

k=1 (P(X0 = i)− P(Xtk = i)) is given by

∞∑
k=1

(πi − νk
i ) = iπi for k = 1, 2, . . . and i = 0, 1, 2, . . .. (28)

Also,
∞∑

k=1

EX0 − EXtk =
(

ρ

1 + ρ

)2

. (29)
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Proof: Define the sequence ak := πi−νk
i and the generating function A(w) :=

∑∞
k=1 akw

k. From

Corollary 3 and the fact that, for the M/M/1 queue πi = (1− ρ)ρi, we have

A(w) =
πi

1− w

(
1− ρ− z1(w)i 1− w

1− z1(w)

)
.

A standard argument involving de l’Hôpital’s theorem shows that limw↑1 A(w) = iπi. Since the

power series
∑∞

k=1 akw
k converges for every w ∈ [0, 1] by Abel’s theorem (e.g. see [5, p.259]) we

have
∑∞

k=1 ak = limw↑1 A(w) = iπi.

Similarly
∑∞

k=1[EX0 − EXtk ] =
∑∞

i=0 iπ2
i and thence follows (29).
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