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Abstract

A simple random time change is used to analyze M/GI/1 queues with workload restrictions.
The types of restrictions considered include workload bounds and rejection of jobs whose waiting
times exceed a (possibly random) threshold. Load dependent service rates and vacations are also
allowed and in each case the steady state distribution of the workload process for the system
with workload restrictions is obtained in terms of that of the corresponding M/GI/1 queue
without restrictions. The novel sample path arguments used simplify and generalize previous
results.
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1 Introduction

We consider queueing systems with compound Poisson input process, a load dependent server whose

behavior may include vacations, and workload restrictions. Typical forms of restrictions are:

i) A bound b on the workload. A finite dam where the overflow is lost is the classic example.

Another example is a processor sharing queue where jobs have a fixed time limit b in the

system. If a job has not finished service by the time the limit b is reached, it leaves without

completing its service requirement. Here the workload at time t, Xt, represents the “real”

load on the processor; if no further work arrives after t and the processor works at unit rate,

the queue would become idle at t + Xt.

ii) Balking in FCFS queues when waiting (or sojourn) times exceed a certain (possibly random)

threshold a. We may assume either that a job does not join the queue at all if its waiting

time exceeds a or that it joins the queue but is subsequently “timed out” if its waiting time
∗Supported in part by N.S.F. Grant DDM-8905638
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exceeds a. The two models are equivalent from the point of view of real workload but differ

of course if one considers the number of jobs in the system. The more general case where a

job upon arrival at time t joins the queue with probability p(Xt) is also considered.

An extensive literature exists on such systems. The steady state distribution for the finite dam

with compound Poisson input and a constant release rule was first obtained by Gani and Prabhu

[7] under the assumption of deterministic inflows. Markovian queues with balking based on the

workload were first considered in Barrer [2]. For an overview of early results we refer the reader to

Gnedenko and Kovalenko [10], Cohen [5], and the references therein.

We shall illustrate our results via the M/GI/1 queue with workload bounded above by b. Let the

steady state distribution for the workload process be Fb(x), assume that the unrestricted system is

stable, and denote by F (x) the steady state distribution of the unrestricted workload process. Then

the workload process in the restricted system with bound b has steady state distribution function

given by

Fb(x) =
F (x)
F (b)

, ∀ x ∈ [0, b] . (1)

This was established by Takács [15]. Earlier results include Ghosal [8] and Takács [14]. Franken et

al. [6, pp. 155–157] obtain the same result for M/GI/1 queues with bounded workload and “warm-

up periods” (vacations, in more standard terminology). Their approach is based on Miyazawa’s

conservation principle and the PASTA property of the arrival process.

Asmussen [1, pp. 297–298] sketches a proof of the above result using essentially a “cut and

paste” argument. Choosing regenerative cycles for the unrestricted system starting at b, he divides

the regenerative cycle into two parts, the first entirely below b and the second above it. Discarding

the second part of the cycle immediately leads to cycles for the bounded workload system and to

(1). The argument is presented in detail in section 6 where a result for the transient distribution

is also given.

In this paper we extend this “cut and paste” argument to include more general random time

changes and apply the technique to queues with more general restrictions where the simplicity and

effectiveness of this approach become apparent. Before closing this section, we point out that the

“cut and paste” idea has been used in other applications as well. For example it was used for

sensitivity analysis via simulation in Ho and Li [11] and Cassandras and Strickland [4]. Glasserman

and Gong [9] recently apply it to the M/GI/1/K queue to derive the proportionality result on the

ergodic queue length probabilities.
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2 Random time changes for regenerative systems

Random time changes have been used extensively in the analysis of stochastic differential equa-

tions (e.g. see [12]) as well as point processes [3]. Our goal is to use simple random time change

arguments to obtain the steady state distribution of “complicated” queueing models in terms of

the known steady state distribution of simpler models. To be more specific, let {Xt; t ≥ 0} be a

real-valued process, adapted to a history {Ft; t ≥ 0}. Let {αt; t ≥ 0} be a real, nonnegative process

also adapted to Ft, representing the inverse of the rate at which a “random clock” is running. We

will assume that αt ≤ α for all t ≥ 0 w.p.1 for some α > 0. Both {Xt} and {αt} have left continuous

sample paths with right limits w.p.1.

We will assume that the vector process {(Xt, αt); t ≥ 0} is regenerative in the classical sense (see

Asmussen [1, p.125],) with respect to an ordinary, non-lattice renewal process {Sn;n = 0, 1, . . .},

with E[S1 − S0] ≤ ∞. Finally let (X∞, α∞) be a random vector distributed according to the

limiting distribution of the process {(Xt, αt)}. (In the queueing examples we give subsequently,

{Xt} will be the workload process of the M/GI/1 queue.) Let

ϕ(t) =
∫ t

0
αsds , (2)

and define the random time change τ = ϕ−1 by means of τ(t) = inf{u : ϕ(u) > t}. Finally define

the time-changed process {Yt} by means of Yt = Xτ(t).

Lemma 1 The point process {ϕ(Sn);n = 0, 1, . . .} is renewal with E[ϕ(Sn+1) − ϕ(Sn)] < ∞ and

the time-changed process {Yt} defined above is regenerative with respect to it.

Proof: Define ∆Sn
def= Sn+1 − Sn. A moment’s reflection shows that the sequence of random

variables

ϕ(Sn+1)− ϕ(Sn) =
∫ Sn+1

Sn

αsds =
∫ ∆Sn+1

0
αSn+sds , n = 0, 1, . . . ,

is i.i.d. in view of the fact that {αt} is regenerative. Also, E[ϕ(Sn+1)− ϕ(Sn)] = E[
∫ Sn+1

Sn
αsds] ≤

αE[Sn+1 − Sn] < ∞.

It remains to show that {Xτ(ϕ(Sn)+s); s ≥ 0} is independent of {ϕ(S0), ϕ(S1), . . . ϕ(Sn); {Xs; 0 ≤

s ≤ ϕ(Sn)}}. Equivalently, it is enough to show that, for any k and any ti > 0, i = 1, 2, . . . , k,

(Xτ(ϕ(Sn)+t1), . . . , Xτ(ϕ(Sn)+tk) is independent of {ϕ(S0), ϕ(S1), . . . ϕ(Sn); {Xs; 0 ≤ s ≤ ϕ(Sn)}}.

Let vi = inf{x :
∫ x
Sn

αudu > ti}. Then τ(ϕ(Sn) + ti) = Sn + vi and (v1, . . . vk) are indepen-

dent of {ϕ(S0), ϕ(S1), . . . ϕ(Sn); {Xs; 0 ≤ s ≤ ϕ(Sn)}} because {(Xt, αt)} is regenerative. Hence,
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(XSn+v1 , . . . , XSn+vk
) is independent of {S0, S1, . . . , Sn; {(Xs, αs); 0 ≤ s ≤ Sn}} and the proof is

complete. 2

Theorem 1 In addition to the above assumptions, suppose that the random variable
∫ Sn+1

Sn
αsds is

non-lattice. Then the limiting distribution of the time-changed process {Yt} exists and is given by

P (Y∞ ≤ x) =
E[

∫ S1
S0

1(Xs ≤ x)αsds]
E[ϕ(S1)− ϕ(S0)]

, (3)

or equivalently by

P (Y∞ ≤ x) =
E[1(X∞ ≤ x)α∞]

E[α∞]
. (4)

Proof: From lemma 1 follows that

P (Y∞ ≤ x) =
E[

∫ ϕ(S1)
ϕ(S0) 1(Ys ≤ x)ds]

E[ϕ(S1)− ϕ(S0)]
. (5)

Since Ys = Xτ(s), the numerator in the rhs of (5) can be written as E[
∫ ϕ(S1)
ϕ(S0) 1(Xτ(s) ≤ x)ds] which

with the change of variable u = τ(s) becomes E[
∫ S1
S0

1(Xu ≤ x)αudu], and this establishes (3). (4)

follows immediately from our assumption that {(Xt, αt)} is a regenerative process with respect to

the renewal process {Sn} which implies that E[ϕ(S1)− ϕ(S0)] = E[
∫ S1
S0

αsds] = E[α∞]E[S1 − S0],

and similarly that E[
∫ S1
S0

1(Xs ≤ x)αsds] = E[1(X∞ ≤ x)α∞]E[S1 − S0]. 2

3 The M/GI/1 queue with bounded workload process

Consider a single server queue in which the arrival epochs {An} are Poisson with rate λ and the

sequence of service requirements {σn} is i.i.d. and independent of the Poisson process. We assume

that the server performs work at the rate of r(x) work units per time unit when the workload is

equal to x (r(0) = 0). Though for simplicity we will focus on queues without vacations in the rest

of this paper, our analysis as well as our results remain the same for queues with vacations.

Define the unbounded workload process {Xt ; t ≥ 0} to have left-continuous sample paths such

that w.p.1 A0 = 0, XA0 = 0, XA0+ = σ0, d
dtXt = −r(Xt) for t ∈ (An, An+1), and XAn+ =

XAn + σn. We assume that λEσ1 ≤ lim infx→∞ r(x) which ensures the stability of the unbounded

system (e.g. see Franken et al. [6, p.154]).

Define next the bounded workload process {Xb
t ; t ≥ 0} to have left-continuous sample paths

such that w.p.1 A0 = 0, Xb
A0

= 0, Xb
A0+ = σ0 ∧ b, d

dtX
b
t = −r(Xb

t ) for t ∈ (An, An+1), and

Xb
An+ = (Xb

An− + σn) ∧ b. (Without loss of generality we have assumed that both systems are

initially empty.) Finally, let αt = 1(Xt ≤ b).
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Remark. The process {Yt ; t ≥ 0} defined as in section 2 has the same statistics as the process

{Xb
t ; t ≥ 0}. This can be verified easily by a “cut and paste” argument. In particular, P (Y∞ ≤

x) = P (Xb
∞ ≤ x). (Figure 1 illustrates the case r(Xt) = 1(Xt > 0).)

We can easily verify that {(Xt, αt)} is regenerative with respect to {Sn}, the arrival epochs of

those jobs in the unbounded system that initiate busy periods. Also, αt ≤ 1 ∀t w.p.1 and
∫ Sn+1

Sn
αsds

is non-lattice. In view of our remark and Theorem 1, the steady state distribution of the workload

process Xb
t is given by

P (Xb
∞ ≤ x) =

E[1(X∞ ≤ x)1(X∞ ≤ b)]
E[1(X∞ ≤ b)]

=
F (x)
F (b)

, ∀ x ∈ [0, b] .

An argument similar to the above gives the distribution of the workload in a system with bound

b in terms of the distribution of the workload in the same system with bound c > b:

Fb(x) =
Fc(x)
Fc(b)

, ∀ x ∈ [0, b] . (6)

4 M/GI/1 queues with balking

With the same notation as in section 3, consider again the left continuous M/GI/1 workload process

(without restrictions) {Xt; t ≥ 0} and the process {Xa
t ; t ≥ 0} obtained by assuming that jobs whose

waiting times would be more than a do not join the system. Formally, w.p.1 A0 = 0, Xa
A0

= 0,

Xa
A0+ = σ0, d

dtX
a
t = −r(Xa

t ) for t ∈ (An, An+1), and Xa
An+ = Xa

An
+ σn1(XAn ≤ a). In the sequel

we describe a cut and paste procedure which will enable us to construct a sample path of the system

with balking from the sample path of the original M/GI/1 queue.

We start by defining two sequences of stopping times as follows: Q1 = 0, Vn = sup{t > Qn :

Xt > a}, n = 1, 2, . . ., Qn = inf{Ai > Vn−1 : XAi > a}, n = 2, 3, . . .. Define also the process {αt}

by α0 = 1 w.p.1 and αt =
∑∞

n=1 1(Qn < t ≤ Vn). (αt equals 0 on the intervals to be deleted and 1

on the intervals to be retained and is also left-continuous.) Define ϕ(t), τ(t), and {Yt; t ≥ 0} as in

section 2. Then, it is easily verified that {Yt; t ≥ 0} has the same statistics as {Xa
t ; t ≥ 0}. (Figure

2 illustrates the case r(Xt) = 1(Xt > 0).) {Sn;n = 0, 1, . . .} again denotes the renewal process

corresponding to the arrival epochs of those jobs in the unrestricted process {Xt} that initiate

busy periods. Clearly {(Xt, αt)} is regenerative with respect to {Sn} and the analysis in section 2

applies.

Let Fa(x) be the steady state distribution of Xa
t , fa(x) its density, and F a(x) = 1 − Fa(x)

the corresponding survivor function. Also, let B(x) = P (σ1 ≤ x) be the service time distribution,

m = E[σ1] its expected value, and ρ = λm. We will assume that the corresponding M/GI/1
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queue without balking is stable and we will denote the steady state distribution of the workload

by F and its density by f . When the rate of the server does not depend on the load, i.e. when

r(y) = 1(y > 0), F is given by the Pollaczek-Khintchine formula:

F (x) = (1− ρ)
∞∑

k=0

ρkB∗k
e (x) for x ≥ 0,

where Be denotes the equilibrium residual life distribution of B and B∗k
e the k-fold convolution of

Be with itself with the convention that B∗0
e is the Dirac distribution at 0.

Lemma 2 Let Ua(X) be the number of x-upcrossings of the process {Yt} in [ϕ(S0), ϕ(S1)). Then,

Ua(x) =
∑

{S0≤Ai<S1}
1(YAi ≤ x) 1(YAi+ > x) 1(αAi = 1) , (7)

fa(x) = r(x)−1 E[Ua(x)]
E[ϕ(S1)− ϕ(S0)]

. (8)

Proof: As it becomes clear from Figure 2, the time changed process {Yt} will have the same

number of x-upcrossings in a busy period as {Xt} if x ≤ a. If x > a then only upcrossings

satisfying XAi ≤ a and XAi+ > x correspond to undeleted segments of the sample path of {Xt}

and therefore to upcrossings of {Yt}. Note that {αt} has left-continuous sample paths, and that

{αAi = 1} = {XAi ≤ a}. Hence 1(YAi ≤ x)1(YAi+ > x)1(αAi = 1) equals one only for arrival

epochs Ai corresponding to “undeleted” upcrossings. This establishes (7). (8) is a special case of

a well-known result [13]. 2

Theorem 2 The steady state distribution of the workload process of the M/G/1 queue with balking

is given by

Fa(x) = Fa(0) +
∫ x

0
fa(y)dy,

with

fa(x) =
λr(x)−1

C

∫ x∧a

0−
B(x− y)F (dy) , (9)

Fa(0) =
1
C

F (0), (10)

where C is a normalization constant given by

C = 1 − λ

∫ ∞

y=a

∫ ∞

t=0
[R(t + y) − R(y) ]B(dt)F (dy) , (11)

with R(x) =
∫ x
0 r(y)−1dy. In particular when the service rate is constant, i.e. r(y) = 1(y > 0), we

have C = 1− ρ(1− F (a)).
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Proof: From {αAi = 1} = {XAi ≤ a}, (7), and (8) we obtain

fa(x) =
r(x)−1

E[ϕ(S1)− ϕ(S0)]
E[

∑
{S0≤Ai<S1}

1(XAi ≤ x) 1(XAi+ > x) 1(XAi ≤ a) ]. (12)

Let

C =
E[ϕ(S1)− ϕ(S0)]

E[S1 − S0]
, (13)

and N[S0,S1) be the number of Poisson arrivals during [S0, S1) which is also the number of jobs in

the first busy period of the unrestricted system. From Wald’s lemma it follows that EN[S0,S1) =

λE[S1 − S0]. Multiplying and dividing the lhs of (12) with EN[S0,S1), we obtain

fa(x) = r(x)−1 EN[S0,S1)

E[ϕ(S1)− ϕ(S0)]
1

EN[S0,S1)
E[

∑
{S0≤Ai<S1}

1(XAi ≤ x ∧ a) 1(XAi+ > x)]

=
1
C

λr(x)−1
∫ x∧a

0−
B(x− y)F (dy) . (14)

To compute the size of the atom at zero, Fa(0), we note that our cut-and-paste time trans-

formation never eliminates idle periods, i.e. that Xt = 0 implies at = 1. Hence from (3) we

have

Fa(0) =
E[

∫ S1
S0

1(Xs = 0)αsds]
E[ϕ(S1)− ϕ(S0)]

=
1
C

E[
∫ S1
S0

1(Xs = 0)ds]
E[S1 − S0]

=
1
C

F (0) . (15)

The value of C can be obtained by the normalization relation

1− Fa(0) =
λ

C

∫ ∞

0
r(x)−1

∫ x∧a

0−
B(x− y)F (dy)dx

=
λ

C

(∫ ∞

0
r(x)−1

∫ x

0−
B(x− y)F (dy)dx−

∫ ∞

a
r(x)−1

∫ x

a
B(x− y)F (dy)dx

)
.(16)

The steady state distribution and density of the workload process of the unrestricted M/GI/1 queue

satisfy the relationship

f(x) = λr(x)−1
∫ x

0−
B(x− y)F (dy) . (17)

This is a consequence of Takács formula and PASTA (see Franken et al. [6, 129]). Combining (15),

(16), and (17) we obtain

C = 1 − λ

∫ ∞

a
r(x)−1

∫ x

a
B(x− y)F (dy)dx , (18)

or equivalently

C = 1 − λ

∫ ∞

y=a

∫ ∞

t=0
[R(t + y) − R(y) ]B(dt)F (dy) , (19)

where R(x) =
∫ x
0 r(y)−1dy. When r(y) = 1(y > 0), we have C = 1− ρ(1− F (a)).

Finally, for x < a (14) and (17) give

fa(x) =
λr(x)−1

C

∫ x

0−
B(x− y)F (dy) =

1
C

f(x) . 2
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5 Load-dependent arrival rates

We now extend the results in section 4 to allow arrival rates to be load-dependent in the following

sense. Suppose that g : R+
0 → R+

0 is a nonnegative real function with g(x) ≤ λ for all x ∈ R+
0 .

Assume that jobs arrive according to a Poisson process with rate λ and a job decides to join the

queue with probability p(x) = g(x)/λ, independently of anything else, when x is the workload the

job observes upon its arrival.

As before, let {Xt} be the workload process of the unrestricted M/GI/1 queue. Let {ξi} be an

i.i.d. sequence of random variables uniformly distributed in [0, 1] and independent of {Xt; t ≥ 0}.

Define the following sequence of stopping times: Q1 = min{Ai : p(XAi) < ξi}, Vm = sup{t >

Qm : Xt = XQm}, m = 1, 2, . . ., Qm = min{Ai > Vm−1 : p(XAi) > ξi}. An argument along the

lines of the analysis in section 4 gives the following expression for the density of the steady state

distribution of the workload process:

fp(x) =
λr(x)−1

F (0) + λ
∫∞
0 r(x)−1

∫∞
0− p(y)B(x− y)F (dy)dx

∫ x

0−
p(y)B(x− y)F (dy) (20)

As a special case, consider a FCFS queue where the i’th job decides to join the queue only if its

waiting time is less than ζi where {ζi} is an i.i.d. sequence of nonnegative random variables with

distribution P (ζ1 ≤ x) = H(x). This corresponds to the above model with p(x) = H(x). Balking

when the sojourn time of the i’th job exceeds ζi corresponds to p(x) =
∫∞
0 H(x + y)dB(y).

6 Transient behavior of the M/GI/1 queue with bounded work-
load

With the same notation as in section 3, let X0 = b, and Xb
0 = b. Takács [15] established the

following result concerning the transient behavior of queues with bounded workload:

γ

∫ ∞

0
Pb(Xb

t ≤ x)e−γtdt =
∫∞
0 Pb(Xt ≤ x)e−γtdt∫∞
0 Pb(Xt ≤ b)e−γtdt

, (21)

where Pb(Xt ≤ x) = P (Xt ≤ x|X0 = b) and γ > 0. A simple proof of this result can be obtained as

follows. Assume that T is an exponentially distributed r.v. with rate γ, independent of the process

{Xt}. Then the above relation can be written as

Pb(Xb
T ≤ x) =

Pb(XT ≤ x)
Pb(XT ≤ b)

. (22)

Let Q1 = inf{t > 0 : Xt > b} and V1 = inf{t > Q1 : Xt = b}, i.e. Q1 is the first b-upcrossing and

V1 the first b-downcrossing. Since X̃0 = X̃Q1 = b, the processes {X̃t ; t ≥ 0} and {X̃Q1+t ; t ≥ 0} have
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the same statistics. By the same token, {Xt ; t ≥ 0} and {XV1+t ; t ≥ 0} also have the same statistics.

On the other hand, both T and (T −Q1|T ≥ Q1) have the same distribution due to the memoryless

property of the exponential random variable T and they are independent of the processes {X̃t; t ≥ 0}

and {X̃Q1+t; t ≥ 0} respectively. It then follows that X̃T and (X̃Q1+(T−Q1)|T ≥ Q1) = (X̃T |T ≥ Q1)

have the same distribution, i.e., Pb(X̃T ≤ x) = Pb(X̃T ≤ x|T ≥ Q1). Also note that if T ≤ Q1

then X̃T = XT . Therefore,

Pb(Xb
T ≤ x) = Pb(X̃T ≤ x)

= Pb(X̃T ≤ x, T ≤ Q1) + Pb(X̃T ≤ x|T ≥ Q1)P (T ≥ Q1)

= Pb(XT ≤ x, T ≤ Q1) + Pb(X̃T ≤ x)P (T ≥ Q1) ,

which leads to

Pb(Xb
T ≤ x)P (T ≤ Q1) = Pb(XT ≤ x, T ≤ Q1) . (23)

Similar to (23) we can show that

Pb(XT ≤ x)P (T ≤ V1) = Pb(XT ≤ x, T ≤ V1) = Pb(XT ≤ x, T ≤ Q1) , (24)

since Pb(XT ≤ x,Q1 ≤ T ≤ V1) = 0. (22) follows immediately from (23) and (24).
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