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Infinitesimal Perturbation Analysis (IPA) is a method for computing a sample path derivative
with respect to an input parameter in a discrete event simulation. The IPA algorithm is based on
the fact that for certain parameters and any realization of a simulation, the change in parameter
can be made small enough so that only the times of events get shifted, but their order does not
change. This paper considers the convergence properties of the IPA sample path derivatives. In
particular, the question of when an IPA estimate converges to the derivative of a steady state
performance measure is studied. Necessary and sufficient conditions for this convergence are
derived for a class of regenerative processes. Although these conditions are not guaranteed to be
satisfied in general, they are satisfied for the mean stationary response time in the A/ G/1 queue.
A necessary condition for multiple IPA estimates to simultaneously converge to the derivatives
of steady state throughputs in a queueing network is determined. The implications of this necessary
condition are that, except in special cases, the original IPA algorithm cannot be used to consistently
estimate steady state throughput derivatives in queueing networks with multiple types of customers,
state-dependent routing or blocking. Numerical studies on IPA convergence properties are also
presented.

(SIMULATION; SENSITIVITY ANALYSIS; PERTURBATION ANALYSIS; QUEUES; DIS-
CRETE EVENT SYSTEMS)

1. Introduction

Infinitesimal Perturbation Analysis (IPA) is a technique for calculating a sample path
derivative with respect to an input parameter in a discrete event simulation (see Ho,
Eyler and Chien 1983, Cao and Ho 1983, Ho and Cao 1983, Ho, Cao and Cassandras
1983, Ho, Suri, Cao, Diehl, Dille and Zazanis 1984, Suri and Zazanis to appear, Cao
1987a, 1988, Suri 1983 and 1987, Zazanis and Suri 1985a, b, Cao and Ho 1986 and
Zazanis 1986). A closely related algorithm for calculating sample path derivatives in
certain queueing networks has also been described in Woodside (1984). For example,
in a queueing system simulation we might be interested in estimating the mean response
time and its derivative with respect to the mean service time. The primary assumption
of IPA is that if the change in the input parameter is small enough, then the times at
which events occur get shifted slightly, but their order does not change. The IPA algorithm
shows how a very small change in a parameter generates event time ‘“‘perturbations” and
how the perturbation associated with one event affects the times of subsequent events.
Since events do not change in order, the effect of these perturbations can be tracked
efficiently during the simulation run, thereby obtaining the sample path derivative with
only moderate overhead. A technique called First Order Perturbation Analysis, which is
in general an approximation, has been proposed to estimate the effect of a finite change
in the value of an input parameter (see, for example, Ho, Cao and Cassandras 1983).
An alternative approach to estimating derivatives based on likelihood ratios and the
variance reduction technique of importance sampling (see, for example, Hammersley
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and Handscomb 1964 and Halton 1970) is described in Glynn (1986), Glynn and Sanders
(1986), Reiman and Weiss (1986 ) and Rubinstein (1986). This paper will only consider
the Infinitesimal Perturbation. Analysis algorithm as it was originally proposed.

For example, consider a single server queue and suppose that the service time of the
nth customer is S, = 60X, where X, is a random variable with mean one and 0 is the
parameter of interest (6 is the mean service time). Here, for simplicity, we have assumed
0 to be a scale parameter of the service time distribution, although more general parameters
can be handled (see Suri and Zazanis 1988). If § changes by df then S, changes by d6.X,,.
The first customer’s departure time changes by df.X;. Similarly, the nth customer’s de-
parture time changes by d6X, + - - - + dfX, provided customer # is served in the first
busy period. If there are 7 customers served in the first busy period, and if df is small
enough, then there are 7 customers served in the first busy period of the system when
the parameter is 6 + df. In this case, the departure time of customer 7 + 1 changes only
by dbX..:, i.e., the departure times of the customers served in the second busy period
are unaffected by the change in departure times of customers served in the first busy
period. Fixing a positive df is never required since we only need keep track of terms of
the form 2}, 2i-; Xu.

The key questions associated with IPA concern the statistical properties of these sample
path derivatives, in particular their convergence properties. This paper addresses the
question of when an IPA sample path derivative converges to the derivative of a steady
state quantity. Let 7(6) denote the steady state quantity and let 7(0, ¢) be an estimate of
r(0) after a simulation of length ¢. Assume that lim,—., 7(6, t) = r(6) with probability
one. Suppose that we are interested in estimating the derivative of r(8), r'(8) = dr(0)/
db. Let the IPA sample path derivative be

7'(0, t) = d_aa: 70, 1) = }nir—l?o [7(0 + db, t) — 7(6, t)]/db.

The key question concerning IPA estimates (see also Cao and Ho 1987) is whether or
not they are strongly consistent, i.e., does

d d. . 2. d,
B r(0) = g7 11112 7(0,¢t) = ,11‘2 P 7(6,t)

with probability one? This is the classical question of when the order of two limits can
be interchanged.

The IPA algorithm is derived by observing that for any simulation realization, or
sample path w, and for any finite run length ¢, there exists a 6(w, t) > 0 such that if | df |
< 6(w, t), then the order of events does not change and only the time shifts need to be
considered in estimating the derivative. However, given a fixed d#, for some sample paths
w, | df| < é(w, t) in which case the order of events does not change, but for other sample
paths w, | df| = 6(w, t) in which case the order of events does change. In particular, as
t = oo, the probability should approach one that, for a fixed df, the order of events
changes.

This situation has been recognized in the IPA literature, but at the same time, IPA
has been shown to give strongly consistent estimates for:

1. The derivative of the mean stationary response time in the A/G/1 queue (Suri
and Zazanis 1988) and the first two derivatives of the mean stationary response time in
certain GI/G/1 queues (Zazanis and Suri 1985a). Estimating the second derivative
requires an extension to the IPA algorithm.

2. The derivative of the higher moments of the stationary response time in the M/
M/ 1 queue (Zazanis 1986).

3. The derivative of the stationary throughput with respect to a mean service time in
a closed Jackson network with a single type of customer (Cao 1987c). Cao (1988) and
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Cao and Ho (1986) have also shown that IPA produces unbiased estimates of the deriv-
atives of the transient throughput and transient mean response time in a closed Jackson
network with a single type of customer. Experimental evidence in Cao and Ho (1983)
suggests that IPA may produce strongly consistent estimates in open Jackson networks
with a single type of customer.

For a fixed ¢, intuitively, if the probability that the order of events changes is o(df),
then the interchange in order between expectation and limit should be justified and IPA
will yield an unbiased estimate of the derivative. However, in the above mentioned cases
the probability that events change in order is O(df), which is of the same order as the
IPA approximation 7(0 + df, t) ~ F(0, t) + d87’'(6, t), and yet IPA produces consistent
estimates! For example, the straightforward IPA estimate of the derivative of the number
of customers served in a busy period is identically zero whereas the derivative of the
expected number of customers served in a busy period is not zero. Similarly, in a finite
state space continuous time Markov chain, such as a closed Jackson network, with gen-
erator matrix Q = (g;;), dPu/dq;; # 0 where P is the probability transition matrix of
the embedded Markov chain. That is, if § = g;;, then, with probability O(d#f), the next
state in the chain with parameter 6 + df is different from the next state in the chain with
parameter 6.

In this paper, by examining the IPA convergence question in detail, we will explain
this apparent paradox and more clearly identify the domain of applicability of IPA.

It should be noted that the original IPA algorithm constitutes but a portion of the
body of research on Perturbation Analysis. In particular, several extensions of the IPA
algorithm have been developed, some heuristic and others with an analytical foundation.
These extensions increase the domain of applicability of Perturbation Analysis, and specific
references will be given at appropriate points in the paper.

In §2 necessary and sufficient conditions are given for IPA to produce strongly consistent
estimates in a class of regenerative processes. It is then shown that the IPA estimates are
strongly consistent in the M/ G/ 1 queue not because the probability that events change
in order during a regenerative cycle is o(df) (which it isn’t), but rather because certain
limiting expectations (as df — 0) that are not estimated by IPA cancel each other out.
These expectations exactly measure the limiting effect of a change in event order. An
intuitive explanation for this cancellation is provided. A heuristic argument is then given
that shows why IPA works for closed Jackson networks. This heuristic argument clearly
identifies an assumption of customer homogeneity that is required by IPA.

In §3, necessary conditions are derived that must be satisfied if the original IPA al-
gorithm is to simultaneously produce strongly consistent estimates of throughput (event
rate) derivatives in essentially arbitrary discrete event stochastic systems. If A\;(6) and
\2(0) are steady state throughputs and if IPA produces strongly consistent estimates for
A1(0) and A\3(0) for all # in some interval, then there must exist a constant ¢ such that

Ai(0)/2(0) = ¢ (L.1)

for all 4 in the interval. Among the implications of this result are that, except in special
cases, IPA cannot in general be used to consistently estimate throughput derivatives in
queueing networks with multiple types of customers, state-dependent routing or blocking
due to finite buffers. References will be given to several different extensions of IPA that
can alleviate these problems in certain situations. These extensions either provide exact
results (i.e., strongly consistent derivative estimates) in specific simple queueing systems
or provide approximate, but potentially accurate, results (i.e., single run finite difference
approximations to the derivatives) in more general systems.

The results of §§2 and 3 complement, extend, clarify and synthesize other results on
IPA convergence. For example, Cao (1985) discusses how an IPA estimate will typically
be biased if the sample output estimate is a discontinuous function of the input parameter
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0. Lemma 2.1 and Theorem 2.2 essentially extend this result to regenerative processes
and clarify a result of Zazanis and Suri (1985b). The examples cited above and in §3 all
exhibit such discontinuities. Similarly, Theorem 3.1 (equation (1.1) above) extends a
result that was obtained by Cao (1987a).

In §4, empirical results on IPA convergence properties are presented that further dem-
onstrate the requirement for customer homogeneity. One example of particular interest
is a simple closed product form queueing network with three queues and two types of
customers (see Baskett, Chandy, Muntz and Palacios 1975). In this example IPA produces
exact, i.e., strongly consistent, estimates of both A| and A\; with respect to the mean service
time at queue 1 and an inexact, but fairly accurate, estimate of A{ with respect to the
mean service time at queue 2. However, the IPA estimate of A5 with respect to the mean
service time at queue 2 has the wrong sign. The IPA extension described in Ho and Li
(1988) does produce accurate finite difference approximations to the throughput deriv-
atives in this example.

In §5, an IPA-like algorithm is presented for estimating derivatives in Birth and Death
processes. The analysis of this algorithm clearly shows the difficulty created by assuming
that small changes in parameters affect only the times of events and not their order or
relative number. For Birth and Death processes, empirical studies in Glasserman (1988)
indicate that this difficulty can also be alleviated by applying IPA to a different represen-
tation, i.e., different event generation method, of the process, although this alternative
representation does not necessarily lead to strongly consistent derivative estimates in
general continuous time Markov chains.

Finally, §6 summarizes the results of this paper.

2. IPA Regenerative Estimates

Let X, = { X,(0), s = 0} be a regenerative process depending on a parameter § with
stationary, or steady state, random variable X (8), i.e., X;(8) converges in distribution
to X(#). Assume that we are interested in estimating a steady state quantity, r(0)
= E[f(X(0))] and its derivative r'(8) = dr(8)/d6. Then under broadly applicable con-
ditions (see, e.g., Crane and Iglehart 1975)

_E[Y(0)] _ y(8)
E[r(0)]  #6)

where 7;(0) is the length of the ith regenerative cycle (given parameter 6), Y;(6)
=/ TT:_(:’(){,) f(X;(8))ds and T;(0) is the time at which the ith regeneration occurs (Ty(6)
= (). For processes in discrete time the integral in the definition of Y;(6) is replaced by
a sum. Note that even if X;(#) does not converge in distribution to a random variable
X(0) because of periodicities, r(6) is still a meaningful quantity to estimate since
lim,.. (1/¢t) fé f(X(8))ds = r(6) with probability one provided E[Y;(6)] and E[7,(8)]
exist and are finite. Differentiating equation (2.1) we obtain

Y'(0)1(0) — y(6)t'(0)
1(0)?

provided all the derivatives exist and are finite. Assume that the IPA sample path deriv-
atives

r(8) 2.1)

r'(8) =

(2.2)

ey = 4 gy = 4
Yi(0) = 2 Yi(9) and 7i(0) = 2 7:(0)
exist and are finite. Let Y,(8), 7,(0), Y',(8) and 7,(6) denote the sample averages of
{Yi(0)}, {7:(0)}, {Yi(6)} and {7i(0)}, respectively, after n regenerative cycles. For
example, Y, (0) = 2%, Yi(0)/n. The IPA estimate 7},(8) of r'(8) is defined to be
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Y.,(0)7,(0) — ¥,(0)7,(0)
7.(0)*

Pu(0) = (2.3)

Letting n = oo we obtain the following lemma (see also Zazanis and Suri 1985b):

LEMMA 2.1. In a regenerative process, if Y(0) and v(0) exist and if E[Y,(0)],
E[7:(60)], E[Yi(0)] and E[7}(0)] all exist and are finite, then, with probability one,

Y{(6)]E[7:(6)] — E[Y,(6)]E[7(6
lim 7.6y = El (6)] [T(E)[]r,-(a)llz (6)]E[7:(6)]

_ E[Yi(8)]¢(6) — y(6)E[7i(6)] 2.4)
1(6)? | '

As an example consider the mean response time in the GI/G/1 queue. In this case
7;(9) is the number of customers served in the ith busy period. For small enough db, the
number of customers served in the busy period does not change so that () = 0.
Therefore 7,(8) = Y'(60)/7,(0) and lim,—., 7,(8) = E[Y}(8)]/t(0). Zazanis and Suri
(1985a) have shown that for the GI/G/1 queue r'(8) = E[Y(6)]/¢(8) so that the IPA
estimate converges to the derivative of the ratio r(8) = y(6)/t(8) even though y'(6)
# E[Y(0)] and ¢#'(0) # E[7/(9)].

In Suri (1987) a class of stochastic processes, parameters and estimators is formally
defined for which sample path derivatives exist. It is shown that, for a simulation of
length 7 events in this class, there exists a 6(w, #) > 0 such that if | df| < 6(w, n), then
the order of events in the simulation with parameter 6 + df is the same as in the simulation
with parameter . Furthermore, if 7,(8) is the time of the xnth event and Y (6, n)

= J§"” (X (8))ds, then for | dB] < d(w, n),

Tn(6+db)

Y(6+ db, n) = J; f(X(0 + db))ds =Y (0, n)+ ddY’' (0, n) + o(db).

We will assume throughout that the process { X (6), s = 0} has piecewise constant
sample paths.

Applying these results to regenerative processes yields the following lemma which gives
an expression for )'(6) in terms of the expected value of the IPA sample derivative
E[Y(6)]. A similar representation, under a different set of technical assumptions, has
been presented in Cao (1985) for the case of independent replications.

LEMMA 2.2. Assume that there exists a random variable 6;(w) that is positive with
probability one such that if | df| < 6;(w), then the number and order of events in the ith
regenerative cycle with parameter 0 + df are the same as in the ith cycle with parameter
0. Further assume that if | d| < 6;(w), then Y;(0 +db) = Y,(0) + dOY (6) + o(dB)Z;(0)
where the term represented by o(df) does not depend on w. Let p(df) = P{é,(w) < |db| }.
If

1. E[|Z«(6)]] < oo,

2. po = limg_o p(df)/db < o,

3. y'(0) exists and is finite, and

4. E[|Yi(6)]] < o0,

V'(0) = E[Y(0)] + psdy(Y) (2.5)
where dy(Y') = limg_.o E[Y;(0 + df) — Y:(0) |6;(w) < | db]].
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The probability p(df) = P{é,(w) < | df| } is the probability that there is a change in
the order of events. Note that limy-.o p(df) = 0, but that limy_.o p(df)/df may not
exist in general. If this limit does exist, it is not in general equal to zero. In the Appendix,
it is shown that limg-.o p(df)/db exists and is nonzero in the M/G/1 queue. An exten-
sion to the argument in the Introduction shows that this limit exists for # state transitions
in a finite state space continuous time Markov chain (and thus the limit will exist for an
entire regenerative cycle under suitable regularity conditions on the transition rate matrix).

PROOF.

E[Yi(6 + db)] = E[Yi(0 + db) |6:(w) > | dB]|](1 — p(db)) _
+ E[Yi(6 + db) |6:(w) < | db]]1p(dB).
Therefore
E[Yi(6 + df)] = E[Yi(6) + d0Y (6) + o(dB)Zi(0) |6:(w) > | dB|]1(1 — p(db))
+ E[Y(0 + df)|6:(w) < | dO|]p(dB). (2.6)

Subtracting E[Y;(0)] = E[Yi(0) |:(w) > [d0|](1 — p(db)) + E[Yi(8) |6:(w) < | dB|]p(db)
from both sides of equation (2.6) yields

E[Yi(6 + db)] — E[Y(0)] = E[dOY () + 0(db)Zi(0) |6:(w) > |dB|](1 — p(db))
+ E[Yi(0 + df) — Yi(0) |6(w) < | dB|1p(dB). (2.7)
Dividing equation (2.7) by df and letting df — 0 yields the result provided that
lim E[Y}(0)|d(w) > |d8]] = E[Y)(6)]  and

‘}in}) E[(o(d0)/d8)Z;(0)|6;(w) > |dB]|] = 0.

Let I;(df) be the indicator of the event {6;(w) > |df]| }. Then E[Y}(0)|6:(w) > | db]|]
= E[Y}(0)I:(df)]/E[I;(d8)]. Furthermore limy—o [;(df) = 1 and limg-.¢ E[I;(d8)]
=1 — limgo p(df) = 1 and E[ | Y(8)I;(d8)|] < E[ | Y(6) |]. Thus by the dominated
convergence theorem limg.o E[Y(0) |6;(w) > | df|] = E[Y}(8)]. A similar argument
shows that

lim |E[(o(db)/db6)Zi(6)|6:/(w) > | dbl]]

= lim |o(df)/d0|E[|Z:(6)]1/(1 — p(db)) = O.

Combining Lemmas 2.1 and 2.2 yields the following theorem which gives necessary and
sufficient conditions for IPA to produce strongly consistent estimates for 7'(6).

THEOREM 2.1. Ifthe conditions of Lemmas 2.1 and 2.2 are satisfied for both E[Y;(6)]
and E[7;(0)], then lim,_, ,, 7,,(8) = r'(0) with probability one if and only if p, = 0 or

do(Y)E[7:(6)] — E[Yi(6)]ds(7) = 0. (2.8)

PROOF. Lemma 2.2 will be applied to both )'(8) and ¢'(6). From Lemma 2.2, the
definition of é;(w) depends only on the underlying structure of the stochastic process
and not upon the particular functionals Y;(6) and 7;(6). Thus the p, in Lemma 2.2 is
the same for both y’(8) and ¢'(8). From equations (2.2) and (2.5)

(ELY(0)] + pody(Y))E[7:(6)] — E[Yi(6)I(E[77(6)] + Pods(7))

r(@)= E[r/O))°

(2.9)
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Therefore

E[Yi(6)]1E[7:(8)] — E[7i(8)]E[Yi(6)]

re) = E(r(0)])2

dy(Y)E[7:(8)] — E[Yi(6)1ds(7)
E[7:(0)]? '

By Lemma 2.1, the IPA estimate #,,(8) converges to the first term on the right-hand side
of equation (2.10). Therefore, the IPA estimate converges to r'(6) if and only if the
second term on the right-hand side of equation (2.10) is zero.

As we will see, typically p, # 0, d,(Y) # 0, and dy(7) # 0 so that if IPA is strongly
consistent for r'(8), it is because the terms cancel in equation (2.8). Thus the key to
determining when IPA is strongly consistent for r'(#) is to consider what happens when
the order of events changes. In the usual case that p, # 0, the IPA estimate converges to
r'(#) if and only if

_ E[Yi(0)] _ do(Y) _ limg.o E[Yi(6 + db) — Yi(6) |8:(w) < [d6]]
E[7/(0)] ds(7) limgo E[7:(0 + db) — 7,(0) |6:(w) < | dB|]

+ Do

(2.10)

r(8) (2.11)

By Lemma 2.2, equation (2.8) is equivalent to the condition
EL ) ELYI0)] ~ 5 EIY(0)1) = EVO) (EL(0) - 5 Elro)]) - .12

given in Zazanis and Suri (1985b) which was obtained by equating terms in equations
(2.2) and (2.4). We now reinterpret the Suri and Zazanis (1988) result for the mean
response time in the AM/G/1 queue in light of Theorem 2.1. In this case 7,(6) is the
number of customers served during the ith busy period and Y;(8) is the sum of the
response times of all customers served during this busy period. In Appendix A we will
show that E[7,(0)] = dy(7) and that E[Y;(0)] = dy(Y) so that E[Y;(6)]/E[7:(0)] = dy(Y)/
dys(7) which, by Theorem 2.1, proves that IPA is strongly consistent for r'(8) in the A/
G/ 1 queue (a similar result for a class of GI/G/1 queues, obtained under somewhat
different technical conditions, has also been obtained in Zazanis and Suri 1985b). The
basic idea of the proof here is that the way in which events change order in a single-
server queue is for multiple busy periods to collapse into a single busy period. If two
busy periods collapse into one, then 7,(0 + df) = 7,(8) + 72(8) so that dy(7) = E[7,(0)]
provided the probability is small enough that more than two successive busy periods
collapse together. Similarly, when two busy periods collapse into one, the sum of the
response times becomes Y,(0 + df) = Y;(0) + Y,(0) + ¢¥(df) where ¢(d8) is the sum
of the increases in individual response times. For the M/G/1 queue and for a class of
GI/G/1 queues (see Zazanis and Suri 1985b), E[y(dh) |6;(w) < |df|] = O(db) and
therefore dy(Y') = E[Y;(6)] (again assuming that the effect of more than two busy periods
collapsing into one is negligible ). These arguments, which are formalized in the Appendix,
explain intuitively why IPA works in certain single server queues. Using a somewhat
different approach, this basic notion has been used in Zazanis and Suri (1985a) to show
that IPA can be extended to estimate higher derivatives in the GI/G/1 queue. This
extension basically requires deriving an estimate for p,. The approach in Zazanis and
Suri (1985a) provides an alternative interpretation of the GI/G/1 result. Consider a
customer looking back in time: the probability that the previous busy period merges with
the customer’s busy period is O(df); however, the increase in that customer’s response
time due to this merge is also O(d#). The expected effect is thus o(d#) and can therefore
be neglected.

As described above, the key to identifying when IPA produces consistent estimates for
steady state derivatives is to consider the effect when events change order. A general
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characterization of stochastic systems for which the conditions of Theorem 2.1 are satisfied
is an open problem. In the single-server queue, a change in event order is such that the
integral over the original cycle is lengthened by the addition of the integral over a typical
cycle plus a negligible term, from which the conditions of Theorem 2.1 are satisfied via
the relationships d;(Y) = E[Y;(0)] and dy(7) = E[7;(6)]. A full characterization of
systems for which Theorem 2.1 is satisfied in this specific manner is also an open problem.

We now argue heuristically why IPA works for Jackson networks. A formal proof may
be found in Cao (1987c). Suppose # is a mean service time at a queue and that 6 is
increased to 8 + df. Events can change order in two ways. First, idle periods can be
eliminated (or created). Although idle periods do not necessarily correspond to regen-
erative cycles, the argument given above shows that IPA is insensitive to such occurrences,
at least in the M/G/1 queue. Second, customers can change order in the queue, i.e., if
customer i arrives before customer i + 1 in the sample path with parameter 6, it could
happen that customer { arrives after customer i + 1 in the sample path with parameter
0 + db. Let A;(0) and D;(0) denote the arrival time and departure time, respectively, of
customer i to the queue when the parameter is 6. Let 4;(0) and D’(6) denote the IPA
sample path derivatives of 4,(8) and D;(6), respectively. Thus if |df| < 6;(w), then
(ignoring the o(df) terms) A;(0 + df) = A,(0) + dbA(0) and D;(0 + df) = D;(6)
+ doD(0). Let R;(0) = D;(0) — A;(0) denote the response time of customer: i and let
AR;(0) = Ri(0 + df) — R;(0). Then

AR;(0) + ARy, (8) = dO(Di(0) — Ai(0)) + di(D}r1(0) — A1(6)).  (2.13)

Consider now what happens if | df| = é,(w) and that the first event for which a change
in event order occurs is that now customer i + 1 arrives before customer i in the network
with parameter 6 + df. Assuming the queue is FCFS, then customer i’s service time and
routing indicators can be given to customer { + 1 and similarly customer i + 1’s service
time and routing indicators can be given to customer i. Therefore customer i + 1 arrives
to the queue at time A4;,,(0 + df) = A;+,(0) + dbA,,(0) and leaves the queue at
time D;+,(0 + df) = D;(0) + d6D(0). Similarly, A;(0 + df) = A;(0) + dbA’(0) and
Di(6 + df) = D;,,(68) + dbD;,(6). Therefore

ARi(0) + ARy (8) = dO(Di11(6) — Ai(0)) + dI(D(0) — 4711 (6))  (2.14)

which equals the expression in equation (2.13) in which events do not change order.
Thus the only effect of the change in event order is that customer i and i + 1 interchange
departure times. Therefore the IPA algorithm is insensitive to this type of event change
provided that all customers have identical service time demand distributions and identical
statistical routing distributions. This heuristic argument will not work if customers are
not homogeneous. In that case, the change in event order leads to a discontinuity and
thus we cannot expect IPA to produce consistent estimates in queueing networks with
multiple types of customers. Ho and Cao (1985) noted that such a discontinuity exists.
The above argument identifies the cause of this discontinuity and shows why it is not a
problem in networks with homogeneous customers. This will be verified theoretically in
the next section and experimentally in §4.

3. IPA Throughput Estimates

In this section, we will derive necessary conditions that must hold if IPA is to simul-
taneously produce strongly consistent estimates for the derivatives of multiple steady
state throughputs. Let Q(8) be a family of stochastic processes whose governing probability
law depends on a real-valued input parameter §. An example of Q(#) is a family of
queueing networks in which case # might be a mean service time at a queue, or set of
queues, in the network. Let E|, . . ., E,, denote m different types of events that can occur
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in Q(6), for example E; could denote the event that a customer departs from node i in
the network. Let N;(¢, 6) be the number of type i events that occur in the interval [0, ¢]
and let 7,(8) denote the time at which the nth event occurs (the index » counts all
events, not just those associated with Ey, ..., E,,). Let \i(6, n) = N{(T,(9), 0)/T,(0)
be an estimate of the rate at which type i events occur.

DEFINITION 3.1. Q(0) is called \-Consistent at 8, if lim,., 7,,(6y) = oo with prob-
ability one and there exist finite, positive constants A\,(6), ..., A,.(f) such that
lim,— o Ai(6o, 7) = \;(6p) with probability one fori =1, ..., m.

DEFINITION 3.2. Q(0) is called A-Consistent on the interval (a, b), if Q(6) is
A-Consistent at 6, for all §, € (a, b).

In the queueing network example, \;(6) is the steady state throughput of customers
at queue I.

The definition of A-Consistency requires that, as the length of the simulation increases,
throughput estimates converge with probability one to so-called steady state throughputs.
The existence of such limits is an underlying assumption of many simulations. The
question of when a process is A-Consistent is thus related to the question of when a
process is ergodic. Assuming the expected number of events in a regenerative cycle is
finite, then any regenerative process, including any irreducible, positive recurrent con-
tinuous time Markov chain, is A-Consistent as are some processes with more general
state spaces such as certain finite state space Generalized Semi-Markov processes (Whitt
1980 or Glynn 1983). In particular, any closed queueing network described by a con-
tinuous time Markov chain with an irreducible finite state space is A-Consistent including
any (irreducible) closed product form network with Coxian phase-type service distri-
butions. Note that a process may be A-Consistent for certain types of event rates even
though the process itself is not ergodic. For example, consider the departure process
{D(t),t=0}in a GI/G/1 queue with arrival rate \, mean service time 1/u and traffic
intensity p = A/u > 1. In this case lim,.., D(t)/t = p with probability one even though
the waiting time and queue length processes are neither regenerative nor ergodic.

We will assume that the derivatives A\/(8) = d\;(0)/d0 exist and are finite for all i and
all 6 € (a, b). The goal of IPA is to estimate A{(6), ..., A\.(6). Although we assume
that the interval (a, b) is open, the definition and all subsequent results can also be given
for closed or half open and half closed intervals with either a or b infinite. If the interval
is closed, the derivative is understood to be the appropriate one-sided limit at the end
points. Let A/(6, n) denote the IPA estimate of \/(6) after n events.

DEFINITION 3.3. IPA is called \'-Consistent for Q(6) at 6 if lim,—. . Ai(6, 7) = A(6o)
with probability one fori =1, ..., m.

DEFINITION 3.4. IPA is called \'-Consistent for Q(8) on the interval (a, b) if IPA is
MA'-Consistent for Q(6) at 6, for all 8y € (a, b).

The motivation for defining N'-Consistency on an interval is to classify stochastic systems
for which IPA produces strongly consistent estimates for all values (or a range of values)
of an input parameter rather than at just certain parameter values. For example, if § = A
is the arrival rate in a queueing system, then the stability conditions for the system often
include a requirement that A < b for some constant b. In this case, A’-Consistency on
the interval (0, b) corresponds to the requirement that IPA produce strongly consistent
estimates at all values of the arrival rate for which the queueing system is stable.

Implicit in these definitions is the assumption that the appropriate sample path deriv-
atives exist. The primary assumption of IPA is that for a small enough change df in 6,
the event times get shifted but there is no change in the order of events. Thus, for any
sample path realization w, there exists a 6,(w) > 0 such that if | df| < §,(w), then T,(0
+ df) = T,(0) + d6T,(60) + o(db, n, w) where T4(0) is the (finite) random variable
accumulated by the IPA algorithm and limg-.o 0(d#, n, w)/df = 0 with probability one.
Note that the appropriate 6 depends on both 7 and w. In this case, the sample path
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derivative dT,(0)/d0 = T,(0). Suri (1987) formally defines a general class of stochastic
processes and input parameters 6 for which this representation of 7,,(6 + df) is valid.
Although there may be several different ways of generating events (and therefore event
time perturbations, e.g., there may be more than one way to sample from a given service
time distribution, see Glynn 1987 or Glasserman 1988, we assume that the simulation
implements a particular, fixed event generation mechanism to which IPA is applied for
the purpose of simultaneously estimating A{(6), ..., XA,.(6) from a single simula-

tion run.
The main result of this section is the following theorem which states necessary conditions

for IPA to be A-Consistent on an interval.

THEOREM 3.1. Suppose Q(0) is N\-Consistent on (a, b). If IPA is N'-Consistent for
Q(0) on (a, b) then there exist positive constants c;; (1 < i, j < m) such that

\:i(0)
Ai(0)

PROOF. Letf € (a, b). Asdiscussed above, if | df| < §,(w), then T,,(8 + db) = T,(6)
+ doT(0) + o(db, n, w) so that for small enough 46

A8 + db, n) — N8, n) _ N(T.(6), 6) 1 1
do do (T"(a) + doT,(6) + o(db, n, w) T,,(o))'
(3.2)

= Cij (a<0<b) (3.1)

By rearranging terms and taking the limit of equation (3.2) as df approaches zero we
obtain the sample path derivative

(0, m) = R = 50, m)( g ) (33

Since, by assumption, lim,— ., 5\1(0, n) = \;(6) > 0 with probability one, we can divide
both sides of equation (3.3) by A;(6, n) provided 7 is large enough to obtain

X0, m) _ =Tu(6)
N(0,n)  T.(0)
Since we are applying a single IPA algorithm along a single sample path to simultaneously

estimate A{(0), ..., A\,(0) (see comment above), the right-hand side of equation (3.4)
is independent of i and

3.4)

X6, m) _ %50, n)

A8, n)  Aj(8, n)
for all / and j. Since, by assumption, Q(#) is A-Consistent and IPA is A'-Consistent for
Q(#), when n tends to infinity we obtain

3.5)

Ai(8) _ Aj(6)
AL . 3.6
YORRYU) G0
Note that equation (3.6) must hold for all § € (a, b) and that
: _4
Ai(0)/ N (0) = 7 In (A;(0)).

Therefore

d — 4o,
=5 10 (u(8)) = = In (A,(6))
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which, since X\;(6) and \;(8) are continuous functions of 6, implies that In ()\;(#))
=In ()\1(0)) + k,'j or that )\,(0) = Cijkj(a)-

If Q(6) is a closed product form network with a single type of customer, 6 is a mean
service time at some queue and A;(#) is the throughput at queue i, then the necessary
conditions of Theorem 3.1 are satisfied. This is consistent with Cao (1987c) who showed
that IPA produces strongly consistent estimates of \/(8) for such networks (with single-
server, fixed rate FCFS queues).

As an immediate corollary, we have the point-wise version of Theorem 3.1:

COROLLARY 3.1. IfQ(8) is N\-Consistent at 0 = 6y and if IPA is N'-Consistent for
Q(0) at 6 = 6y, then N (60)/N\i(60) = Nj(80)/N;(6o).

Corollary 3.1 is just a restatement of equation (3.6). Equation (3.5) and Corollary 3.1
are more general versions of results obtained by Cao (1987a); Cao also used his versions
of these results to conclude that IPA may not lead to exact estimates of throughput
derivatives in closed queueing networks with multiple customer types. We now examine
the implications of Theorem 3.1 in closer detail via the following series of corollaries.

COROLLARY 3.2. Let Q(0) be a \-Consistent mixed open and closed network with
two types of customers (type 1 open, type 2 closed). Let \\(0) be the departure rate of
type 1 customers from the network and let \,(0) be the throughput of type 2 customers at
some queue in the network. Suppose \(0) = X\, where \, is the arrival rate of type one
customers to the network. If IPA is N'-Consistent for Q(0) on (a, b), then there exists a
constant ¢ such that \,(0) = c for all 0 € (a, b).

As a specific example of the corollary let 6 be the mean service time at some queue.
This corollary means that if the arrival rate equals the departure rate of open customers,
i.e., if what goes in comes out, then the only networks for which IPA can be A’-Consistent
are ones in which the closed chain throughput is independent of 6. It is unlikely that this
condition would be satisfied if the closed chain customers visit the queue associated
with 6.

COROLLARY 3.3. Let Q(0) be a \-Consistent multiple chain closed product form
network with population vector N = (N, ..., N,,) and let \;(8) > O be the throughput
of type i jobs at some fixed queue, say queue number k, in the network. If IPA is \'-
Consistent for Q(0) on (a, b), then there exist constants c;; > 0 such that

G(N-e.0) _
G(N—e;,0)

where G(N, 0) is the normalization constant of the network with population N, and e; is
a vector of zeros except for a one in the ith component.

(a<0<b) 3.7)

PROOF. For such a network A;(8) is proportional to G(N — e;, §)/G(N, 6) (see, for
example, Reiser and Lavenberg 1980). '

This corollary means that the effect on the normalization constant of removing a type
i customer from the network must be a constant multiple, for all 8, of the effect of
removing a type j customer. This implies that IPA can only be A’-Consistent in the case
that customers are essentially identical. Note that Gong and Ho (1987) have described
an IPA extension that does produce strongly consistent throughput derivative estimates
in a simple network with two types of customers (specifically, the network of Figure 1
in §4 with s, = 0 and N; = N, = 1). In addition, Cao (1987a) has described an IPA
extension that produces finite difference approximations to the throughput derivatives
for the above mentioned network and Ho and Li (1988) have described a different IPA
extension that produces potentially accurate finite difference approximations to the
throughput derivatives in more general networks with multiple customer types.
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COROLLARY 3.4. Let Q(6) be a multiple chain closed product form network with
population vector N = (N, N,) and let X\;(0) > 0 be the throughput of type i jobs at some
fixed queue, say queue 0, in the network. Let y; be the relative visit ratios of type i
customers to queue k, sy be the mean service requirement of type i customers at queue k
and let uy(n) = f(n)0 be the queue-dependent service rate at queue 1 when there are a
total of n jobs at the queue. If y,; > 0, s1; > 0 and y5,5,; = 0, then IPA cannot be \'-
Consistent for Q(0) on any interval.

PROOF. Because y;;5;; > 0 and y,;5; = 0, G(N — e, 8) is a polynomial (in 1/6) of
degree N; — 1. However, in this case G(N — e, 8) is a polynomial of degree N,. By
Corollary 3.3, G(N — e;, 8)/G(N — e, 8) must be independent of § which is impossible.

This corollary means that IPA cannot be A’'-Consistent if § affects the service rate at a
queue that is visited by only one type of customer.

COROLLARY 3.5. Let Q(0) be a queueing network with state-dependent routing, i .e.,
when a customer departs from queue i at time t it goes to queue j with probability p;i(X.(0))
where X,(0) is the state of the queueing network at time t. Let \;j(0) denote the steady
state throughput over the path from queue i to queue j and let \;(0) = 2 A\ (0). If Q(0)
is N-Consistent on (a, b) and if IPA is N'-Consistent for Q(0) on (a, b) then there exist
constants p;; such that \;;(8)/N\(0) = p;; for all 6 € (a, b).

PROOF. Assume A;;(6) > 0 and Ay(6) > 0. By Theorem 3.1 there exists a positive
constant c;; such that N\;;(8)/A\x(8) = c;x. Therefore A\;;(0) Zx (1/cix) = 2k Au(0)
= \;(0) where the sum is over all queues k such that A\;(6) > O.

The ratio \;;(6)/\;(8) is the steady state fraction of jobs routed from queue i to queue
j. Thus, this corollary means that in a network with state-dependent routing, IPA can
only be N'-Consistent if the steady state routing fractions are independent of .

This corollary also proves that IPA cannot in general be used to exactly estimate
throughput derivatives in networks that exhibit blocking because of finite capacity queues.
This has been observed empirically for response times in Cao and Ho (1983). Suppose
queue 2 has a finite capacity buffer and that when customers finish service at queue 1
they move to queue 2 if the buffer is not full and move to a fictitious queue, queue 0,
otherwise. While there are any customers at queue 0, no other customers are served at
queue 1. This is a particular form of state-dependent routing and the necessary condition
for IPA to produce consistent estimates is that Ay, (6)/\,(6) = ¢, i.e., the fraction of jobs
blocked must be independent of 6. In addition, this corollary also provides an alternative
interpretation to the fact that IPA cannot be used directly to accurately estimate derivatives
with respect to routing probabilities (an indirect method, based on the properties of
stationary product form networks, was proposed in Ho and Cao 1985).

COROLLARY 3.6. Let Q(60) be a queueing network and let E; denote the event that an
arriving (departing) customer to a fixed queue finds (leaves) i customers already at the
queue. If Q(0) is \-Consistent on (a, b) and if IPA is N'-Consistent for Q(8) on (a, b)
then \;(0)/\;(0) = c;; for all 8 € (a, b).

This corollary shows that derivatives of the so-called “on-arrival” and ‘“‘on-departure”
distributions cannot be estimated by IPA. In fact this is obvious even without Theorem
3.1 since IPA assumes that events do not change in order so that when a customer arrives
to a queue he/she sees the same queue length for both 6 and 6 + df for small enough
df. Therefore the IPA estimate of the derivative of the on-arrival distribution is identically
equal to 0. Zazanis and Suri (1985a) and Gong and Ho (1987) discuss an extension to
IPA to estimate the derivative of the probability of zero wait in the GI/G/1 queue.

There are anomalous situations in which IPA can produce strongly consistent estimates
but for which equation (3.1) in Theorem 3.1 does not hold. For example, consider a
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queueing network with two types of customers and let Q; denote the set of queues visited
by type i customers. Suppose that Q; N Q, = ¢J and that 6 affects only type 1 customers.
If the network associated with type i customers is a closed product form network and 6
is a mean service time, then the results of Cao (1987c) imply that IPA produces a consistent
estimate of A\{(6) ¥ 0 and IPA also estimates A3(6) = O which is also correct, but in
apparent violation of Theorem 3.1. The explanation lies in the fact that the assumption
of N-Consistency does not hold in this case since the accumulated perturbation
| T7,(6)| = oo if event n corresponds to an event in Q, whereas 7%,(6) = O for all Q,
events. Thus, in equation (3.4), lim,..., A\(n, ) does not exist, however there exist
subsequences m;(n) corresponding to Q; events such that lim,. . Ai(m;(n), 0) exists for
i=1,2. Thus Theorem 3.1 does not apply. However, the following lemma gives conditions
under which this type of behavior cannot occur.

LEMMA 3.1. Suppose lim, .., A\;(n, 8) = \(8) with probability one and there exists
an increasing subsequence {m(n), n = 1} such that, with probability one:

1. lim,,, m(n) = o,

2. limyeo Ai(m(n), 8) = a;(6),

3. 1imn—>oo Tm(n+l)(0)/ Tm(n)(o) =1

4. limyo, (T7(0) — Tiny(8))/ Tyny(8) = O where I(n) = sup {m(k):m(k) <n},
then lim,., \(n, 0) exists with probability one.

PROOF. We suppress the dependency on 6 in the notation. From equation (3.4) it
suffices to show that lim,.., 7%, /T, exists. Write

Tn _Tw= Ty | T _ (T:, — Tl T’,(,,))( Tl(n))
Tn Tn Tn Tl(n) TI(n)

(3.8)
n

By assumption 4, (T} — T,(,,))/T,(,,) — 0. Since A\;(n, 8) = \(8), and by assump-
tions 1 and 2, —T'n/Timy = Ni(I(n), 8)/M(I(n), 8) = a;(0)/\(0). Define k(n)
= sup {j:m(]) n}. Then I(n) = m(k(n)) and since T, is increasing in n, Ty
= Tmknyy = Tn = Tonemy+1y ANA (Tongi(nyy/ Tnciemy+1y) < (Tymy/Tw) =< 1. Therefore, by
assumption 3, Ty,)/T, = 1 and lim,, — T,/T, = a;(60)/\(6) with probability one.

The conditions in Lemma 3.1, in effect, require that if two events do not occur far
apart in time, then their accumulated perturbations cannot be far apart. These conditions
will be satisfied if the queueing network contains a single-server queue such that, with
probability one, there exists an infinite sequence of busy periods in which both type 1
and type 2 customers are served (and the length of busy periods and the accumulated
perturbations within a busy period are finite with probability one). In this example
Tu(ny is the nth time that a type 1 customer initiates a busy period. Thus if the different
types of customers compete for resources at a shared queue, the above type of anomalous
behavior cannot occur and the necessary conditions of Theorem 3.1 apply. A related
concept of indecomposable network has been proposed in Cao (1987b).

Note that the definition of \-Consistency requires that lim,_.., A(8, n) = M\/(8) with
probability one for all i = 1, ..., m. Thus A'-Consistency does not hold if, say, m = 2
and lim,.q A( (8, 7) = A(0) but lim,— A5(6, n) # A\3(8) (with probability one). In
this case IPA produces a strongly consistent estimate of A{(6) but not A\5(8). However,
our general computational experience has been that unless equation (3.1) holds, then
(with probability one) both lim,_., A} (6, 7) # A (0) and lim,. . A5(6, n) # \(0) (see,
e.g., §4 for simulations of networks with multiple types of customer and §VI of Cao
1985 for simulations of networks with blocking).

In Theorem 3.1, we assumed that there is a single IPA algorithm applied along a single
sample path to estimate all of the throughput derivatives simultaneously. As mentioned
above, there may be more than one representation of the simulation, e.g., more than
one way to sample from the same service time distribution. Thus it may be possible to,
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say, run two different IPA algorithms using two such different representations and use
one representation to consistently estimate Aj(6) and the other representation to consis-
tently estimate A5 (). Strictly speaking Theorem 3.1 does not apply in this situation and
equation (3.1) is no longer a necessary condition for strong consistency (although it does
agree with our computational experience as described above). Implementation of such
multiple IPA algorithms would appear, in general, to require running multiple simulations
thereby losing the single run advantage of IPA.

4. IPA Experimental Results

In this section we investigate the convergence properties of the IPA estimates experi-
mentally. We performed two sets of experiments. These experiments were performed
using the IBM Research Queueing (RESQ) simulation package (see, e.g., Sauer and
MacNair 1979). The simulation run lengths were sufficiently long so that very precise
estimates (with estimates of their standard deviations) were produced. Furthermore,
since analytical results are available for all of the systems simulated, it is possible to
experimentally determine those cases for which the IPA estimates converge to the steady
state derivatives.

The first set of experiments involved variations of the M/M/1 queue. Each system
was simulated for 1,000,000 customers and, since the point estimates are all simple ratios,
the Regenerative method (see, e.g., Crane and Iglehart 1975) was used to estimate standard
deviations of the point estimates. The systems simulated were:

1. The first and second moments of the stationary response time in the A/ /AM/1 queue,

2. The mean of the stationary response time in the M /M /1 queue with feedback,

3. The mean of the stationary response time in the M /M /2 queue, and

4. The mean of the stationary response time in the M/M/ 1 queue with nonpreemptive
priorities and two types of customers.

Table 1 lists the input parameters for each of the experiments. In Table 1, A denotes
the arrival rate, s denotes the mean service time and p denotes the feedback probability.
In the nonpreemptive queue, type 1 customers have priority over type 2 customers and
A and s are indexed by i. Table 2 lists the results of the experiments including the per-
formance measure’s true value, its estimate and the standard deviation of the estimate.
In Table 2, R denotes the stationary response time (R is indexed by i for the nonpreemp-
tive queue).

IPA is known to produce consistent estimates in the A//M/1 queue and our experi-
mental results confirm this. The experiments also suggest that IPA produces strongly
consistent estimates in the M/M/1 queue with feedback and in the M/M/2 queue.
However, as expected from the theory presented here, IPA does not produce strongly

TABLE 1
Input Parameters for IPA Experiments on Variations of the M/M/1 Queue

Traffic
Experiment System Intensity Parameters
I.1 M/M/1 Queue 0.10 A=0.1 s=10
1.2 M/M/1 with Feedback 0.10 A=0.1 s=10.5 p=05
1.3 M/M/1 with Feedback 0.50 A=0.5 s=0.5 p=0.5
14 M/M/2 Queue 0.30 A=0.6 s=1.0
L5 M/M/2 Queue 0.60 A=1.2 s=10
1.6 Nonpreemptive M/M/1 0.15 Ai=0.1 5= 1.0 s, =0.5
1.7 Nonpreemptive M/M/1 0.30 Ai=0.2 51 = 1.0 s, = 0.5

1,000,000 Customers/Experiment
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IPA Experimental Results on Variations of the M/M/1 Queue

TABLE 2

Experiment Parameter True Value Estimate Std. Dev.
L1 E(R) L1111 1.1112 0.0016
dE(R)/ds 1.2346 1.2349 0.0022
dE(R?)/ds 5.4870 5.4959 0.0216
1.2 E(R) 1.1111 1.1113 0.0016
dE(R)/ds 2.4691 2.4678 0.0045
1.3 E(R) 2.0000 1.9904 0.0060
dE(R)/ds 8.0000 7.9060 0.0419
14 E(R) 1.0989 1.0995 0.0015
dE(R)/ds 1.3163 1.3166 0.0030
L5 E(R) 1.5625 1.5603 0.0049
dE(R)/ds 3.3203 3.3073 0.0229
1.6 E(R)) 1.1389 1.1399 0.0023
E(R,) 0.6634 0.6636 0.0017
dE(R,)/ds, 1.2377 1.2543 0.0033
dE(R,)/ds, 0.2241 0.2699 0.0023
1.7 E(R)) 1.3125 1.3124 0.0032
E(R,) 0.9464 0.9477 0.0036
dE(R,)/ds, 1.5781 1.6740 0.0066
dE(Ry)/ds, 0.4751 0.7649 0.0062

1295

consistent estimates for the derivative of the mean stationary response time in the
M/ M/ 1 queue with priorities and multiple customer types. The errors in the IPA estimates
increase with the traffic intensity.

The second set of experiments involved estimating throughput derivatives in extremely
simple closed product form queueing networks with one or two types of customers. In
order to compare the IPA simulation results with exact analytical results, a simple ex-
tension to the Mean Value Analysis algorithm (Reiser and Lavenberg 1980) for computing
derivatives in closed multiple chain product form networks may be used (Strelen 1986).
The general network is pictured in Figure 1. There are N; customers of type i. Type 1
customers are routed from queue 1 to queue 2 and back to queue 1 again. Type 2

Queue 1

v

Queue 2

Queue 3

FIGURE 1

N2

/' N

Closed Product Form Network with Two Types of Customers.
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TABLE 3

Input Parameters for IPA Experiments on Closed Product Form
Networks with Two Types of Customers

Experiment N, N, 51 $3 $3
1.1 2 0 1.0 1.2
1.2 2 2 1.0 1.2 1.2
1.3 2 2 1.0 1.2 0.9

10 Replications/Experiment
50,000 departures from Queue 1/Replication

customers are routed from queue 1 to queue 3 and back to queue 1 again. Queue i is a
single-server FCFS queue with exponential service times having mean s; (Cao 1987a has
considered a special case of this system with s, = 0 and N, = N, = 1). Each experiment
was run for 10 replications with 50,000 departures from queue 1 per replication. The
method of independent replications was used to estimate variances since estimating the
variance of the derivative estimate using the Regenerative method is not entirely straight-
forward. Table 3 lists the input parameters for these experiments and Table 4 lists the
results of these experiments.

The first of these experiments had only a single type of customer (N, = 0) and, in
agreement with theory, the IPA estimates did converge to d\,/ds;. The second experiment
satisfied the Corollary 3.3 necessary condition that G(N — e,, 5;) = G(N — e,, §;) (with
all other parameters fixed) and indeed the IPA estimates were consistent for d\,/ds;.
However, for j # 1, G(N — ey, 5;) # ¢cG(N — e, s;) and the IPA estimates were not
consistent for d\;/ds; for j # 1. In fact the IPA estimate for d\,/ds, had the wrong sign.
Increasing 52 slows down the type 1 customers and speeds up the type 2 customers so
that d\,/ds; > 0. However the IPA estimate for d\,/ds, is negative since IPA does not
allow type 2 customers to pass the slowed down type 1 customers (events cannot change
in order). In fact when a type 1 customer starts a busy period at queue 1, then all the
departures from queue 1 during that busy period get delayed, including those of type 2
customers. The third experiment does not satisfy the Corollary 3.3 necessary condition
for any of the parameters and none of the IPA estimates converged to d\;/ds;. As men-
tioned above, Cao (1987a) and Gong and Ho (1987) have developed IPA extensions for

TABLE 4
1IPA Experimental Results on Closed Product Form Networks with Two Types of Customers

Experiment Parameter True Value Estimate Std. Dev.
1.1 A 0.6044 0.6039 0.0010
d\,/ds, —0.2566 -0.2571 0.0006
d\/ds, —0.2898 —0.2889 0.0005
1.2 Al 0.4577 0.4566 0.0010
A2 0.4577 0.4578 0.0010
d\,/ds, —-0.3529 -0.3522 0.0005
d\,y/ds, -0.3529 —0.3531 0.0006
d\,/ds, —0.1425 —0.0438 0.0002
d\,/ds, 0.0552 -0.0439 0.0002
1.3 A 0.4399 0.4393 0.0010
A2 0.5022 0.5024 0.0010
d\,/ds, —0.3406 —0.3662 0.0008
d\,y/ds, —0.4463 —-0.4189 0.0006
d\/ds; —0.1300 —0.0308 0.0002

d\y/ds, 0.0683 —0.0352 0.0002




INFINITESIMAL PERTURBATION ANALYSIS ESTIMATES 1297

particular parameter settings of this network. The IPA extension described in Ho and Li
(1988) provides accurate finite difference approximations to the throughput derivatives
for this class of network as well.

It is also interesting to estimate the overhead required to implement IPA when used
in a high level simulation package like RESQ. In RESQ, customers are routed from one
node to another, joining queues, entering service or performing numerical computations
depending on the type of node. To implement the closed queueing model described
above without IPA required a RESQ model with 3 active queues, 4 classes and 1 passive
queue (to measure response times). The model became significantly more complicated
when IPA was added; 12 additional set nodes were required, 3 per class node. A set node
is where computations are done and these were used to implement the IPA bookkeeping.
In addition state-dependent routing had to be introduced since the algorithm is different
depending upon whether or not an arrival sees an empty queue. For the same number
of queue 1 departures, the CPU time to run the model with IPA was approximately 2.8
times the CPU time without IPA. Thus the total IPA overhead was 180% and since 6
derivatives were estimated, the overhead to implement IPA using RESQ for this model
was 30% per derivative. Of course, if the IPA algorithm were built into the simulation
package as part of the normal event handling procedures, the overhead would be much
lower. For example, Ho, Suri, Cao, Diehl, Dille and Zazanis (1984) included the IPA
algorithm as a basic part of the simulation package and reported an average of only 1%
overhead per derivative for a variety of queueing networks.

5. IPA-Like Algorithm for Birth and Death Processes

In this section we analyze an IPA-like algorithm for a particular representation of a
Birth and Death process simulation (an alternative representation is described in Glas-
serman 1988, see also discussion below). We will consider the effect of a change in a
single parameter, A, of the process. Let {\;>0,i=0,...,N—1}and {y;>0,i=1,
..., N} be the birth and death rates (define up = Ay = 0). Because the state space is
finite and irreducible, the process is positive recurrent. Let «; be the stationary probability
of state i. Then m; = p;/(Z .o p;) where p; = [1i-; \;_;/u, for i = 1 and po = 1. In this
representation, the IPA-like algorithm only recognizes changes in the holding times of
state k but does not take into account the possibility that the order of events might
change. Let 7/,(i) be the IPA-like estimate of 7 = dm;/d\, after n regenerative cycles.
We will show that for 1 < k < N, 7y < 0 whereas lim,., 7,(0) > 0. Let p(i, j) denote
the probability that the embedded Markov chain goes from state i to state j . The problem
encountered by this IPA-like algorithm is that it does not consider the possibility of a
change in the sequence of states in the embedded Markov chain whereas

d
——p(k, k+ 1) = p/ (M + )* # 0.
dMx

Let E;; denote the jth holding time in state i. The process is simulated as follows.
When in state i for the jth time, two independent exponentials with mean one, E;;; and
E;j>, are generated and we set E;;j(u;) = E;;/p; and E;j(N;) = E;j2/N;.. Then E;;
= min (E;;(p:), Eij(N;)) and if E;; = E;;(u;), then the next state is i — 1, otherwise the
next state is i + 1. Consider now a small increase dA\i in Ai. If E; = Ex (M) < Ej(ui),
then Ejj(A + dN\) < Ei;j(u) and the holding time with parameter A, + dA is Ex 2/ (M«
+ d)\k) IfEkj = Ekj(/.l,k) < Ekj( )\k), then for a small enough d)\k, Ekj([.l.k) < Ekj( e+ d)\k)
and the holding time is unaffected by the change. Note, however, that if d\; > 0 is fixed
prior to sampling, then for some sample paths Ej;j(ux) < Ex;j(A¢) but Exj(ur) > Exj( M
+ d\x) in which case a change in jump occurs. This possibility is not taken into account
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by the IPA-like algorithm. Letting E’; denote the sample path derivative of the holding
times with respect to a change in A\, we obtain

0 if jump down,
= " en
—Eyj2/Ne = — Eij/ M if jump up,

and Ej; = 0 for i # k. Therefore
E[E}] = M/ (M + i) (—1/ME[Ej ljump up] = —=1/(M + w)® (5.2)

Now consider a regenerative cycle that begins and ends in state 0. Let 7,, denote the
length of the nth cycle, N,(i) denote the number of visits to state i/ during the #th cycle
and let ,(i) denote the amount of time spent in state i during the nth cycle. Then E[7,]
= (2o p))/Nos E[N,(k)] = (M + m)pi/No, and E[a,(k)] = px/No. Let 7, and
a,(i) denote the IPA-like sample path derivatives of 7, and «,(i), respectively, and let
Tn, ay(i), 7, and ay(i) denote the sample averages after n cycles. The fraction of time
spent in state i during » cycles is 7,(i) = @,(i)/7, so the IPA-like derivative estimate of
o is
an(0)7, — 7han(0) _ 7Than(0)

7,(0) = =2 =2 (5.3)

Tn Tn

since a,,(0) = 0. Therefore

., E[74]E[a,(0)]
'}Ln; x5, (0) E[7,]’ . (5.4)
Using the fact that E[7,] = E[N,(k)]E[E};], it can be shown that
. ay _ _ToTk
}Lrg 7,(0) ——-———)\k T+ o > 0. (5.5)
Direct differentiation of my with respect to Ay yields
d ™o zf;kﬂ j
— Ty = — ————= < 0. .
d}\k ™o )\k 0 (5 6)

Thus for this representation of the Birth and Death process, the IPA-like algorithm predicts
that the amount of time spent in state 0 increases when A, increases when in fact it
decreases.

Glasserman (1988) considers an alternative representation of the Birth and Death
simulation: a standard IPA algorithm incorporating load dependent servers. He presents
empirical results that indicate that this representation does produce strongly consistent
estimates for steady state derivatives. Interestingly, although Glasserman’s representation
also does not consider the possibility of a change in event order, he discusses how the
so-called nominal and perturbed sample paths are closer to one another in this repre-
sentation than in the representation described above. This is consistent with Glynn (1987)
who considers different process-differentiable representations of distributions and shows
that some are smoother, in a certain sense, than others (see also Ho and Cao 1985 for a
specific queueing network example of this). Glasserman’s analysis appears to extend to
Jackson queueing networks, although not to arbitrary continuous time Markov chains;
this is also consistent with the results presented here and elsewhere on IPA convergence.

6. Conclusions

In this paper we have examined the convergence properties of Infinitesimal Perturbation
Analysis derivative estimates. In regenerative processes, steady state performance measures
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take the form r(6) = E[Y:(0)]/E[7:(0)] where E[Y(0)] is the expected cumulative
reward earned during a regenerative cycle and E[7;(6)] is the expected length of a cycle.
For a class of regenerative processes, the IPA estimate converges to r'(8), the derivative
of the steady state performance measure, if and only if either the probability of a change
in event order during a regenerative cycle is o(df), or dy(Y) = dy(7) = 0, or

E[Yi(0)] _ dy(Y)
E[r(0)]  di(r)

where dy(Y') and d,(7) are the limiting expected change in the cumulative reward and
cycle length, respectively, given that a change in event order has occurred during a cycle.
The terms dy(Y') and d,(7) are not estimated by IPA. It was shown that for the mean
waiting time in the M/G/1 queue the probability of a change in event order cycle is
0(df), not o(df). Furthermore, even though IPA does not estimate dy(Y) and dy(7),
IPA consistently estimates r'(0) in the M/ G/ 1 queue because the term in 7/(6) involving
ds(Y') and d,(7) vanishes when equation (6.1) holds. The intuitive explanation for this
cancellation was given. However, this cancellation is not guaranteed to occur in all re-
generative processes.

In the event that this cancellation does not occur, the IPA algorithm would have to
be extended to estimate the limiting probability of a change in event order, dy(Y) and
ds(7) in order to produce strongly consistent estimates for steady state derivatives. This
has been done for the single server queue (Zazanis and Suri 1985a). Using the notion
of conditional expectation, Gong and Ho (1987) have described an IPA extension for
some specific simple queueing systems: certain performance measures in the GI/G/ 1
queue, the GI/G/1 queue with a capacity constraint of one and the network of Figure
lwiths2=0andN1=N2=l. ,

General necessary conditions were then derived for multiple IPA throughput derivative
estimates to simultaneously converge to the derivatives of steady state throughputs. If
A1(60) and \,(6) are steady state throughputs and if the IPA estimates simultaneously
converge to A\j(6) and A3(0) for all 6 in an interval, then there must exist a constant ¢
such that

r(0) =

6.1)

M) _ c
A2(6)

6.2)

for all values of 6 in the interval. This is a strong requirement and it means that, except
in special cases, the original IPA algorithm cannot be used to obtain strongly consistent
estimates of throughput derivatives in queueing networks with multiple types of customers,
state-dependent routing or blocking. Numerical results confirming the theory were then
given. Ho and Li (1988) have described a different IPA extension that produces single
run finite difference approximations to steady state derivatives in more general systems
such as irreducible continuous time Markov chains with a finite state space. This method
explicitly accounts for changes in event order and has been found to be quite accurate
in simulations of some simple queueing systems with multiple customer types such as
the network of Figure 1. Its accuracy and efficiency in more complex queueing systems
remain as open issues.

Thus the original IPA algorithm cannot be applied with guaranteed confidence except
in those cases for which either equation (6.1) or (6.2) holds. Even if equation (6.2) holds,
IPA is not guaranteed to converge since equation (6.2) is only a necessary condition. In
addition, equation (6.2) is a condition for consistency for steady state throughput sen-
sitivities and does not ensure consistency for sensitivities of other steady state performance
measures. For example, equation (6.2) holds for the throughput in the AM//M/1 queue
with nonpreemptive priorities when 6 is a service time parameter, but it was shown
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experimentally that the corresponding IPA estimates do not converge to derivatives of
the mean stationary response times. On the other hand, if IPA is known to produce
strongly consistent estimates in a given situation, then its mean squared error is asymp-
totically smaller than the optimal (multiple run) finite difference approximation to the
derivative (see Zazanis and Suri 1985b) and the gradient information supplied by IPA
is potentially useful in optimization of stochastic systems (see Suri and Leung 1987).
As indicated in Zazanis and Suri (1985a), Gong and Ho (1987), Cao (1987a) and Ho
and Li (1988), work is in progress to extend IPA to handle more general situations.'

! Thanks are due to the anonymous referees for their many suggestions. In particular, we express our gratitude
to the referee who suggested the use of indicator functions to bridge a gap in the original proof of Lemma 2.2.
Additional thanks are due to Sheldon H. Jacobson for spotting a numerical error in one of the tables.

Appendix A. IPA for the M /G /1 Queue Revisited

For simplicity, we assume that 6 is a scale parameter of the service time distribution (see Suri and Zazanis
(1988) for more general parameters), i.e., the nth service time in the ith busy period can be written as S;,
=0X,, where E[X;,] = 1 and 6 is the mean service time. Let 7,(8) denote the number of customers served in
the ith busy period, B;(8) = 29 S, be the length of the ith busy period, /; be the length of the ith idle period
and let B;(8) = 0C;(0) where Ci(8) = 219 X;,. By Wald’s equation (see, e.g., Ross 1970) E[B;(6)]
= §E[C(60)] = 0E[7,(8)]. Since the arrival process is Poisson, E[7,(8)] = 1/(1 — A@). Furthermore, since
74(6) = 0, when Lemma 2.2 is applied to t(8) = E[7;(8)] we obtain

() =d—‘; 1/(1 = A8) = M/(1 — N8)? = pyds(7). (A.1)

Note that B;(8) is increased by d6C(8) so that p(d) = P{d6C,(6) = I,} = [ [1 — exp(—\dbc)]dF,(c) where
Fy(c) is the distribution function of C,(6). Therefore p(df) = 1 — Fo(\df) where F,(s) is the Laplace-Stieltjes
transform of Fy(c). Since p = M < 1, E[Ci(8)] < co and therefore Fy(s) = 1 — sE[Ci(8)] + o(s) (see, e.g.,
pp. 435-436 of Feller 1971). Thus

p(dd) = 1 = Fo(Ndf) = NdJE[C(8)] + o(d8) = Ndf/(1 — \8) + o(db) (A2)

and therefore p; = limy_.o p(d6)/d6 = X/(1 — N\@). Substituting this expression for p, into equation (A.1) proves
that E[7,(8)] = ds(7).

We now consider d,(Y'). As shown in the Introduction, Y(8) = 27§ T4, X;,,. Since the arrival process is
renewal, {(Y;(9), Yi(0), 7:(0), Ci(8), I;), i = 1} is a sequence of iid vectors. Let 6 be increased to § + df. Note
that if d6C,(8) > I,, then the first two busy periods come together. If this happens the first customer in busy
period two still arrives at time B,(8) + I;, but enters service at time B,(0) + d0C(0) (the time at which the
last customer in busy period one departs) rather than immediately. Thus this customer’s response time is
increased by an additional d8C,(6) — I, due to the merging of busy periods. Furthermore, each of the 7,(8)
response times in the second busy period is increased by this same factor of d0C,(8) — I; due to the busy period
merging. Similarly, if busy periods one, two and three merge, then each of the 73(6) response times in the third
busy period is increased by an additional factor of (d6C(8) — I,) + (d6C,(0) — I,). This generalizes so that if
n,(d0) is the number of busy periods that come together, then (see Zazanis and Suri 1985a)

ny(do) ny(db)
Yi(6 + db) = § (Yi(6) + dYi(8)) + Linyany>1y 2= 7i(6)Wi(db) (A3)

i=

where Wi(d9) = T2} (d6C;(6) — I,). Note that n,(d6) = inf {n: T, (d8C(8) — I;) < 0} is the number of
customers served in a busy period of an M/G/1 queue with service times {d0C(8), i = 1} and interarrival
times {I;, i = 1 }. This modified M/G/ 1 queue has traffic intensity A\d0E[ C;(8)] = Ad8/(1 — A@). Furthermore

Wi(d0) is the waiting time of the ith customer in this modified queue, i = 2, ..., n,(df). Since n,(db) is a
stopping time for {(Y;(0), Y(0), 7:(6), Ci(0), ), i = 1},
E[Y (0 + d8)] = E[n,(d0)](E[Y,(0)] + dOE[Y(6)]) + h(db) where (A.4)
ny (db)
h(d0) = E[1(nwy>1y 2 7i(0)Wi(dB)]. (A.5)

i=2
Assuming that #(df) = o(d8) (as will be shown later), then

V(6) = lim (E[Y,(B)] ELn@N =1y g yi(0)1ELn (d)) + -"—(—@) : (A6)
do—+0

do
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Since E[n,(d6)] = 1/(1 — NdBE[C,(6)]) where E[C,(8)] = 1/(1 — \@), we obtain

y'(6) = E[Y1(0)] +

A
55 ELTi()]. A7)

By Lemma 2.2, y'(6) = E[Y(0)] + psds(Y) and since p, = N\/(1 — A8), E[Y,(8)] = dy(Y). It remains to be
shown that #(df) = o(df). Define W,(df) = 0. Then by equation (A.5)

h(d0) = 2 E[1 (nya0y=iy 7i(0)Wi(d)]. (A.8)
i=1
Since n,(d0) is a stopping time, 7;(0) is independent of 1, (a)=iy = | — 1{n,a)=i—1}. Furthermore 7,(9) is
independent of W;(df) since W;(df) only depends on events in busy periods 1, ..., i — 1. Therefore
ny(de

o« )
h(d8) = E[71(0)] Z E[l (n,m=i) Wi(d0)] = E[71(0)]E[ Z W(db)]. (A9)

But E[ 2 74) W,(df)] = E[W (d8)]E[n,(d6)] where E[W (d0)] is the expected stationary waiting time in the

modified M/G/ 1 queue. By the Pollaczek-Khinchin formula (see, e.g., Kleinrock 1975)

A(d8)*(E[Ci(6)]* + Var [C«(8)])
2(1 — NdBE[C«(0)])

E[W(d)] = = o(db) (A.10)

provided Var [Ci(8)] < oo and therefore A(df) = o(db).

A similar result for a class of GI/G/1 queues, derived under somewhat different conditions, has also been
obtained in Zazanis and Suri (1985b). It appears that the argument presented here can be extended using Taylor
series expansions to show that IPA is strongly consistent for

r'(0) =55E[f(R(0))]

where f'is a differentiable function and R(8) is the stationary response time in the M/G/1 queue.
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