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irst- and Second-Derivative Estimators for 
Cyclic Closed-Queueing Networks 
Gang Bao, Christos G. Cassandras, Fellow, IEEE, and Michael A. Zazanis 

Abstract-We consider a cyclic closed-queueing network with 
arbitrary service time distributions and derive first- and second- 
derivative estimators of some finite horizon performance metrics 
with respect to a parameter of any one of the service distributions. 
Our approach is based on observing a single sample path of this 
system and evaluating first- and second-order effects on depar- 
ture times as a result of the parameter perturbation. We then 
define an estimator as a conditional expectation over appropri- 
ate observable quantities, using smoothed perturbation analysis 
techniques. This process recovers the first-derivative estimator 
along the way and gives new insights into event order change 
phenomena which are of higher order. Despite the complexity of 
the analysis, the final algorithms we obtain are relatively simple. 
Further, we show that our estimators are unbiased and include 
some numerical examples. We also show the use of our estimators 
in obtaining approximations of the entire system response surface 
as a function of system parameters. 

I. INTRODUCTION 
N dealing with stochastic discrete-event dynamic systems 

I (DEDS) ,  we are often faced with situations where the 
functional relationship between design or control parameters 
and performance metrics of interest are unknown. Still, by ob- 
serving a single sample path of such a system (in a simulation 
or in an actual operating environment), it is often possible 
to estimate efficiently gradients of performance metrics with 
respect to various parameters. This can be accomplished 
through techniques such as perturbation analysis (PA) [21], 
[24], [15] and the likelihood ratio (LR) methodology [16], 
[22], [23]. These techniques provide an alternative to costly 
(sometimes infeasible in real-time) simulation where sensi- 
tivity estimation requires multiple sample path generations. 
In addition, they can often be integrated into gradient-based 
optimization algorithms (e.g., [8] and [91) for problems of 
considerable complexity. 

Techniques such as perturbation analysis can generally be 
used to estimate not only the first, but also higher-order deriva- 
tives of performance metrics with respect to some parameters. 
For example, for a GI/G/l queueing system Zazanis and Suri 
[26] introduced the idea of using conditional expectation to 
calculate the expected effects of second-order contributions 
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due to parameter perturbations along a sample path and ob- 
tained second derivative estimates for the customer-stationary 
flow time. Using the framework of smoothed perturbation 
analysis (SPA) [17], Fu and Hu [lo] have derived a second- 
derivative estimator for the GI/G/m queue. Some recent work 
by Fu and Hu [ 111 has also extended SPA into a more general 
framework. However, there is little other work pursued along 
the lines of second-order derivative estimation, the main reason 
being that for complex systems, second-derivative estimators 
become difficult to obtain and are harder to implement in 
practice (compared to first-derivative estimators). 

Recently, however, two developments have provided 
renewed motivation for seeking higher-order derivative 
estimates for performance metrics of DEDS. First, as first- 
derivative estimators are used in gradient-based optimization, 
we are often faced with the practical problem of instabilities 
in the form of large oscillations [8], [3]. To alleviate 
this problem, it is known that algorithms using second- 
derivative information may be used [4]. The second, perhaps 
more important, development is the emergence of Pad6 
approximation techniques as viable means to accurately 
estimate the entire response surface of a complex system 
with respect to some parameter. Given some function J ( 0 ) ,  
a Pad6 approximant is a rational function of the form 
PL ( ~ ) / Q M  ( e ) ,  where PL (0) and QM (0) are appropriately 
selected polynomials of degree L and M ,  respectively (see 
[ 11). First- and higher-order derivative information at a 
single point 0 provides one effective way to obtain the 
coefficients of these polynomials. As was recently shown 
in [18], Pad6 approximants of performance metrics of GI/G/1 
systems show remarkable accuracy using first- and second- 
derivative information alone. This opens up a range of exciting 
possibilities for estimating global response surfaces of more 
complex systems based on information extracted from a 
single sample path observed under a parameter setting 0. 
Lastly, it is worth mentioning that a by-product of sample- 
path-based first- and second-derivative estimators is the fact 
that they sometimes lead directly to the establishment of 
structural properties of a system such as monotonicity or 
convexity/concavity of performance metrics with respect to 
parameters (if, for example, it turns out that the expectation 
of an unbiased such estimator is always positivehegative). 

In this paper, we consider a closed-queueing network con- 
sisting of m servers connected in series, providing service 
to a fixed population of n customers. This is a model often 
used for serial transfer lines in manufacturing constrained to 
operate with a limited number of fixtures, n, or virtual circuits 
in communication networks with flow control limiting the 
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number of packets to n and assuming no interfering traffic 
at any link. Other than some mild technical constraints, all 
service time distributions are arbitrary. PA techniques were 
first applied to this type of system in [20] to approximate first 
derivatives of the throughput. In [19] and [6]  estimators for the 
throughput of closed Jackson queueing networks using infni- 
tesimal perturbation analysis (IPA) were derived and extended 
by Cao [7] to general service time distributions. However, IPA 
cannot generally be applied to second-derivative estimation. 
The main reason is that IPA is based on limited information 
obtained from the observed sample path; to estimate second 
derivatives one needs significantly more information to1 be 
extracted from this same sample path to account for second- 
order effects in event order changes. 

The main contribution of this paper is the derivation of 
unbiased second-derivative estimators for two types of perfor- 
mance metrics: throughput and mean delay between any two 
points in the closed serial-queueing network described above, 
over a finite time horizon. Our basic approach is to evaluate 
all second-order effects on departure times as a result of a 
parameter perturbation in a sample path of this network. Our 
analysis uses SPA techniques [ 171 in a way that provides inew 
insights into the type of information on which one needs to 
condition. In particular, it is common in SPA to impose a 
conditioning on all past history of a process when an event 
occurs as well as the identity of the next event (e.g., see [14]); 
our approach is different in that our conditioning includes 
residual event lifetimes at the time of the next event, but not 
the time of the next event. As we will see, this allows us to 
obtain conditional expectations of performance metrics wlhich 
overcome difficulties caused by event order changes on any 
given sample path. While the analysis is at times tedious and 
the form of the second-derivative estimator appears complex, 
its implementation, as we will show, turns out to be quite 
simple. Finally, even though we do not address the issule of 
consistency of the estimators we derive, we refer the regader 
to [2] ,  where consistency is shown to hold for a two-node 
cyclic Markovian network for which second derivatives of the 
throughput at steady state can be analytically obtained. 

The paper is organized as follows. In Section 11, we set 
up the estimation problem and present some notation. In 
Section 111, we derive a second-derivative estimator for the 
throughput; in the process, our approach recovers the first 
derivative which can also be obtained through standard IPA 
techniques. We also present an algorithm for implement- 
ing our first- and second-derivative estimators in Section IV. 
Some numerical examples are then presented in Section \7. In 
Section VI, we show how our analysis is extended to first- and 
second-derivative estimators of mean delays. In Section VII, 
we present an application to the estimation of the througlhput 
over all parameter values, based on the analysis recently 
provided in [IS]. Finally, Section VI11 contains a summary 
and discussion of future research in this area. 

11. NOTATION AND ESTIMATION PROBLEM SETUP 

We consider a serial closed-queueing network consisting of 
m servers (nodes) and a finite population of n customers. Each 

customer joins the queue in front of the next node as soon as it 
completes service at the current node, all queues have infinite 
capacity, and all nodes serve customers in FCFS fashion. Let 
S,,k denote the service time of the ith customer served at 
node k .  We assume that the service times { S z , k ;  i = 1,2 ,  * .} 
are an i.i.d. sequence of random variables with distribution 
Fk(.) ,k = l , . . . , m  . The sequences {S,,k;z = 1,2 , . . .} ,  
k = 1, .  . . , m, are also assumed independent. 

Our objective is to estimate the first and second derivatives 
of the expected departure time of the Nth customer served at a 
node, say node 1, with respect to a parameter 6' of the service 
time distribution of one of the nodes based on observations 
extracted from single sample path (the "nominal sample path"). 
Without loss of generality (as it will become apparent from our 
analysis), we assume that 8 E 0 is a parameter of F1(.) and 
0 is an interval in R. 

Suppose that our probability space ( C l ,  F, P )  supports m 
sequences of i.i.d. random variables {U,,k; i = 1 , 2 ,  . . . , k = 
1,. - .  , m}, uniformly distributed on [0, 11. Let Fcl (u ,  8) = 
infjx: F~(z,o) > U } , F C ' ( U )  = infix: F ~ ( z )  > u ) , k  = 
2 , . . . , m  . Thus, letting Sz,1(8) = Fc1(U,,1,8),S,,k = 
F;'(UZ,k), 5 = 2 , .  . . , m defines a family of sample paths 
parameterized by d .  (For more details we refer the reader to 
1151 and [25] . )  

We are now ready to state the assumptions under which 
we carry out our analysis and derive the first- and second- 
derivative estimators. For the sake of (relative) simplicity we 
have not chosen the most general assumptions under which our 
results hold, but rather those that would simplify the proofs 
to the extent possible. In the remarks that follow we indicate 
ways to extend our results beyond the class of systems that 
satisfy the assumptions stated here. 

Assumption A . l :  S,,1(8) is an increasing function of 8, i.e., 
AS,,, ef S,,1(8 + A8) - S,,J(~) 2 0 w.p. 1, for A8 2 0. 

This assumption simplifies the sample path analysis since it 
guarantees that a positive change in the parameter 8 will result 
in positive perturbations. It can be relaxed via the approach 
described in [26, Sec. 81. 

Assumption A.2: The derivative 

exists and is a continuous function of 6' E 0 w.p. 1.  Further- 
more, there exist positive constants c1, cz, such that 

E L  5 c1+ czsi,1 w.p.1, for all 0 E O. 

The above assumption (together with the mean value theorem) 
implies that 

88 

This assumption is introduced purely for convenience in our 
analysis. Note that it is a condition which is easy to verify 
for any given distribution and is satisfied by most commonly 
encountered parametric distribution families. In particular, it 
is always satisfied when d is a scale or a location parameter 
(see [25]) .  
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Assumption A.3: The second derivative In general, C ( 7 , ~ ) E B N , 1  Ai,l is not a “smooth” enough function 
of 0 for the purpose of deriving second-derivative estimators. 
Thus, in the spirit of SPA [14], [17], we need to differentiate 
a corresponding conditional expectation. As we will see in 
the next section, the information on which it is necessary to 
condition consists of the age of various service processes at 
critical events as well as the length of certain idle periods and 
waiting times. 

8% 1 
d2Sz21 ( e )  = &io [ %(e + Le) - -(e)] de2 dQ 

exists and is continuous for all E 0 w,p, 1. Furthermore 

This is a technical condition required to prove unbiasedness 
of our estimators and is commonly encountered in the PA 
literature (e.g., see [ 151). Its interpretation is that the second 
derivative (d2Sz,1 /de2) ( e )  should not be “excessively large.” 
Note that for scale and location parameters, as in the case of 
Assumption A.2 above, this condition is automatically satisfied 
since (d2Sz,l/a02)(0) = o w.p. 1. 

Assumption A.4: The distributions Fk, k = 1, . . . , m, are 
absolutely continuous with density f k  ( t )  and corresponding 
hazard rate f k ( t ) / l -  Fk( t )  bounded above by y for all t 2 0. 
In particular, f l ( t ,O) /1 - Fl(t,O) 5 y for all 8 E 0. 

This assumption may also be relaxed, though with consid- 
erable effort. The reader i s  referred to [12], [13], and [27]. 

The following notation will be needed in the sample path 
analysis of the following section: 

C z , k :  the ith customer served at node k in the 

e z , k :  departure event of c z , k  in the nominal path; 
A z , k :  arrival time of C z , k  in the nominal path; 
Dz,k: departure time of C z , k  in the nominal path; 

nominal path; 

where z = 1 , 2 , . . . , k  = l , . . . , n  . 
In this paper we focus on finite horizon performance metrics. 

With the above notation, D N , ~  is the time to observe N 
departures from node 1. The main performance metric we 
consider is 

which can be thought of as the mean interdeparture time. 
(The term is justified if we assume that at t = 0 a departure 
occurs at node 1.) When the value of the parameter 6’ changes 
to 0 + AO, the service times at node 1 are increased by 
ASZ,l  ( e ) ,  i = 1,. . . , N .  This in turn causes D N , ~  to increase 
by A D N , ~  = D N , ~ ( Q  + AQ) - D~,1(6’) .  In a nutshell, our 
analysis provides an expression for 

1 
N ao(e) = o(e + Ae) - n(e) = - E [ A D N , ~ ]  

As we will see in the next section, the first step toward this 
end is to show that A D N , ~  can be expressed in the form 
C(3,1)E~N,1 Ai,l: where ( j ,  I )  denotes the j t h  departure event 
at node I ,  B N , ~  is a subset of the events that have occurred up 
to time D N , ~  (defined later), and Ai,l a quantity related to the 
j t h  departure event at node I .  Therefore, we have 

r 1 

111. DERIVATION OF ESTIMATORS 
When 0 is increased to 19 + Ae, we get a perturbed sample 

path. We use the superscript p to denote various quantities in 
the perturbed path (for example, DZk denotes a departure time 
in the perturbed path). Further, we will assume that our m- 
node, n-customer system is such that m > 1 and n > 1, and 
we will always use k + 1 to refer to the node where a customer 
departing from node k goes next, i.e., k k 1 = ( k  2~ 1) mod m. 

The analysis that follows involves a significant amount 
of notation and becomes complicated at times. For ease of 
exposition, it is organized in a number of subsections. 

A. Lindley Recursions for Perturbed Event Times 

the nominal and perturbed paths: 
The following recursive equations describe the evolution of 

Dz,k = s z , k  + max{Dz-l,k,Az,k} 

DCk =S:k  +max{D:-l,k,A:,k} 

where  DO,^ = DE,k = 0 for all k = 1 , . . . , m  . Defining 
AD,,k = DPk - Dz,k,  we have 

ADz,k =Asz,,  + max{D:-l,k,A:,k} - max{D,-l,k,A,,k}. 
(2) 

Note that A , , k  = D7,k-1 for some departure event e7,k-1 
at node k - 1. We set = 2̂  to denote the index of C z , k  
when this customer is at k - 1, i.e., C C , ~ - ~  becomes C z , k  

immediately after this event. For consistency of notation, if 
there are initially n k  customers at node k ,  we simply set i = 0 
(i.e., A,+ =  DO,^ = 0 )  for all z = 1,. . . , n k .  

Note that as a result of Assumption A.4, the probability 
that two events occur simultaneously is zero, and denote by 
[XI+ = max(0, z} the positive part of the real number n;. We 
now consider two cases in (2). 

Case 1: Dz--l,k >A+ (or Dz-1,k > Dc+l). 

ADZ,, =As,,, + max{D:-l,k, A r , k }  - D z - 1 , k  

= Asz,k + (Dr-1,k - D z - I , ~ )  

+ max{O,A:,k - D:-l,k} 
= As,,, + aDz-i , l~  + [A:,, - D:-l,k]+ 
= Asz$ + ADz-i,k f [DF,k-, - D:-l,,]+ 

=As%$ + ADz-l,k 
+ [AD,,,-, - ADz-l,k - (Dz-1,k - D < , ~ - I ) ] +  

= Asz,k + ADz-i,k 

+ [AD<,k-l - ADz-l,k - WZ,kI+ 

where Wz,k = Dz-l,k - D;,k-l is the waiting time of C z , k .  
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and 

so that 

Fig. 1. Nominal sample path for a two-node two-customer system. 

i f  D a - l , k  < D i , k - l  (i.e., ea,k is the first departure in a busy 
period of node k initiated by e i , k - l ) .  Thus, looking at (5),  we 

on whether e z - l , k  or e i , k - l  induces e z , k .  I f  e z - l , k  induces 
e z , k ,  (6 )  becomes 

A D , , k  = At,, 4- A D , - i , k  = A t , k  -k At -1 , k  -k A:- i ,k .  

The term Az-l,k can again be expressed in terms of some 
AL),,l such that e3,1 induces e z - l , k .  By repeating this process 
backward in time until the start of the sample path, we can 
ultimately express A D i , k  as a sum of terms of the form Axl. 
A similar process applies if e; ,k - l  induces e z , k .  

With this discussion in mind, we construct a set B, ,k  

associated with event ez ,k  as follows. 

observe that = A D , _ l , k ,  or A:,, = A D i , k - l ,  depending 

1) ( i l k )  E &,k-  
2) If ez l , k l  induces e z , k ,  then ( i 1 , k l )  E B z , k  

3) For all j = 2,3, . . . , if ea3,k ,  induces ea(J - l ) , k (3 - l )  and 
( i ( ~ - l ) >  k(j-1)) E B z , k ,  then ( i 3 ,  kj) E &,k* 

4) The procedure ends at the beginning of the sam- 
ple path With ( i s , k s )  E B,,k such that D a s , k s  = 
min{D,,z: ( j , l )  E &,k}-  

Therefore, B z , k  is of the form 

&,k = {(is, ks), (i(s-l), k(s-l)) ,  ’ * ’ 7 ( i 2 ,  k2)> (il, k l ) ,  ( i ,  k ) }  

and thus, returning to the expression in (6), we can write 

Example: In a two-node two-customer system, a typical 
nominal sample path is shown in Fig. 1 where (i, k )  denotes 
the departure event e i , k .  Using the recursive construction of 
the set B i , k  described above, we have 

B 7 , l  = {(1>1),(1,2),(3,1),(3,2),(4,2),(6,1),(7,1)}. 

Before proceeding, let us also expand A D , , k  into an easier- 
to-handle recursive form. In particular, we decompose the set 
B i , k  into the following three subsets: 

P;,k = {(j,i) E B i , k :  1 = 1) 

Qi,k = { ( j ,  1 )  E &,k: D j - 1 ~  > D j , i - i )  

B. The Induced Event Set &,k Ra,k  = { ( j ,  I) E &,k: Dj -1 , l  I D~,z-I}  

We now express in ( 5 )  recursively in terms of Ai,l’s 
corresponding to events that occur prior to e,,k. To facilitate 
this process we introduce the following terminology: we say 
that event ea ,k  is induced by another event e3,i if e,,k becomes 
a feasible event at time Dj,l. In particular, ez ,k  is either a) 
induced by es - l , k  if D z - l , k  > D i , k - l  or b) induced by e;,k-l 

By combining (4) and (7), we then have 

AD,,, = Asj,l + m j , l  + fj,l* ( 8 )  
( 3  9 1 )  E p,, k (J>l )EQt,k  ( J > l ) E & , k  

Clearly, P z , k  simply contains all elements of B,,k correspond- 
ing to events at node 1, where service time perturbations 
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are generated. An element ( j ,  1)  of R z , k ,  on the other hand, 
corresponds to any event in B z , k  which happens to be the 
first departure in a busy period at node 1. Thus, e3,1 with 
( j ,  I )  E R z , k  is always induced by We note that the 
set R z , k  captures the well-known “perturbation propagation” 
phenomena due to idling at nodes as identified in early work 
on PA (e.g., [20]). All other events in B z , k  not contained in 
R , , k  belong to the set Qz ,k .  

As an example, one can easily check that in Fig. 1 

p7,l = {(1,1), (3 ,1) ,  (6,1),  (7,1)) 
&7,1 = (7 , I ) )  
R7,l = {(1,1), (1, a), ( 3 ,  I), ( 3 , 2 ) ,  (6 , I ) ) .  

The two last terms on the right-hand side (RHS) of (8) 
correspond to the effect of “changes in the order of events.” 
More specifically, the sum of TJ , l ’ s  [defined in (3)] in the third 
term captures the effect of idle periods disappearing as a result 
of perturbations, while the sum of PJ,l’s in the second term 
captures the effect of idle periods being created as a result of 
perturbations. Using (8) we obtain the following expressions 
for these terms: 

(9) 
(10) 

aj,l = E as,,, - E as,,, (11) 

&,l  = [&,l + FJ,l - IJ,Zl+ 
PJ,Z = [-AJ,z - TJ,l - W,,Z]+ 

where we have set 

(g,r)€P,-l  2 (!?IT) € 4 , l ~  1 

and 
r 1 

Although these expressions appear to be prohibitively compli- 
cated, we will soon show that all T J , l  terms do not contribute 
to the estimators we will derive. 

C. The Critical Event Sets R;,k, Q;,,, 
We define two new sets, QZ,k and R:,k, which exclude those 

elements ( J ,  I) of Q z , k ,  R,,k for which (as shown in subsequent 
sections) contributions of and E[fJ , l ] ,  respectively, are 
of order higher than O(A6”) in the estimators we will derive 

Q:,k = { ( j ,  I) E &,k: D3-1,~ > 0 j l - i  

and no events occur in (Dj,l-l, DJ-l,z)} 

and no events occur in (DJ-l , l ,  Dj,l-1)}. 
R;,k = { ( j ,  I )  E Bt,k: DJ-1,l 5 Djz-1 

Recalling the definition of R z , k  for example, it should be clear 
that an element ( j ,  I) of corresponds to any event in B z , k  

which happens to be the first departure in a busy period at node 
I such that no event takes place in the preceding idle period 
(DJ-l,l,  Dj,~-l). As we will see, events such that ( J ,  I )  E BZ+ 

which are not “critical,” i.e., not belonging to R;,, or Q;,lc, 
can be ignored as far as perturbation propagation is concerned. 

Finally, define the set 

and observe that R;,k = R i , k  n r, and Q;,k = Qi,k n I?. 

D. The Conditions zJ,l 

Denote by M ( t )  the set of nodes that are busy at time 
t .  The process { M ( t ) ;  t 2 0 }  taking values on the class of 
subsets of the set of nodes, { 1 , 2 ,  . . . , m} ,  is assumed to have 
right-continuous paths. In particular, M(DJ- l , l )  is the set of 
nodes that are busy immediately after the ( j  - 1)th departure 
from node 1. Next, define 

{ ;ye of service time of customer 
present at node k at time t ,  

present at node k at time t ,  

total service time of customer 
present at node k at time t ,  

S t ( t )  = if k E M ( t )  
if k # M ( t )  

reszdual service time of customer 
if k E M ( t )  
if k # M ( t )  

S i ( t )  = 

if k E M ( t )  
if k $ M ( t )  

Sk(t)  = 

where, of course, Sk(t)  = S;(t)  + S i ( t ) .  Hence, we 
define the families of processes {S,”(t);t 2 0, k = 

1, . . . , m} ,  and again, we consider the right-continuous 
versions of these processes. 

We now impose a sequence of conditions, zJ, l ,  associated 
with events e3,z as follows: Let e;,, be the event immediately 
following e3,1. Let AJ,l denote all events and event times before 
DJ,l, as well as the identity of the next event, In particular 
we point out that AJ,l contains all ages of feasible events at 

l , . . . ,m} , {S ; i r ( t ) ; t  2 0 , k  = l , . . . , m } , { S k ( t ) ; t  2 0 , k  = 

D J J .  
In addition, let D;,, denote the time of the next event, 

Then, we define the condition zJ,l as follows: 

Note that, in addition to the history of the process up to the 
event time and the identity of the next event, zJ,z includes 
the list of active nodes at the time the next event occurs, 
as well as the residual service times at the time of the next 
event. It does not, however, contain the time of the next event, 
Di,z. Readers familiar with the smoothed perturbation analysis 
(SPA) methodology will appreciate the importance of carefully 
selecting the conditions zJ,l: “just enough” information from 
the observed sample path is included in (14) to allow us to 
“smooth out” discontinuities that prevent a PA estimator from 
being unbiased. The justification for the specific choices made 
here will become clear in the analysis that follows. 
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Remark: In a simulation setting, conditioning on infor- 
mation such as the identity of the next event or residual 
service times presents no implementation problem, since this 
information is routinely available. In a real-time setting, on 
the other hand, future information is not available. This, 
however, presents no problem for the implementation of 
the estimators we will derive; it simply requires additional 
memory associated with certain events. For example, if one 
requires residual time data for certain active nodes when 
event eJ,l occurs, one should wait until all corresponding 
service completions take place and then proceed with whatever 
computation is involved associated with ej,l. 

Returning to (8), our objective now becomes to replace 
the terms involving fJ,l and wj,l by appropriate conditional 
expectations and explicitly evaluate them. Our main result, 
Theorem 1, will provide an expression for E[AD;,k] in terms 
of these conditional expectations. 

E. Conditional Expectations for Noncritical Events 

We begin by considering all noncritical events in the induced 
event set Bz,b, i.e., those that do not belong to R:,k or 'a:,, 
as defined in Section 111-C. The following lemma shows that 
the contribution of such events is of order o(A0'). This is 
done by providing bounds for the conditional expectations 
E[f3,11A3-1,1] and E[ f i , , l lA j~ -~] .  Observe that in these con- 
ditional expectations only the Jirst part of the condition defined 
in (14) is used. Thus, if eJ,l is the first event in a busy period 
at node I, we condition only on AJ-1,l, where eJ-l,l is the 
event that initiates the preceding idle period. 

Lemma 1: 

1) If at least one event occurs during an idle period of 
length I J , l  (i.e., if ej,lwl is not the event immediately 
following eJ-l,l),  then 

(15) 

where K;,,(A0) is such that Kil(AO) E 
AJ-l,l,EK:,l(AO) < CO, and limae-0 K:,l.(AO) == 0. 

2) If at least one event occurs during the waiting time of 
length WJ,l (i.e., if eJ-l,l is not the event immediately 
following ej,l-l), then 

1 
"llAJ-l,ll 5 K;,l(Ae) 

&E[*3,11Aj,l-ll i KZ(A0)  (16) 

where K Z ( A 0 )  E Aj,l-l, E K z ( A 0 )  < CO and 
limao+o K$(AO) = 0. 

Proof: See the Appendix. 
The above lemma implies of course that the contribution 

of noncritical events is of order o(A02) and hence that these 
events will not play a role in the final expression for the second 
derivative of E[Di,k] and the resulting estimator. 

1". Conditional Expectations for Critical Events 

Next, we consider critical events in the induced event set 
B z , k ,  i.e., events belonging to R:,k or Q:,k as defined in 
Section 111-C. Before obtaining the analog of Lemma 1 for 
critical events, i.e., evaluating the corresponding conditional 
expectations, we first need to obtain some conditional densi- 
ties. In particular, suppose event eJ-l,i occurs at time DJ-l,z 

and is followed by an idle period of duration I j , l .  In the 
following lemma, an expression for the conditional density of 
l J , l  given zJ-l,l ,  g:,l(xlzJ-l,l), is obtained for the case where 
no events occur during the idle period, or, equivalently, ej,l-l 

occurs immediately after eJ- l , l  (with an obvious dual result 
for WJ,l). 

Lemma 2: 

1) If event eJ-l,l initiates an idle period of length I J , l  at 
node 1 and the next event to occur is ej,l-l, i.e., the 
event terminating the idle period, then the conditional 
density of this idle period given zJ-1,l, g:,l(xlzJ-l,z), is 
shown in (17) at the bottom of the page. 

2 )  If customer CJ,l upon arrival to node I at time Dj,l-l 

finds the server busy and the next event to occur is 
eJ-l,l, then the conditional density of this customer's 
waiting time given zj,l-1, gZ(x)z j , l - l ) ,  is shown in (18) 
at the bottom of the next page. 

Pro08 See the Appendix. w 
We now consider case 1) of Lemma 2 to obtain an analog of 

case 1) in Lemma 1. In this case, we consider the conditional 
expectation E[fJ,l  IzJ-l , l ] .  Unlike Lemma 1, however, the 
condition here is , Z - ~ , Z ,  not just AJ-l, l .  In the next lemma 
we show that the contribution of critical events is no longer 
of order o(A0'), but instead it depends on the conditional 
density function gi,l(.lzJ-l,l) and a quantity qfl defined next. 
Let S&l denote the age of the service time of customer 
Cj,~-1 at the time eJ-l,l occurs. In other words, using the 
definition of a service time age in Section 111-D, we simply 
set SElpl = Sf - l (DJ- l , l ) .  As illustrated in Fig. 2 ,  this 
corresponds to any event eJ,l which is the first departure in 
a busy period of node 1 initiated by ej,l-l following an idle 
period of length 13,1. The crucial observation here is that Sj",l-l 
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1 
e 
j-1, 1 

e 
j , l  

Fig. 2 Illustrating the definitions of S';,l",l-, and S,"-,,l. 

belongs to zj- l ,~ ,  the condition imposed in E[J3,11+1,1]. Let 
us then define 

(19) 

Similarly, we use S:-l,z to denote the age of the service 
time of customer Cj-1,l at the time ej,l-1 occurs (see Fig. 2). 
Accordingly, we define 

Lemma 3: 

1) If no events occur in the system during an idle period 
of length 13,1 (i.e., if the event that occurs immediately 
after eJ-l,l is ej,l-l), then 

2) If no events occur in the system during a waiting period 
of length W3,1 (i.e., if the event that occurs immediately 
after ej,lPl is eJ-l,l), then 

I 1-1 
\1 1-1 

< >b??-- I 1 

Sa 
j-1 ,f 

Prooj? See the Appendix. 

e 
j-1 , I  

G. Second-Derivative Estimators Using 
Conditional Expectations 

get 
Returning to (8) and taking expectations on both sides, we 

Combining the results from the previous sections, we will 
now replace the RHS above by terms involving conditional 
expectations. This leads to our main result, Theorem 1 below. 

Theorem I :  
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Pro08 Recalling (4) and (7), we have 

AD;,k = Ag,l = ASJ,ll(l = 1) 
(j,l) €8, k (j,l)EB%,k 

+ fiJ,ll(DJ-l,l > DjJ-1) 

+ fJ,ll(Dj-l,l < Dj,l-l). 

(J>l )EB%,k 

(j>l)€B%,k 

Comparing RHS above with the RHS of (24), note that the first 
summations are identical. Let us next consider the remaining 
two sums above. The last one can be written as 

l=1 j=1 

Taking expectations and using Fubini's theorem, we obtain 

E fj,l1(Dj-l,l < Dj,l-l) 

(j,l)EB%,k 

(25) 

Recalling the definitions of the sets R i , k  and R:,k, in 
Sections B and C, we have 

1 )  E &,k)Wj-l , l  < Dj,l-l) = l((i I )  E R i d  
l ( ( j , l )  E & , k ) l ( ( j , O  E r) = l ( ( j , l )  E q k ) .  

((26) 
((27) 

We next note that the information in A j - 1 ~  is enough 
to determine whether Dj-l,l < Dj,l-l, and whether (j,Z) 
belongs to I? or not, that is 

(28) l(Dj-1,~ < Dj,l-l) E Aj-1,~ C +i,l 

q ( j , i )  E r) E Aj-l,z c +l,l.  

and 

(29) 

The above two remarks are crucial in what follows. Equa.tion 
(28) is simply due to the fact that Aj-1~ includes the wlhole 
history of the process up to time Dj-l,l, so that by that time 
we obviously know whether Dj+1 has occurred (in w.hich 
case the inequality is satisfied) or not. To check (29) we 
need to recall that Aj-1,~ contains the identity of the next 
event: If DjPl,l < Dj,l-l, observe that no events 0ccu.r in 
(Dj-l,l,Dj,l-l) iff ej,+1 is the next event. If on the other 
hand D j - 1 ~  > Dj,l-l, then we can tell whether any events 
occurred in (Dj,l-l,Dj-l,l) or not since this time interval 
clearly belongs to the past history of the process. 

With these observations in mind, let us now return to 
the RHS of (25) and examine a typical term in the double 
summation. Noting that l((j, 1 )  E B i , k )  = l((j, 1 )  E B i , k  f l  
I') + l((j,Z) E Bi,k n I?"), we have 

E[jj,il((j, 1 )  E Bi,k)l(Dj-i,z < Dj,l-1)] 

= E [ ~ ( D ~ - ~ , ~  < ~ ~ , ~ - d f ~ , ~ i ( ( j ,  1 )  E B ~ , ~  n r)] 
f E[l(Dj-i,i < Dj,i-i)Jj,il((j, I) E B i , k  fl r")]. 

Next, take conditional expectations on the RHS of the above 
display, conditioning on zJ-l,l for the first term above and on 
AJ-l,l c zJ-l,l for the second term 

E [ f J , l l ( ( j ,  I) E Bz,k)l(DJ-l,l < %-dl 
= E[E[l(D,-l,l < Dj,l-d 

. f J , l W ,  1)  E &,k n r)l.+l,lll 

+ E[E[1(D,-l,l < DjJ-1) 

. f J , l 1 ( ( J , ~ )  E &,k n ~ c ) l ~ J - l , l l l  

. ~[hiw) E B ~ , ~  n ~ ) I . + ~ , ~ I I  

* N J , l l ( ( j ,  1 )  E &,k n r C ) J ~ J - l , l ] ]  

= E[l(DJ-l,l < Dj,l-d 

+ E[l(D,-l,l < Dj,l-l) 

(30) 

where the last step above follows from (28). 
Examine now the two terms on the RHS of (30) separately, 

starting with the second term. First, note that f J , l  2 0 
w.p. 1.  Hence the conditional expectation in the second 
term is dominated by E[fJ,llAJ-l,l]. By virtue of Lemma 1 
this, in turn, is smaller than Kil(A0)A02. It follows from 
a straightforward application of the dominated convergence 
theorem (e.g., see [5]) that the second term is of order o( no2). 

Turning our attention to the first term,-we next argue that 
the random variables 1 ( ( ~ ,  I )  E B z , k )  and I J , l  are conditionally 
independent on the event { ( j , 1 )  E I?} given zJ-l,l. More 
precisely we will show that 

E[fJ,lW, 1 )  E B z , k  n r)12J-1,11 

= l((j, 1)  E ~)E[fJ,ll+l,ll 

. E[l((j, 1 )  E BZ,k)l+l,l]. (31) 

To this end it will be helpful to think of the network as 
a continuous-time Markov process. Let XZ(t) denote the 
number 'of customers in node z at time t and X(t) := 
(XI ( t )  , . . . , Xm ( t ) )  . Similarly, Sl ( t )  is the residual service 
time of the customer present in node z at time t (with Sr ( t )  = 0 
when node i is idle) and S'(t) := (Sy ( t ) ,  . . . , S&(t)) .  Then 
( ( t )  = ( X ( t ) ,  S '( t)) ,  the vector of queue lengths and residual 
service times at time t ,  is a continuous time Markov process. 
We will denote by .F: := (T - { [ ( U ) ;  0 5 U 5 t }  the history 
of the Markov process up to time t. Observe the following. 

a) When ( j ,Z)  E I?, then the next event after DJ-l,l is 
Dj,l-1 and thus zJ-l,l is in this case the history of X(t) 
up to DJ-l,l together with X(Dj+l) and ST(D, l - l ) .  
Thus, when ( j , l )  E r, the full state of the Markov 
process at time Dj,~-1 belongs to zJ-1,z, i.e., 

(32) E 
[Pj , l - l )  E + l , l  c %,,,+,. 

b) Recalling the definition of fJ,l in (9), we see that it 
clearly depends only on events that have occurred up to 
time DJ-l,l and on the length of the idle period ending 
at time Dj,lPl, i.e., it depends only on events up to time 
Dj,l-1, so that 

&>l E f i J  1-1' (33) 
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c j  The event { ( j ,  1) E B , , k )  is determined from the seg- 
ment of the sample path of X ( t )  between D3,z and Dz,k. 
(Recall the construction of B z , k :  We start with the event 
e z , k  and, going backward, find the event that induces 
it, then the one that induces that, and so forth.) Going 
backward in this fashion we can determine whether 
( j ,  I )  belongs to B , , k  or not from the information in 
n - {X(u);D3,1 5 U 5 Dz,k).  Therefore 

since Dj,z+1 < D3,z. 
dj  Dj,l-1 is clearly a stopping time with respect to Ff.  
Based on a), b), c), d), and the strong Markov property, we 

can then see that, given z3-1,z, f3,z and l((j, I )  E B i , k )  are 
conditionally independent on [i.e., (31) holds]. First, given 
z3-1,z, we know ( ( D ~ , z - ~ ) .  Second, { ( j ,  I )  E B z , k }  is an event 
that depends on the future of the process, after Dj,+l. Finally, 
j 3 , ~  depends on the evolution of the sample path of X ( t )  up 
to Dj,~-l .  Hence (31) follows from the fact that the future 
is conditionally independent from the past, given the present 
state ((Dj,z+I). 

Next, to keep notation manageable, set 

X;,l = ~sj,l(ol.3-l,l,crr,,zl 1 + 2  1 

and recall Lemma 3 to write 

where X i z  belongs to zj-1,~. This in turn yields 

which completes the proof. 
We are now in a position to obtain the desired first- and 

second-derivative estimators. Using Assumption A.3 and the 
dominated convergence theorem, (24) can be written as 

W + 2  + g ~ ( o l ~ ~ , z - l ) ( [ r , , ~  1 1 

+ s~,z~~l.3-l,l~~~r,~zl+~2 N2 

( j , l )€Q: , k  

(35) 

From the expression above, letting ( i , k )  = ( N ,  1) and 
recalling (7), we obtain the following estimator for the first- 
order derivative of n 

(3>1)ER:, ,  1 
+ O ( a o 2 ) .  

Thus, we have recovered the standard IPA first-derivative 
estimator for this type of network (e.g., [7]). 

is 
given by 

Similarly, our second-order derivative estimator of 

2 1 
N As-0 Ad2 

[$D] =- lim ~ 

est. 

l+\ 
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(37) 

It readily follows from Theorem 1 that the two derivative 
estimators above are indeed unbiased. 

It is worth pointing out that in the second and third terms 
of (37) above, not all ( j ,  1) belonging to the critical even sets 
Q&,l and R&,, contribute to the estimator. This is because 
the corresponding differences in the [.I+ in these terms may 
be negative. As an example, consider the two-node two- 
customer system of Fig. 1, where it is easy to check that 
QT,l = Q7,1 = {(4,2), (7 , l ) ) .  However, only (4,2) has a 
nonzero contribution in the second term of (37), whereas for 
( j ,  1 )  = (7 , l )  we get 

-l-t 

- -S? d as31 as1 1 
88 .-L2J ' = [(* + -$) 
-(*+-)-34 as31 as1 1 d%,l + = o .  

d8 

An explicit algorithm for implementing the second-order 
derivative estimator above is provided in the next section. 

We can obtain a similar iterative scheme for the second 
derivative. Define 

L&k) = N -$I($) 
- I& 

and 

(jJ)#(i,k) 

d 
d8 = Ll(Z1, k1) + l(k = l)-S:k. (41) 

Then, from the definition of Ll( i ,  k )  in (38), we have 

The last expression above corresponds to the following three 
cases. 

Case 1: Di-l,k > D;+1 and no event occurs during the 
waiting time of customer Cz,+ i.e., during the time interval 

It follows from the definition of Q:,k and R:,k that (42) 

Iv. THE ESTIMATION ALGORITHM 

Although the expression for the second-derivative estimator 
in (37) is rather complicated, we will present in this section an 
algorithm for implementing both first- and second-derivative 

We begin with the first-derivative estimator in (36). Defining 
estimators which is quite simple. (a, k -  1 , Di- 1 ,k 1. 

we have + s$-l(olzi,k-l) 

[-&Dl = + 4 ( N , 1 ) .  1 

est .  

* ([Ll(i, k - 1) - LP(i - 1, k)]+)2. 

Case2: Di-1,k 5 D:,k-l and no event occurs during 
Now, let eil,kl be the event that induces ei ,k .  From the the idle period at node k,  i.e., during the time interval 
definition of B i , k  in Section 111-B, we know that (Di-l,k, a,k-1). Then 

d2 
882 

L2(i,k) =&(ill k l )  + l ( k  = l)--Si,l 

+ si- 1 ,k (0 I zi - 1, k 1 
. ([Ll(i - 1, k )  - L?(i, k - 1)]+)? 

Bi,k = Bi1,kl  U {(i, k ) } ;  Pi,k = P i 1 , k l  U ((2, k)l(k = 1)) 

I where we agree to let { ( i , k ) l ( k  = 1)) be the empty set if 
1(k = 1) = 0. Therefore, we have the following iterative 
scheme for obtaining L1 ( i ,  k )  from L1 (il, k1): 

a Case 3: Otherwise c %sjJ a2 
L2(i, k) = Lz(i1, k1) + l(k = l)-$i,l. 

Ll(i,k) = 
(Ll)€Pq , k l  U{(i,k)l(k=l)} 

d 
d0 

ae 
= Ll(i1, k l )  + l ( k  = l>-Si,/$. (39) Using (39) and the three cases in (42), we have the following. 
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First and Second Derivative Estimation Algorithm 
1) Initialize: Ll(1 ,k )  := O , L ; “ ( I , k )  := O , L z ( I , k )  := 0, 

for k = l , . . . , n  . 
2) At each (departure) event e i , k  induced by ezl,kl: 

a) Ll( i ,  k )  := Ll(i1, k l ) ,  Lz(i, k) := Lz(i1, k l ) .  
b) If k = 1 

d 
86’ 
d2 

86’2 
d 
88 

Ll(2, I C )  := Ll(2, k )  + -Sz,l 

Lz(2, k )  := L2(i, k )  + --Sz,l 

L;”(z ,k)  :=L1( i ,k )  + -ql. 

c) If Da-1,k  > D:,k-l and no event has occurred in 
(Dt,k-l, Di-1,k) (i.e., if C z , k  had to wait and no 
event occurred in the network during his waiting 
time) 

d) If Dz-l,k 5 D:,k-l and no event has occurred in 
( D i - ~ , k ,  D;,+l) (i.e., if C z , k  did not have to wait 
and no event occurred in the network during the idle 
period in node IC preceding his arrival) 

3) If N events have occurred at node 1, stop and set 

1 1 
N 

L1(N, 1) := -L1(N, 1) ,L2(N,  1) := +v, 1). 

The calculations of g$- (OI.zt,k- 1 )  and gt-l,k ( 0 I ~ , - l , k )  

whenever required in the algorithm for a particular ( j ,  I ) ,  are 
carried out by using (17) and (18). Observe, however, that 
the expressions for these conditional densities are predeter- 
mined off line. They may be quite complicated, but, once 
available, these on-line calculations are simply a matter of 
evaluating given expressions for specific numerical values 
of observed quantities such as customer waiting times. As 
noted in Section 111-D, these calculations require the residual 
service times of all active nodes at D3,1. Also, note that 

of (17), where the latter requires the length of observed 
idle periods, whereas the former requires residual service 
time observations. The calculation of the first and second 
derivatives of the service times Sz,l (6’) is done using standard 
techniques (e.g., see [26, Sect. 111). 

gz-l,k(Olz,-l,k) I may be calculated by using (53) instead 

Finally, when the algorithm stops we have 

V. SIMULATION RESULTS 
Here we present numerical results obtained by applying the 

algorithm of Section IV to two different serial closed-queueing 
networks. The first simulation experiment was conducted for a 
network with exponential service times to compare the output 
of our algorithm with analytical results. The second exper- 
iment was conducted for a network with hyperexponential 
service times ( H z ) .  In this case, we compare our estimators 
with “brute force” simulation results, i.e., finite-difference 
estimators for a given value of Ad. In what follows, the 
quantities with the subscript “est” represent estimates which 
are compared to the corresponding analytical results or brute 
force simulation results (with subscript “b”). Finally, 8( 0) 
and D”(0) represent the first and second derivatives with 
respect to parameter 8. The 95% confidence intervals included 
were obtained from a batch of 25 simulation runs in each case. 
Additional numerical results may be found in [2]. 

Case 1: Exponential system with three nodes and five 
customers. 

N I  D I Dcrt. I D’(e) I D’(e),.t. I D”(0) I D”(e),,t. 
case 1 

10‘ 1.40000 1.40357 0.46667 0.47230 0.62222 0.53745 
f0.01224 f0.02004 f0.13390 

lo4 1.40000 1.39952 0.46667 0.46411 0.62222 0.61406 
f0.00417 I f0.00525 I I f0.03369 

lo5 I 1.40000 I 1.39951 I 0.46667 I 0.46636 I 0.62222 I 0.61900 
f0.00107 f0.00133 fO.01110 

10’ 1.40000 1.40015 0.46667 0.46650 0.62222 0.62056 
h0.00026 f0.00049 f0.00417 

case 2 
10’ 1 12.0455 I 12.0467 I 0.05164 I 0.05052 1 0.01401 I 0.01376 

1t0.13675 h0.00384 10.00559 
lo4 12.0455 12.0404 0.05164 0.05138 0.01401 0.01402 

f0.04351 f0.00118 f0.00197 
l o 5  12.0455 12.0414 0.05164 0.05159 0.01401 0.01409 

f0.01188 f0.00033 f0.00061 
lob 12.0455 12.0468 0.05164 0.05166 0.01401 0.01391 

f0.00284 fO.OOO1O f0.00016 

- - ~ ~ ~ _ _ _ - .  

case 3 

f0.01494 f O . 0  149 1 
1.00005 0.99716 0.99981 0.99683 

f0.00296 f0.00295 
1.00005 0.99943 0.99981 0.99919 

f0.00097 f0.00096 
1.00005 1.00009 0.99981 0.99986 

f0.00021 f0.00021 

f0.00012 

with corresponding parameters: 

Case 2: H2 system with three nodes and three customers. 
In this system, the service time at each node is H2 with 
service time distributions fl(z) = aple-@lx + (1 - 
a)p2e-pzx,f2(z) = ,8Xle-X1x + (1 - ,B)X2e-X2x and 
f3(z) = Yule-V1x + (1 - y)uze-V2x respectively. Here, 
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10' 

10' 

lo' 

10" 

TABLE I 

f0.01094 f0.00401 10.00372 50.01987 f0.00838 
2.74012 0.42117 0.42312 0.27384 0.27025 

f0.00264 f0.00128 10.00122 f0.00722 f0.00238 

1.27548 0.46483 0.46785 3.02916 3.00300 
f0.04328 f0.01123 f0.01099 f0.52520 f0.30233 
1.29267 0.47128 0.47471 2.86930 2.82898 

f0.01805 f0.00424 f0.00399 f0.19665 f0.11949 
1.29084 0.46949 0.47123 2.85956 2.82155 

f0.00603 kO.00098 f0.00097 f0.08343 f0.03936 

Coscl 

we chose 6 = l /pl  and A6 = 0.02. 

N I  Db I 4 ( 6 )  I D'( 6)e.t. I U/( e) I zv)e,t .  
case 1 

10' I 2.78209 I 0.41893 I 0.42339 I 0.26856 I 0.27737 I f0.05279 I f0.01226 I f0.01098 I f0.05987 I f0.02150 
10' I 2.74555 I 0.42213 I 0.42459 I 0.27511 I 0.27454 

with corresponding parameters: 

c m  I I i/pl I lipa I B I i/xl I i/xz I 7 I i/ul I 11- 
1 I 0.96 I 1.0 I 5.0 I 0.90 I 1.0 I 5.0 I 0.80 I 1.0 [ 5.0 
2 I 0.98 I 0.1 I 10.0 I 0.95 I 0.1 I 10.0 I 0.95 I 0.1 I 10.0 
3 I 0.3 I 1.0 I 10.0 I 0.5 I 1.0 I 10.0 I 0.45 I 1.0 I 10.0 

VI. DERIVATIVE ESTIMATORS OF MEAN DELAYS 

Therefore 

By expanding each term on the RHS above, we obtain the 
following first-derivative estimator: 

Similarly, the second derivative estimator is given by 
. N  

where 

d d 
jg'$",' - jgSq9 

(n, 1 ) E PJ - 1 , l  ( q > l ) € q , 2 - 1  
( q J ) # ( L - l )  

2 

One interesting performance metric for serial closed net- 
works is the mean delay over several nodes. For simplicity, 
we will only show how to use our results from Section I11 to 
obtain first- and second-derivative estimators of mean delays 
over a single node. Mean waiting times can of course be 
handled similarly. The extension to mean delays over several 
nodes is straightforward. 

For an m-node n-customer network, denoting the delay 
experienced by the ith customer at node k by Tz,k, we have 

d 
a* qz-1  

- -  l+i .  
Therefore 

Now, for N customers served at node k ,  define 

Table I provides experimental results for one of the systems 
considered in the previous section. 

Case I: Exponential system with two nodes and two cus- 
tomers ( N  = lo6). 

Note that the second derivative of the mean cycle time is the 
same as the second derivative of the mean interdeparture time 
(see Section VI, Case 1) which of course is to be expected 
from Little's law. 

VII. PADE APPROXIMATION OF THE MEAN INTERDEPARTURE 
TIME RESPONSE CURVE THROUGH ITS DERIVATIVES 

As already mentioned in the introduction, one of the reasons 
for seeking efficient means to estimate second derivatives is i=l 



to provide estimates of entire response surfaces of DEDS 
with respect to various parameters. As recently shown in 
[18], Pad6 approximants of various performance metria can 
be remarkably accurate based on first- and second-derivative 
information alone (compared to polynomial approximations 
whose accuracy is inherently limited as discussed in [18]). 
The benefit here is obvious, since this approach requires only 
observation of a single sample path (e.g., one simulation 
run) with some additional computational effort for first- and 
second-derivative estimation to determine an entire response 
curve; this is in contrast to an approach based on multiple 
sample path observations. 

In this section, we will generate the response curve of the 
mean interdeparture time through a Pad6 approximation based 
on the results of Section 111. Since the throughput is the inverse 
of the mean interdeparture time, this is equivalent to obtaining 
the response curve of the throughput with respect to the mean 
of one of the service time distributions of our system. Before 
doing so, we give a brief description of the Pad6 approximation 
as it applies to our problem (for a detailed description, see [ 11 
and [IS]). 

Suppose that the function J(6') can be written as a power 
series 

00 

J ( 0 )  = c;02. 
i=O 

Let L , M  be two integers. Then a [L /M]  Pad6 approximant 
to J ( 0 )  can be expressed as a rational function 

(43) 

where P L ( ~ )  = uo'+ a10 + . . .  + u ~ 6 ' ~  and & ~ ( 8 )  = 
bo + b16' +. . .+ b M o M ,  and uo, u l , .  . ' U L  and b l ,  b z , .  . . , b M  
are coefficients to be determined (bo is always set to one). 

The important requirement for [L /M]  is that the first 
L + M + 1 coefficients of its Taylor expansion agree with 
those of J ( 8 ) .  When the first L + M + 1 coefficients of 
J(6'), CO, c1 j .  CL+M+l,  are given through the derivatives 
of J ( 8 )  with respect to 8, the coefficients a0 u l ,  . . . , U L  and 
bl b2 . . . , bM can be determined through the following two 
sets of equations (see [1] for details): 

= - i CL+M I 
and 

. . .  

(44) 

1118 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO 8, AUGUST 1996 

approximation and a polynomial approximation. It can be 

Thus, for a fixed number of given derivatives of J(6'), 
say T derivatives, we can always choose some L and M 
such that T = L + M and determine ao, al,. . . , U L  and 
b l ,  b2 ,  . . . , bM through (44) and (45). In fact, the power of 
the Pad6 approximation is that it provides the flexibility of 
choosing L and M as long as T = L + M holds which means 
that it is possible to approximate a very general class of curves 
for a fixed T.  Obviously, the selection of appropriate L and 
M is very important for a good approximation given some T.  
However, this task is greatly facilitated in the case of many 
DEDS where one can exploit some basic properties of J(6'). 

In general, the mdre derivatives we can provide, the more 
accurate the approximation becomes. In our system, we have 
seen that estimating higher than second derivatives becomes 
very involved. However, we have found that first- and second- 
derivative estimates alone provide excellent approximations 
for a large range of parameter values around a nominal point. 

We will now derive a PadC approximant for D(8) based 
on B(O1)est , D (e,),,, , and D''(81)est , the estimates of the 
mean interdeparture time and its first two derivatives obtained 
from a single sample path observed under 6' = 81 (where 6' is 
the mean service time at node one). Since we know that the 
mean interdeparture time approaches the mean service time as 
8 + CO, i.e., 

-I 

lim [D(O) - 81 = 0 
8+00 

instead of approximating D( 8) we will approximate [B( 8) -81. 
In view of this observation, we derive a [0/2] ( L  = 0 and 
M = 2) PadC approximant. Let 

By applying (44) and (43 ,  we can solve for ao, b l ,  and b2 
to get 

Therefore 

which is the Pad6 approximant. 
In Fig. 3, we show the response curve of the mean inter- 

departure time at node 1 with respect to the mean service 
time in a two-node two-customer system. The service times 
of both nodes are exponentially distributed with mean 1. 
Using the results of Section V, we have included both a Pad6 
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Fig. 3. Pad6 approximation for a two-node two-customer system (1). 

c 
0.7 0.851 

0.0 0.1 0.2 0.3 0.4 0 . 5  0 . 6  

Expected Service Time of Node 1 

Pade 
. - .- .- .- Theoretical 
............. Polynomial 

Fig. 4. Pad6 approximation for a two-node two-customer system (2). 

seen from this figure that the Pad6 approximation is virtually 
indistinguishable from the curve representing the analytically 
evaluated mean interdeparture time. The accuracy of the 
polynomial approximation, on the other hand, is limited to 

a small range of values around the nominal point (6 = 1). In 
Fig. 4, we have substantially enlarged part of Fig. 3 to further 
show that it is in fact difficult to find an error in the Pad6 
approximation compared to the analytically obtained curve. 
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VIII. CONCLUSIONS AND FUTURE WORK 

We have considered a serial closed-queueing network with 
arbitrary service time distributions and derived an unbiased 
second-derivative estimator of the throughput over N cus- 
tomers served at some node with respect to a parameter of 
the service distribution at that node. Our approach is based on 
observing a single sample path of this system and evaluating 
all second-order effects on interdeparture times as a result of 
the parameter perturbation. We then define an estimator as a 
conditional expectation over appropriate observable quantities, 
as in smoothed perturbation analysis (SPA). Along the way, 
we have also recovered the first-derivative estimator of the 
throughput which can also be derived using other techniques 

period I ~ J  (respectively, waiting time Wj,l) for noncritical 
( j , l ) ,  i.e., ( j , l )  @ QZ,k (respectively, ( j , l ) ,  i.e., ( j , l )  @ Rt,,), 
as defined in Section 111-C. 

Lemma 4: 

1) Suppose that an idle period immediately follows a 
departure at node 1 at time Dj-1,~. If ej,l-l is not the 
next event to occur, then 

2) Suppose that the customer Cj,l upon arrival at node 1 
at time Dj,l-l finds the server busy. If ej-1,z is not the 
next event to occur, then 

(e.g., [7]). Our results are easily extended to the second 
derivative of the mean delay of customers between any two 

1 
x i 0  2 

gz(OIAj,z-l) = lim -P(W,,z i xlAj,l-1) = 0. (48) 

points in the network, as shown in Section VI. 
Along the way, our analysis has provided some new insights 

regarding the type of sample path information we need to 
condition on to estimate higher-order performance derivatives. 
As seen in Section IV, even though the derivation of the 
second-order derivative estimator is fairly elaborate, the actual 
algorithm for its on-line implementation is relatively simple. 

As mentioned in the introduction, a major motivation for this 
work is the possibility of using the first and second derivatives 
of performance metrics of complex DEDS to construct a 
global response surface. Recent developments exploiting Pad6 
approximation techniques [ 181 have made this possibility 
very real. Our results in Section VI1 indicate that the entire 
throughput response surface of a serial closed-queueing net- 
work can be constructed with remarkable accuracy using only 
the first- and second-derivative estimates we have developed. 
Moreover, we believe that the basic approach presented here 
may be extended to more complex network topologies which 
is the subject of ongoing research. 

Finally, establishing the consistency of the estimators we 
have derived remains the subject of future research. Nonethe- 
less, it has been shown by direct computation (see [2]) that 
consistency holds for two-node cyclic Markovian networks 
in which case second derivatives of the throughput at steady 
state can be analytically obtained. 

APPENDIX 
PROOFS OF THE LEMMAS 

Pro08 We only give the proof of 1). The arguments for 
2) are identical. First, suppose that node 1 - 1 is busy. In that 
case, Ij,l = Sr-1(D3-1,~), the residual service time of the 
upstream server at the beginning of the idle period. Then 

P(Ij,Z I "ClA,-l,Z) 
= P ( S ~ T _ ~ ( D ~ - I , Z )  I XlM(Dj-l,l), 

{S;(Dj-l,l); 4 E M(DJ-l,Z)}, 
sr-l(DJ-l,l) > min s;(Dj-l,z)). (49) 

{ P E W D ,  -1,l)I 

Keeping in mind that conditioned on M (D,  - 1,z), 

{S;(D3-1,l); 4 E M(Dj-l,l}, the random variables 
{S;(DJ-l,z); 4 E M(DjPl,z)} are independent with 
distributions 

where, as usual, P,  ef 1 - Fq denotes the survivor function 
of the distribution Fq, we obtain via a straightforward compu- 
tation (similar to one found in [ 141) expression (50), shown at 
the bottom of the page, for the conditional distribution of I j , l .  

Hence the conditional distribution of Ij,z is obviously ab- 
solutely continuous with density gi,l(.lAj.-l,~) obtained by 
differentiating (50) w.r.t. IC. Then, an application of the mean 
value theorem yields 

Before proceeding with the proof of Lemma 1, we need the 
following result regarding the conditional density of the idle 

for some E E [O,IC]. Then, since g;,z(OIAj-l,l) = 0, (the term 
inside the square brackets in the numerator of (50) vanishes 
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for U = 0), taking the limit as z -+ 0 in the above display 
establishes part 1) of the lemma when the upstream node is 
busy. 

To complete the proof we need to also examine the possi- 
bility that the upstream node I - 1 is idle. Suppose then that 
at time Dj-l,l the first a upstream nodes, 1 - 1,. . e ,  2 - a, are 
idle, where 1 I a I m - 1. In that case, P(Ij,l I zlAJ-l,l) 
is given by the convolution of the distribution of the residual 
service time at node I - a - 1 with the distributions of the 
service times at the intervening nodes, I - a, . . , I - 1, all of 
which have hazard rates bounded above by y (by Assumption 
A.4). Hence 

from which the lemma statement follows immediately since 
a 2 1. W 

We can now proceed with the proof of Lemma 1 in 
Section 111-E 

Proof of Lemma I :  We only give the proof of 1), since 
2) is obtained by identical arguments. From the definitions of 
AJ,l and FJ,l in (11) and (12), respectively, in conjunction 
with Assumption A.2 and the fact that Sq,T I Dj,l-1 for any 
( q ,  r )  E Bj,l, we obtain the following inequalities: 

(51) 
(52) 

lA,,ll I 2 ( j  + n)ciAd + 2~2Dj,l-lAd 
IT',i( 5 4 ( j  + n)ciAd + 4CzDj,l--lad. 

Then, since Ij,l = Dfl-1 - Dj-1,z, we get 

jj,l = [A,,l + Fj,l - IJ,ll+ 
5 [S( j  + n)clAd + 6c2D3-1,lA6' - (1 - 6~zAd)I,,l]+. 

Moreover, since [x - y]+ 5 z l ( y  5 z), for z,y 2 0 

jj,i I Ad(6(j + n)ci + 6czDj-1,~) 

6( j  + n)ci + 6~2Dj-1,l as). . 1 ( I j J  I (1 - 6~2Ad) 
Since Dj-1,~ belongs to A j - l , ~ ,  taking conditional expecta- 
tions in the above expression gives 

€3 [&,l I Aj - 1,l I 
5 Ad(6(j + n)ci + 6~2Dj-1,l) 

for some E [O,x(Ad)]. Note that g'(ylAj-1,l) 5 c' for 
some constant (this immediately follows from (50), where dif- 
ferentiating to obtain g'(.lAj-l,l) gives a numerator bounded 
by y by Assumption A.4 and a denominator which is some 
constant). Since, in addition, EID?-l,l] < 00, setting 

completes the proof. W 

Proof of Lemma 2: We examine only the idle period case 
in detail, as the waiting time case is similar. We begin with the 
observation that necessarily 1 - 1 E M(DJ-l ,~) ,  i.e., the node 
immediately preceding node 1 must be busy at time Dj-l,l. 
Hence, the idle period of length Ij,l is the residual service time 
of the customer in the upstream node, 1 - 1, at time D3-1,1, 
defined as S[-l(Dj.-l,~). Equivalently, we write 

IJ,l = sz-l(DJ-l,z) - SLl(Dj-l,l). 

Because of the independence assumptions regarding the ser- 
vice processes at the nodes of the network, the relevant 
part of zj-l,l is the set of active nodes, M(DJ-l,l), the 
ages of the service processes at the active nodes given by 
{SG(Dj-l,l); q E M(D,-i,l)], the identity of the next event, 
and the residual service times at the end of the idle period 

Under the assumption of the lemma, ej,l-1 is the next event, 
i.e., no events occur during the idle period IJ,l. This translates 
into the condition 

Ij,l,  {s;(Dj,l-l); 4 E M(Q-l,l)). 

Sl-l(Dj-1,Z) - SLl(DJ-l,l) 
= S q ( ~ , - l , l )  - s;(q-l,l) - Spj,z-l) 

for all q E M(Dj-l,l)\{Z - 11 
where Sq(Dj-l,l) - SG(Dj-l,l) is the residual service time at 
node q at the beginning of the idle period, and S;(Dj,1-1) is 
the residual service time at node 4 at the end of the idle period. 

Denoting by gr(.lzJ-l,l) the conditional density of IJ,l,  we 
then have 

gr(zlzJ-l,l) dx 
CC P ( s l - ~ ( D j - ~ , l )  - s?-i(Dj-l,l) E dz 

s q p - l , l )  - S;(Dj-l,l) - Spj , l - l )  E dz 
Letting Q E M(Dj-l,d\U - 1}lSiX~j-l,Z) 

s;(DJ-l,z), Sqr(Dj,Z-l), 4 E MP-l,l) \U - 1)). 6( j  + n)c1 + 6CZD3-1,l as z(A0) := 
(1 - 6~2Ad) 

It is then straightforward to obtain (53), shown at the bottom 
of the next page. and dividing both sides of the above inequality by Ad2, we 

obtain Taking into account that 
1 

a82 E E,, 1 I 4  - 1,ll s q ( q - l , z )  =S,"(D,-l,l) + 1,,1 + s;(Dj,l-l) 
(6(j + n)ci + 6~2Dj-1,i)~ 1 4 E M(Dj-l,l) 

* P(Ij,Z I z(AWj-1, l )  (53) can be rewritten as (54), shown at the bottom of the next 
W page. 

Before proceeding with the proof of Lemma 3, we need the 
following result stated as Lemma 5. 

(1 - 6~2Ad) X ( W  
I 

(6(j + n)cl + 6 ~ 2 D ~ - i , i ) ~  I 
9 ( C I ~ J - l J )  - - 

(1 - 6czAd) 
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Lemma 5: I 
and c P ~ ~ : s u p p  
A0). Keeping 
Then, for any 

.et suppFl(.; 0) denote the support of F1(.; 0) 
Fl( . ;O)  i R +  the function F;l(F1(.;O);O+ 
0 fixed, consider the family {@AB; 2 0). 
s E supp F1(.; 0) 
1 

lim -[@,e(S + yAB) - 
A8+O Ad 

dS 
a0 

SI = - + y. 

Proof: Observe first that is the identity map on the 
support of Fl(.; 0) and 

lim @ ~ e ( z )  = z for 1c E supp F1. (55) 
A8+0 

Since @AQ(S + yA0) - S = @&e(S + yAB) - @A~(S) + 
@AO(S) - S, and 

@ A @ ( S ) - s  dS  
+ - for all S E supp PI(.; 0) 

A8 88 
it is enough to show that 

@AO(S + yA0) - @AO(s)  
+ Y  A0 

for all S E supp F1(.; 6'). (56) 

Suppose that for some 20, f(z0; 0) > 0. Note that, in view 
of the continuity of f(z;0), there exists E such that when 
1z-z01 < E ,  A0 < E ,  f(z;  0+A0) > 0. Also, (55) implies that 
there exists S > 0 such that for A0 < 15, I @ ~ e ( z o )  - 201 < E .  

From this follows that for A0 < 6, f(@AO(Zo); 0 + A0) > 0, 
and hence that for 20 E supp FI( . ;  B )  

Therefore, from the mean value theorem 

Letting A0 i 0, and invoking the continuity of f and (55), 
establishes (56). 

We can now provide the proof of Lemma 3. 

Proof of Lemma 3: Let us begin by defining 

c c 
(P,T)EP,--I,l (q,r)€Pj,i-l 

(q, , )#(A- 1) 

We will then obtain a limit for AR/AB as A0 i 0. 
Since Dj-1,1 immediately precedes Dj,l-1 we can see from 

(12) and (3) that ?',1 belongs to , z - l , l .  Moreover, observe 
in (12) that pJ,1 consists of a sum of jq , ,  and terms. 

[ADq-,,, - AD,,,-1 - Iq,,]+ from (3). In addition, when 
( 4 , ~ )  E Q3-1,1 U Qj,l-l, we have Wq,, > 0. Hence 

Also, Wq,, = [ADg,,-l - ADq-,,, - Wq,,]+ and Iq,, 

However, w.p. l,limAe+O AD@,,-l/AB = d/Dg,,-l/dO and 
limAe+oADq-l,,/AO = dD,-l,,/d0. In view of the fact 
that INq,, > 0 and the continuity of the positive part function 
[.I+, w.p. 1 

1 -  
lim --Wq,, = 0. 

AO+O A0 

Similarly, for ( 4 ,  T )  E RJ-l,l U Rj,z-l, we have Iq, ,  > 0 and 
get 

1 -  
lim -Iq,, = 0. 

AQ-0 A0 

From (12), this establishes that 

(58) 
1 -  

lim -T - 0 w.p. 1. 
AO+OA@ "'- 

Therefore, returning to (57) 

(59) 

r 1 

du 
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Next, combining the definition of A,,z in (1 1) with that of 
AR in (57), we get 

Arguing as in Case 1, with the change of variable x = yA6, 
(67) becomes 

AJ,z + pJ,i = AR + ASg-1. 

With the above definitions, we have 

- q f , , l l + l , Z I  = JqA,,z + F,,, - ~ J , z l + l + l , l l  

= i m [ A R  + AS,,,-, - x]+gf , l (x I+-~ ,~ )  dx. 

(60) 

We now distinguish two cases. 
Case 1-1 # 2: In this case, since we have assumed that 

the parameter 0 only affects the service distribution of node 
1, we have AS,,,-, = 0 for all j = 1 , 2 , .  . . , and hence 
ASj,,-l/A8 = 0. Then, with the change of variables x = 
yA0, (60) becomes 

However, Assumption A.2 and the triangle inequality lead to 
the bound 

Furthermore, from Lemma 5 

The above equation together with (59) and (19) shows that 
From (57) and Assumption A.2, we can proceed exactly as in 
(51) and (52) of Lemma 1 and obtain the bound 

(71) 
1 @A8(S;,-l + Yao) - si,-, 

A0 
= q;, + y w.p.l. 

(62) 
AR 
- < 6((3 + n)ci + oJ-i,z)a6’ A0 - 

which allows us to apply the dominated convergence theorem 
We can now divide (68) by A02 and take the limit as A0 + 0. 
The dominated convergence theorem can be applied here in 
view of (69) and (62). Then, making use of (71) and the same 
argument as in (65), we obtain 

1 
lim - - - ~ [ f ~ , t I + 1 , [ ]  

A 8 4 0  AO2 

lim - - Y giJ0lzJ-1,z) &. (63) 
A8-0 AR A6 I+ 

Finally, observe that since in this case ASj,l-,/A8 = 0, (19) 
reduces to 

(64) d&,r 
dB. 

dS,,r q:,= - 
( q r T ) E P 3 - l  , 1  ( 4  7-1 E Pj, 1 - 1 

( q > T ) # ( j > l - 1 )  

This observation, combined with (64) and the fact that for any 
real a,  [a - y]+ dy = $(U+)’, yields from (63) 

Case 2-1 = 2: Using the same notation as before, let us 
set in addition 

Then, using the definition in Lemma 5, and observing that 
Sg-1 = SZlpl + I,,l (since Dj-l,l immediately precedes 
D j , ~ l ) ,  we have 

Asj,Z-l = @A8(S1,-1 + Ij,l) - s:Z-1 - f ~ , Z .  
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