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Abstract

We considerm independent exponential servers in parallel, driven by the same deterministic
input. This is a modification of the Flatto-Hahn-Wright model which turns out to be easily tractable.
We focus on the time-stationary distribution of the number of customers which is obtained using the
Palm inversion formula.
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1 Introduction

Synchronized (or fork-join) queues have been an object of study over the last three decades as models
of parallel processing in computer systems and assembly operations in manufacturing. In the model we
examine here, the service facility consists ofm single servers in parallel, each with its own queue. The
m buffers have infinite capacity and individually operate according to the FIFO discipline. Upon arrival
to the service facility, each customer splits inm parts, each part joining the corresponding queue. While
each station viewed separately is an ordinary single server queue, the determination of thejoint statistics
of them queues is in general hard to obtain.

The above system when customers arrive according to a Poisson process and the service requirements
for the parts are independent, exponential random variables with rate depending on the type of part, is
known as the FHW (Flatto–Hahn–Wright) model (see [8], [9], [16]). Flatto and Hahn [9], and Flatto
[8], have studied the system (for the casem = 2) using complex analysis techniques. The FHW model
is of course a special case of a two–dimensional random walk on the positive quadrant. There is a rich
theory connecting this problem to boundary value problems and the multidimensional extension of the
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Wiener–Hopf factorization. The reader is referred to Fayolle, Iasnogorodski, and Malyshev [10] both for
an overview and for a state-of-the-art treatment of these issues.

Fork-join systems consisting of two queues with Poisson arrivals and service requirements which are
i.i.d. sequences of exchangeable pairs of random variables have been studied in Baccelli [3]. Ayhan and
Baccelli [1] use a Taylor series approach to analyze fork-join systems with general service requirements.
Baccelli, Makowski, and Swhartz [5] obtain bounds for the performance of more general fork-join queues
by means of stochastic ordering arguments (in the same vein see also Li and Xu [13]). Ko and Serfozo
[14] obtain an approximate expression for the sojourn times inM/M/s fork-join queues. Because of
the intractability of the FHW model most of the explicit results are asymptotic in nature. These include
both asymptotics based on generating functions obtained by complex analysis techniques (e.g. [8], [9])
and results obtained using large deviation techniques [15]. We also mention the diffusion approximation
of [12] and the related problem of fork-join fluid queues studied in [11]. A related line or research
that studies queueing networks with signals and concurrent movements examines the FHW model in the
framework of markovian queueing networks. We refer the interested reader to [7] and [6].

The model examined in this paper, unlike the classical FHW model, is tractable by means of ele-
mentary tools. In fact, due to the deterministic nature of arrivals and the independence of the service
processes in them queues, thecustomer-stationary(Palm with respect to the arrival processes) queue
lengths are independent and thus the system (under the Palm probability measure) can be viewed asm
independentD/M/1 queues. The situation becomes more complicated when we turn our attention to
the(time-) stationary version of the processand this is the main focus of this paper.

Section 2 gives a more detailed description of the model while in section 3 the Palm inversion for-
mula in conjunction with an argument based on generating functions is used in order to derive the joint
distribution of the stationary number of customers in the system. Section 4 provides an illustration of
the above results by examining in more detail the system with two stations (m = 2). An expression is
obtained for the stationary distribution of the workload, and the deterministic model is compared to the
classical FHW model with Poisson arrivals in terms of the correlation coefficient of the stationary queue
sizes.

2 Synchronized queues with deterministic arrivals

In the system considered here, customers, each consisting ofm parts, arrive to the service facility ac-
cording to a deterministic process with constant interarrival times, equal toa. Upon arrival to the system,
each customer splits into its constituent parts which join the corresponding queues. From that point on
the parts move independently even though, for some applications, it may be useful to think that, after
service completion, the parts of a customer that finish first wait in a “staging area” for their counterparts
and once all parts have completed their processing they are assembled into a finished unit. In a manu-
facturing context this could describe an assembly operation. The point process of arrival epochs to the
system will be denoted by{Tn; n ∈ Z} whereTn+1 = Tn + a. Service requirements for each queue are
independent, exponential random variables with rateµk for thekth station. Clearly the system is stable iff
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amin{µ1, . . . , µm} > 1. Denote by{Xk
t ; t ∈ R} the number of customers in stationk, (k = 1, . . . , m)

and letXt := (X1
t , . . . , Xm

t ) denote the number of customers in them queues. We will assume that
this process hasright-continuous sample pathswith probability 1. In particular(X1

Tn−, . . . , Xm
Tn−) is

the number of customers in them queues as seen by an arrival, right before the arrival epoch. Suppose
now that a stationary version of this process has been constructed on the probability space(Ω,F , P )
and letP 0 denote the Palm transformation ofP under the point process{Tn; n ∈ Z}. We will denote
by E0 the expectation with respect toP 0. Intuitively, P 0 is the probability measure conditioned on
the event that the origin coincides with a typical arrival point, which by convention is denoted byT0.
ThusP 0(T0 = 0) = 1. We refer the reader to Baccelli and Brémaud [4] for formal definitions and the
mathematical framework. Since arrivals are deterministic and service times are independent in them
queues it is easy to see that, underP 0, them queue-length processes{Xk

t ; t ∈ R}, k = 1, 2, . . . , m, are
independent. Thus the Palm version of the process can be readily analyzed by studyingm independent
D/M/1 systems. In particular

P 0(X1
0− = n1, . . . , X

m
0− = nm) =

m∏

k=1

(1− σk)σ
nk
k , nk = 0, 1, 2, . . . . (1)

whereσk is the unique solution of the equation

x = e−aµk(1−x), k = 1, . . . , m, (2)

that is less than one. Indeed, besides the obvious solution,x = 1, it is clear from a convexity argument
that the above equation has one more solution which, as is well known (see [2]), belongs to the interval
(0, 1) provided that the stability conditionaµk > 1 holds.

3 The stationary number of customers in the system

We now turn to the stationary version of the process. It is clear that them queue–length processes are
no longer independent. From standard results concerning theGI/M/1 queue [2, p. 280] it follows that
the marginal distribution for the stationary number of customers in each queue is a modified geometric
distribution given by

P (Xk
0 = n) = ρk(1− σk)σn−1

k , n = 1, 2, . . . (3)

P (Xk
0 = 0) = 1− ρk,

with ρk = (aµk)−1 for k = 1, . . . , m. The corresponding p.g.f. (probability generating function) is
given by

ϕ(z) := 1− ρk + zρk
1− σk

1− zσk
. (4)

On the other hand, the joint distribution of the queue–lengths under the stationary probability measure
P is harder to find. As we will see next it can be obtained from the Palm inversion formula using a
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conditioning argument. We start with the following elementary lemma where, as usual,x+ denotes the
positive part of the real numberx.

Lemma 1. Let Y be a geometric random variable with p.g.f.EzY = (1−σ)z
1−zσ , whereσ ∈ (0, 1), andN

a Poisson random variable, independent ofY , with meanβ. Then

Ez(Y−N)+ = 1− 1− z

1− zσ
e−β(1−σ).

Proof: Condition onN to obtain

E[z(Y−N)+ |N ] =
N∑

k=1

(1− σ)σk−1 +
∞∑

k=N+1

(1− σ)σk−1zk−N = 1− σN 1− z

1− zσ
.

Taking expectation with respect toN completes the proof.

Denote by

ϕ(z1, . . . , zm) = E
m∏

k=1

z
Xk

0
k

the probability generating function of the stationary number of customers in the system. Let us also
denote byAr the class of all subsets of the setSm := {1, 2, . . . , m} containing exactlyr elements. In
particular we have of course that|Ar| =

(
m
r

)
where, as usual,|B| denotes the cardinality of the set

B. Also, for any~n = (n1, . . . , nm) ∈ Nm
0 defineΦ~n := {k : nk ≥ 1} ⊆ Sm, the set of all indices

corresponding to non-zero components of the vector~n. We are ready to state our main result.

Theorem 1. The probability generating function of the stationary number of customers in the system is
given by

ϕ(z1, . . . , zm) = 1 +
m∑

r=1

(−1)r
∑

A∈Ar

CA

∏

k∈A

1− zk

1− zkσk
(5)

where

CA :=
1−∏

k∈A σk∑
k∈A ρ−1

k (1− σk)
, (6)

the constants being indexed by the subsetsA ⊆ {1, 2, . . . , m}. The corresponding probability distribu-
tion is given by

P (X1
0 = n1, . . . , X

m
0 = nm) = Γ~n

∏

k∈Φ~n

(1− σk)σ
nk−1
k (7)

where

Γ~n :=
∑

{A:A⊇Φ~n}
(−1)|A|−|Φ~n|CA =

m∑

r=|Φ~n|
(−1)r−|Φ~n|

∑

A∈Ar

CA1(Φ~n ⊆ A). (8)
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Remark: The expression (7) forΦ~n = ∅ (i.e. for~n = (0, 0, . . . , 0)) becomes

P (X1
0 = 0, . . . , Xm

0 = 0) = 1 +
m∑

r=1

(−1)r
∑

A∈Ar

CA. (9)

Also, for Φ~n = Sm, i.e. whennk ≥ 1 for all k, Γ~n = CSm = 1−∏m
k=1 σk∑m

k=1 ρ−1
k (1−σk)

.

Proof: A straight-forward application of the Palm inversion formula (see [4]) gives

ϕ(z1, . . . , zm) = a−1E0

∫ a

0

(∏m

k=1
z

Xk
t

k

)
dt = a−1E0

∫ a

0

(∏m

k=1
z
(Xk

0−Nk
t )+

k

)
dt. (10)

In the above expression{(N1
t , . . . , Nm

t ); t ≥ 0} arem independent Poisson processes with ratesµk,
k = 1, . . . , m, representing the service processes in them exponential servers. Furthermore, these
Poisson processes are independent of the vector of queue lengths at time0, (X1

0 , . . . , Xm
0 ). Finally,

under the probability measureP 0, and since the sample paths are right-continuous,

P 0(X1
0 = n1, . . . , X

m
0 = nm) =

m∏

k=1

(1− σk)σ
nk−1
k , nk = 1, 2, . . . .

(In the above expression the customer arriving att = 0 has been taken into account–cf. (1)). Thus,
appealing to the Fubini theorem, and using the independence of theXk

0 underP 0 and Lemma 1, we can
write the right-hand side of (10) as

a−1

∫ a

0

m∏

k=1

E0z
(Xk

0−Nk
t )+

k dt = a−1

∫ a

0

m∏

k=1

(
1− 1− zk

1− zkσk
e−µkt(1−σk)

)
dt. (11)

The product inside the integral on the right hand side of the above expression can be written as

m∏

k=1

(
1− 1− zk

1− zkσk
e−µkt(1−σk)

)
= 1 +

m∑

r=1

(−1)r
∑

A∈Ar

e−t
∑

k∈A µk(1−σk)
∏

k∈A

1− zk

1− zkσk

and thus the right hand side of (11) becomes

1 +
m∑

r=1

(−1)r
∑

A∈Ar

(∏

k∈A

1− zk

1− zkσk

)
a−1

∫ a

0
e−t

∑
k∈A µk(1−σk)dt. (12)

However,

a−1

∫ a

0
e−t

∑
k∈A µk(1−σk)dt =

1− e−a
∑

k∈A µk(1−σk)

a
∑

k∈A µk(1− σk)
=

1−∏
k∈A σk∑

k∈A ρ−1
k (1− σk)
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where, in the last equation we have made use of the defining relation for theσk, the definition ofρk, and
(2). From the above the p.g.f. of the stationary number of customers in them queues becomes

ϕ(z1, . . . , zm) = 1 +
m∑

r=1

(−1)r
∑

A∈Ar

1−∏
k∈A σk∑

k∈A ρ−1
k (1− σk)

∏

k∈A

1− zk

1− zkσk
.

This establishes (5). Since

1− z

1− zσ
= 1− z(1− σ)

1− zσ
= 1−

∞∑

n=1

(1− σ)σn−1zn

we have

ϕ(z1, . . . , zm) = 1 +
m∑

r=1

(−1)r
∑

A∈Ar

CA

∏

k∈A

(
1− zk(1− σk)

1− zkσk

)

or

ϕ(z1, . . . , zm) = 1 +
m∑

r=1

(−1)r
∑

A∈Ar

CA

∏

k∈A


1−

∞∑

nk=1

(1− σk)σ
nk−1
k znk

k


 . (13)

We can now imagine the process of collecting terms from the above expression. We begin with an
example: WhenΦ~n = Sm, i.e. whennk ≥ 1 for all k = 1, 2, . . . , m, only the product

∏

k∈Sm


1−

∞∑

nk=1

(1− σk)σ
nk−1
k znk

k




in (13) contains the termzn1
1 zn2

2 · · · znm
m and the corresponding coefficient is(−1)m

∏m
k=1(1−σk)σ

nk−1
k .

From (13) we see that this term is multiplied by(−1)mCSm and thus the coefficient of the termzn1
1 zn2

2 · · · znm
m

in the expansion ofϕ(z1, . . . , zm) is equal to

(−1)m+mCSm

m∏

k=1

(1− σk)σ
nk−1
k =

1−∏m
k=1 σk∑m

k=1 ρ−1
k (1− σk)

m∏

k=1

(1− σk)σ
nk−1
k .

(cf. Remark 1.) In the general case, the product
∏

k∈A

(
1−∑∞

nk=1(1− σk)σ
nk−1
k znk

k

)
indexed by the

setA contains the termzn1
1 zn2

2 · · · znm
m if and only if Φ~n ⊆ A. The coefficient of this term when we

expand this product is
1|A|−|Φ~n| · (−1)|Φ~n|

∏

k∈Φ~n

(1− σk)σ
nk−1
k .

In order to find the coefficient ofzn1
1 zn2

2 · · · znm
m in the expansion ofϕ(z1, . . . , zm) it suffices to multiply

this term by(−1)|A|CA and then to sum over all setsA ⊇ Φ~n. We thus have

P (X1
0 = n1, . . . , X

m
0 = nm) =

∑

Φ~n⊆A

(−1)|A|−|Φ~n|CA

∏

k∈Φ~n

(1− σk)σ
nk−1
k . (14)
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The expression (7) is a restatement of the above. In the second expression forΓ~n in (8) we have split the
sum according to the cardinality of the index setA. Finally (9) is the special case whereΦ~n = ∅ and
this completes the proof.

Corollary 1. In the symmetric case, where the service rates in all stations are equal toµ, the p.g.f. of
the stationary number of customers in the system is given by

ϕ(z1, . . . , zm) = 1 +
m∑

r=1

(−1)rρ
1− σr

r(1− σ)

∑

A∈Ar

∏

k∈A

1− zk

1− zkσ
. (15)

The corresponding probability distribution is given by

P (X1
0 = n1, . . . , X

m
0 = nm) = (1− σ)|Φ~n|σ(

∑m
k=1 nk)−|Φ~n|

m∑

r=|Φ~n|
(−1)r−|Φ~n|ρ

1− σr

r(1− σ)

(
m− |Φ~n|
r − |Φ~n|

)

(16)
for Φ~n 6= ∅, and

P (X1
0 = 0, . . . , Xm

0 = 0) = 1 +
m∑

r=1

(−1)r

(
m

r

)
ρ

1− σr

r(1− σ)
. (17)

Proof: Since all the service rates are the same we also haveρk = ρ andσk = σ for k = 1, 2, . . . , m.
Also note that

CA = ρ
1− σr

r(1− σ)
for all A ∈ Ar. (18)

The p.g.f. (15) follows by using (18) in (5). In order to derive (16) it suffices to use (18) in (7) to obtain

P (X1
0 = n1, . . . , X

m
0 = nm) =

m∑

r=1

(−1)r+|Φ~n|ρ
1− σr

r(1− σ)

∑

A∈Ar

1(Φ~n ⊆ A)
∏

k∈Φ~n

(1− σ)σnk−1.

An elementary combinatorial argument gives
∑

A∈Ar
1(Φ~n ⊆ A) =

(m−|Φ~n|
r−|Φ~n|

)
and hence (16) follows.

From these considerations, and the fact thatΦ~n = ∅ for ~n = (0, 0, . . . , 0), (17) is also obtained.

4 The two-server system and further performance measures

To illustrate the above results we will apply them to a system with two servers (m = 2).
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Proposition 1. The stationary number of customers in a synchronized D/M/1 system with two stations is
given by

P (X1
0 = n1, X

2
0 = n2) = C{1,2}(1− σ1)σn1−1

1 (1− σ2)σn2−1
2 n1 ≥ 1, n2 ≥ 1,

P (X1
0 = 0, X2

0 = n2) = (1− σ2)σn2−1
2

(
ρ2 − C{1,2}

)
n2 ≥ 1,

P (X1
0 = n1, X

2
0 = 0) = (1− σ1)σn1−1

1

(
ρ1 − C{1,2}

)
n1 ≥ 1,

P (X1
0 = 0, X2

0 = 0) = 1− ρ1 − ρ2 + C{1,2},

where

C{1,2} :=
1− σ1σ2

ρ−1
1 (1− σ1) + ρ−1

2 (1− σ2)
. (19)

Proof: We apply theorem 1 noting thatC{1} = 1−σ1

ρ−1
1 (1−σ1)

= ρ1 and, similarlyC{2} = ρ2.

The correlation coefficient for the stationary number of customers in the two queues can be computed
easily from the above stationary distribution and is given by

r =
√

ρ1ρ2

(1 + σ1 − ρ1)(1 + σ2 − ρ2)

(
(ρ1ρ2)−1(1− σ1σ2)

(1− σ1)ρ−1
1 + (1− σ2)ρ−1

2

− 1
)

.

For the symmetric case, i.e. whenµ1 = µ2 and henceρ1 = ρ2 = ρ andσ1 = σ2 = σ, we have

r =
1
2

(
1− ρ

1 + σ − ρ

)
. (20)

A plot of the correlation coefficientr as a function ofρ is given in figure 1.
It is of some interest to compare the correlation coefficient (20) to that of the symmetric, classic FHW

model (with Poisson arrivals) which is given by

r =
1
2
− ρ

8
(21)

(see theorem 6.2 of [9]). As expected, the case with Poisson arrivals exhibits higher correlation between
the two queues. More interesting perhaps is the heavy traffic behavior. In the case of deterministic
arrivals examined in this paper, the correlation between the two queues goes to zero asρ → 1. On the
other hand, in the classic FHW model with Poisson arrivals the correlation coefficient goes to3/8 as
ρ → 1. (Despite the fact thatσ = ρ in the case of Poisson arrivals, it would be mistaken to expect (20)
to reduce to (21) in that case since the whole analysis leading to (20) is based on the assumption that
arrivals are deterministic.)

Finally we can use the results of theorem 1 together with the memoryless property of the exponential
distribution in order to obtain the statistics for the workload process. For the sake of simplicity we
present it for the case of a two–server station. The extension to the generalm server model is obvious.
If (W 1

t ,W 2
t ) is the workload vector at timet then we have the following
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Figure 1: The correlation coefficient,r, between the queue sizes in the two queues in the symmetric case
as a function of the utilizationρ. Two plots are given, one for the model with deterministic arrivals and
the other for the classical model with Poisson arrivals.

Proposition 2. The stationary joint distribution of the workload in the two queues,F (x1, x2) := P (W 1
0 ≤

x1, W
2
0 ≤ x2) is given by

F (x1, x2) = 1 − ρ1e
−µ1(1−σ1)x1 − ρ2e

−µ2(1−σ2)x2 + 1−σ1σ2

(1−σ1)ρ−1
1 +(1−σ2)ρ−1

2

e−µ1(1−σ1)x1−µ2(1−σ2)x2 .

Proof: Start by conditioning on the number of customers present in the system at time 0, under the sta-

tionary probability measureP . ThenE
[
e−s1W 1

0−s2W 2
0

∣∣∣X1
0 = n1, X

2
0 = n2

]
=

(
µ1

s1+µ1

)n1
(

µ2

s2+µ2

)n2

for all n1, n2 = 0, 1, 2, . . .. Taking into account the expression for the stationary distribution of the num-
ber of customers in the two queues we obtain, after some simplifications, the following expression for
the joint Laplace transform of the stationary workload

Ee−s1W 1
0−s2W 2

0 = C{1,2}
µ1(1− σ1)

s1 + µ1(1− σ1)
µ2(1− σ2)

s2 + µ2(1− σ2)
+

µ1(1− σ1)
s1 + µ1(1− σ1)

(
ρ1 − C{1,2}

)

+
µ2(1− σ2)

s2 + µ2(1− σ2)
(
ρ2 − C{1,2}

)
+ 1− ρ1 − ρ2 + C{1,2}

whereC{1,2} is the constant given in (19). Straight-forward inversion of this transform completes the
proof.
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