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Abstract. We consider a closed Jackson—like queueing network with arbitrary service time distributions and
derive an unbiased second derivative estimator of the throughputhoweistomers served at some node with
respect to a parameter of the service distribution at that node. Our approach is based on observing a single sample
path of this system, and evaluating all second-order effects on interdeparture times as a result of the parameter
perturbation. We then define an estimator as a conditional expectation over appropriate observable quantities,
as in Smoothed Perturbation Analysis (SPA). This process recovers the first derivative estimator along the way
(which can also be derived using other techniques), and gives new insights into event order change phenomena
which are of higher order, and on the type of sample path information we need to condition on for higher-order
derivative estimation. Despite the complexity of the analysis, the final algorithm we obtain is relatively simple.
Our estimators can be used in conjunction with other techniques to obtain rational approximations of the entire
throughput response surface as a function of system parameters.
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1. Introduction

In dealing with stochastic Discrete Event Dynamic Systems (DEDS), we are often faced
with situations where no functional relationship between design or control parameters and
performance metrics of interest is available. Still, by observing a single sample path of
such a system (in a simulation or in an actual operating environment) it is often possible
to efficiently estimate gradients of performance metrics with respect to various parameters.
This can be accomplished through techniques such as Perturbation Analysis (PA) (Ho and
Cao 1991, Suri 1989, Glasserman 1991) and the Likelihood Ratio (LR) methodology (Glynn
1987, Reiman and Weiss 1989, Rubinstein 1986). These techniques provide an alternative to
costly (sometimes infeasible in real-time) simulation where sensitivity estimation requires
multiple sample path generations. In addition, they can often be integrated into gradient-
based optimization algorithms (e.g. Cassandras, Abidi, and Towsley (1990), Chong and
Ramadge (1992)) for problems of considerable complexity.
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Techniques such as perturbation analysis can generally be used to estimate not only the
first, but also higher-order derivatives of performance metrics with respect to some parame-
ters (see Bemaud and ¥zquez-Abad (1992), Zazanis and Suri (1994), Fu and Hu (1997a),
Bao, Cassandras, and Zazanis (1996)). Although second derivative estimators become
difficult to analyze and are harder to implement in practice (compared to first derivative
estimators), there are two recent developments that have provided renewed motivation for
deriving higher-order derivative estimates for performance metrics of DEDS. First, as first
derivative estimators are used in gradient-based optimization, we are often faced with the
practical problem of instabilities in the form of large oscillations (Cassandras, Abidi, and
Towsley (1990), Bertsekas (1982)). To alleviate this problem, it is known that algorithms
using second derivative information may be used (Bertsekas, Gafni, and Gallager 1984).
The second, perhaps more important, development is the emergence ajdpacximation
techniques as viable means to accurately estimate the entire response surface of a complex
system with respect to some parameter. Given some funéti®y) a Pa@ approximant is
a rational function of the forni_ (6)/Qm(0), whereP_ (6) and Qy(0) are appropriately
selected polynomials of degréeand M respectively (see Baker 1975). The coefficients
of these polynomials typically involve first and higher-order derivative information at a
single pointdy. As was recently shown in Gong, Nananukul, and Yan (submittedg Pad”
approximants of performance metrics of GI/G/1 systems show remarkable accuracy using
first and second derivative information alone. This opens up a range of exciting possibilities
for estimating global response surfaces of more complex systems based on information ex-
tracted from a single sample path observed under a parameter ggttlragtly, it is worth
mentioning that a byproduct of sample-path-based first and second derivative estimators is
the fact that they sometimes lead directly to the establishment of structural properties of
a system, such as monotonicity or convexity/concavity of some performance metric with
respect to some parameter (if, for example, it turns out that the sign of an unbiased such
estimator is always positive/negative).

Inthis paper, we consider a Jackson-like closed queueing network consistirsgofers,
providing service to a fixed populationiotustomers. By “Jackson-like queueing network”
we mean that all service time distributions are arbitrary (except for some mild technical
conditions), routing is Markovian (as explained in section 2), and all queues are assumed
to have infinite capacity. This is an extension of our work in Bao, Cassandras, and Zazanis
(1996), where our analysis was limited tcserial closed network. PA techniques were
first applied to this type of system in Ho, Cao, and Cassandras (1983) to approximate first
derivatives of the throughput. In Ho and Cao (1983) and Cao (1987) estimators for the
throughput of closed Jackson queueing networks using Infinitesimal Perturbation Analysis
(IPA) were derived, and extended by Cao (1990) to general service time distributions.
However, IPA generally yields biased estimates if applied to second derivative estimation.
The main reason is that IPA is based on limited information obtained from the observed
sample path; to estimate second derivatives one needs additional information to account for
second-order effects in event order changes.

The main contribution of this paper is the derivation of second derivative estimators for
the throughput of closed Jackson-like networks. Our basic approach is to evaluate all
second-order effects on interdeparture times in a sample path of this network as a result of
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a parameter perturbation. We then proceed as in SPA (Gong and Ho 1987, Glasserman and
Gong 1991) to define an estimator as a conditional expectation. We derive along the way
a number of new results pointing at event order change phenomena which are of higher
order. The analysis in our paper is at times tedious, and the form of the second derivative
estimator appears complex. As we will show, however, its implementation turns out to be
relatively simple. Further, we show that our estimators over a fixed number of events are
unbiased.

The paper is organized as follows. In section 2, we set up the estimation problem and
introduce some notation. In section 3, we derive an unbiased second derivative estimator
for the throughput; in the process, our approach recovers the first derivative, which can also
be obtained through standard IPA. We also present an algorithm for implementing our first
and second derivative estimators in section 4. Some numerical examples are then presented
in section 5. In section 6, we present an application to the estimation of the throughput over
all parameter values, based on the analysis recently provided in Gong, Nananukul, and Yan
(submitted). Finally, section 7 contains a summary and discussion of future research in this
area.

2. Notation and Estimation Problem Setup

Consider am-node,n-customer closed Jackson-like queueing network (as defined in the
previous section), with single server nodes. The routing is Markovian, i.e., a customer, upon
completing service at nodle moves to nodg with probability p,q independent of anything

else (without loss of generality we will assume the routing matpix.r.q =1,...,m

to be irreducible.) All gueues have infinite capacity and all nodes serve customers in FCFS
fashion. LetSy denote the service time of theh customer served at notte We assume

that the service time§Sy;i = 1,2, ...} are an i.i.d. sequence of random variables with
distribution F¢(-), k = 1, ..., m. The sequenceSy;i = 1,2,...}, k=1,...,m, are

also assumed independent.

Our objective is to estimate the first and second derivatives of the expected departure time
of the Nth customer served at a node, say node 1, with respect to a parahudtene
service time distribution of one of the nodes based on observations extracted from single
sample path (the “nominal sample path”). Without loss of generality we assunte¢hat
is a parameter of,(-) and® is an interval in R.

As in previous related work in this area (e.g., Glasserman (1991), Suri and Zazanis
(1988)) suppose that our probability spate, F, P) supportam sequences of i.i.d. ran-
dom variablegUjx;i = 1,2,...,k = 1,..., m}, uniformly distributed on [01]. Let
Frl(u,0) = inf{x: Fi(x,0) > u}, F X (u) = inf{x: Fe(X) > u}, k =2,...,m. Thus,
letting S1(6) = F; '(Ui1, 0), Sk = F. '(Uik), k = 2, ..., m defines a family of sample
paths parameterized Iy

We are now ready to state the assumptions under which we carry out our analysis and
derive the first and second derivative estimators.

ASSUMPTIONA.1 S1(0)is anincreasing function af, i.e. A S, gef S1(0+A0)—S1(0) >
Ow.p.1, forA6 > 0.
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This assumption simplifies the sample path analysis since it guarantees that a positive change
in the parameted will result in positive perturbations. It can be relaxed via the approach
described in §8 of Zazanis and Suri (1994).

ASSUMPTIONA.2 The derivativel3t(9) = lim g0 3LEFED=51C0) exists and is a con-
tinuous function ob € ® w.p.1. Furthermore, there exist positive constantscg, such
that

0
% <C+CS; wp.l, forallde®.

The above assumption (together with the mean value theorem) implies that

AS1
—— <1+ CS1. 1
A9_1+ 291 1)

This assumption is introduced purely for convenience in our analysis. Note that it is
a condition which is easy to verify for any given distribution and is satisfied by most
commonly encountered parametric distribution families. In particular it is always satisfied
wheno is a scale or a location parameter (see Suri and Zazanis 1988).

ASSUMPTIONA.3 The second derivativéi% ©) = liMag_o L [222(0 + A0) — 221 (0)],

exists and is continuous for &l € ® w.p.1. Furthermore, Esup,q %(en < 00.

ASSUMPTION A.4 The distributions k, k = 1,..., m, are absolutely continuous with
density £(t) and corresponding hazard ratﬁ% bounded above by forallt > 0. In

: f1(t,0)
particular, Thieo =7 forall 6 € ©.

The last part of the assumption above may be relaxed, though with considerable effort.
The reader is referred to Fu and Hu (1997b), Fu and Hu (1997c¢), and Zazanis (1995).

ASSUMPTIONA.5 The service times at all nodes have finite third moments:

max /Oo x3d R (X) < oo.

1<k=m Jo

The following notation will be needed in the sample path analysis of section 3.
Cik: theith customer served at no#tén the nominal path;
ek departure event dfjy in the nominal path;
Sk: service time ofCiy in the nominal path;

Aix: arrival time ofCjy in the nominal path;
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Dik: departure time o€ in the nominal path;
Uix: routing indicator of théth departure at nodein the nominal path;

wherei =1,2,...,k=1,...,n. Theroutingindicator is uniformly distributed over, [0]
and is used to implement the probabilistic mechanism through whictthitgeparture at
nodek is routed to nodg with the given probabilityp;; .

In this paper we focus on finite horizon performance metrics. With the above notation,
the main performance metric we consider is

B®) = - E[Dyi] @)

which can be thought of as the mean interdeparture time. Next, we seek an expression for
Dniintermsof{Sx,i =1,2,...,k=1,...,n}. For this purpose, we proceed as in Bao,
Cassandras, and Zazanis (1996). First, we say that eydsinducedby another everd;

if ex becomes feasible at the time whgntakes place. Then, fixing a given sample path
and observing the precedence in the events, we construcBg setsociated with evemefy

as follows:

1. (i, k) € Bik-

2. If e, inducesey, then(iy, k1) € Bi.

3. Forallj =2,3,...,if 8,k inducese.jfl,kjfl and(ij_l, kj—l) € Bik, then(ij s kj) € Bik.
4

The procedure ends at the beginning of the sample path(witky) € Bjx such that
Dis,ks = min{D“: (], |) S Bik}-

Therefore B is of the form
Bik = {(i57 kS)s (i3719 kS*l)s ey (i29 k2)9 (ila kl)a (Is k)}v

SinceDjy is the time wherg occurs, we have

Dik = Z Si. (3
(j.HeBi
Therefore,
E[Di] = E[ > a.] 4)
(j.heBik

Since itis known (Glasserman 1991) that the commuting condition is satisfied in a closed
Jackson-like network, the interchangeability of the derivative and expectation operations is
allowed to first order, that is,

0 0
—EDN1=E| —D . 5
? Ebm [ae Nl] 5)
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As also shown in Glasserman (1991), we have

3 3
g Dik = > 55 S (6)

(j.1eBik

Therefore, since only service tim&g, j = 1, 2, ... are dependent o, we get

d ad d
_EDN1:| = —S = —S1 (7)
|:89 est (l'-,|)z€:BN1 90 (J'-]%:Bm 39

which is an unbiased estimator of the first derivazltiveEQDNl]. However, for the second

derivative ofE[Dn1], by simply usingd_ | cg,, %Sﬂ, we will generally have a biased

estimator. Roughly speaking, the problem is that Withcreasing t@ + A6 several event

order changes will result, and the probability of these event order chan@gaig). With

the increments themselves bei@gA0), we see that the event order changes will produce

effects ofO(A#?) which are not negligible as far as the second derivative is concerned.
With this observation in mind, in what follows we proceed in a way similar to the serial

network case considered in Bao, Cassandras, and Zazanis (1996). As we will see, how-

ever, the fact that customers are now routed to one of several nodes and may arrive at a

node from one of several other nodes introduces additional complexities which have to be

handled.

3. Derivation of Estimators

Whend is increased té + A6, we get a perturbed sample path. We use the supergaapt
denote various quantities in the perturbed path (for exaniiffedenotes théth departure
time from nodek in the perturbed path).

3.1. Lindley Recursions for Perturbed Event Times

Applying Lindley’s equation to both nominal and perturbed paths, we have:
Dik = Sk + max(Di_1k, Aik)
Dk = Sk+maxD/,,, Ad.
whereDox = D, = 0forallk = 1, ..., m. DefiningADjx = D}, — Dix,
ADik = ASk + max(DP; ., Af) — max(Di_1k, Ai). (8)
We usef, k, to denote the customer index and the node index respectivedy géist
prior to arriving at nodek in the nominal path, i.eC;; becomesCix immediately after
evente. Stated another wayhx = D;. In general, in the perturbed path both the node

from which Cix comes and his index will be different and thus we will designate them by
k*, i* respectively. In other words, in the perturbed path custoByerrrives at node k
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at time A, = DP,.. We note that, for cyclic, single server networks= k* = k — 1
since customers arrive to nol@nly from nodek — 1 directly upstream, and= i * (Bao,
Cassandras, and Zazanis, 1996).

For consistency of notation, if there are initially customers at nodie, we simply set
i =0(.e. Ak = Do =0)foralli =1,...,nc. We also note that, since the service
distributions at all nodes are absolutely continuous (see Assumftddrthe probability of
two events occurring at the same time is zero. Denotingby := max(0, x) the positive
part ofx € R, we now consider two cases in (8):

Case 1. D 1k > Ak = Dy (Thus,D;, k, = Di_1x Or &k is induced bye 1 k).
ADix = ASk+ max(Dip_lyk, AL) — Di_1x
= ASk+ (D" — Di_1x) + max©0, A}, — D", )
= ASk+ ADi_1x+ (A} — D4 07"
= ASk+ ADj, i, + (D2 — D 7.

Case 2. D_1x < Ak = Dy (Thus,D;, k, = Aik or e is induced byey).
ADj = ASk+maxD/ ;. A} — Ax
= ASk+ (A — Ak) + max©, D ; , — A})
= ASk+ (D — D) + (D71 — D)?
= ASk+ (D — D) + (D = DR) + (D, — Df)?
= ASk+ ADi i + (D% = DP) + (D, — DL )™

Combining the above two cases we write:
ADix = ADi i, + ASk + 1(Di_1x > Dip) W} + L(Di_1x < Dyp) {Xiﬁ’( + Iiﬁ}

where,
\NiE = (Dip*k* - Dip—l,k)+
IiE = (Dip—l,k - Dip*k*)+
Xf = (D — DR). ©)

Similarly we define the following quantities which will be needed later on:
Wik = (Dyg — Di—1)™
lixk = (Di—1k — D)™
Xik = (Dizg¢ — D)- (10)

Observing that the parametéraffects only service times at node 1, we hav&§y =
Sk — Sk =0fork # 1, andAS; = § — S1 > 0 (see AssumptioA.1). Therefore,

ADix = ADjy, + ASkl(k = 1) + 1(Dj_1x > Dp) Wf
+ 1(Di—1k < D) Xk + L(Di_1x < D) ik (11)
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The above equation provides an iterative expression for the perturbation tf theparture

from nodek, A Dji: the first term on the rhs is the perturbation in the departure epgah

which inducesdepartureDix. The second term is the perturbation in the service time of
customerCix (which is nonzero only ik = 1), the third term represents a perturbation
that introduces an idle period at nokién the perturbed path; the fifth term represents a
perturbation that causes the elimination of an idle period at kqatesent in the nominal

path; and the fourth term represents a perturbation due to a change in the identity of the
node that terminates an idle period at n&dgvhenever two or more nodes are supplying
input to nodek).

Define
Al = ASkl(k=1) + L(Dji_1x > Dyp) Wiy
+1(Di-1k < D)Xk + L(Di-1k < D) lig- (12)
We then have
ADj = ADil,kl + Ailk. (13)
By recursively applying (13) back to the beginning of the observed sample path, we have
ADjk = Z AJ-1|. (14)
(j.heBik
Define now the following three subsets of:N{1, 2, ..., m}
P ={(j,h:I=1
Q = {(j.D: Dj—11 = Dy}
R = {(J,D: Dj_11 < Dy} (15)
and the corresponding subsetsByf
Pk = PN B
Qik = QN Bik
Rk = RN Bi. (16)

Pk contains those events By that are departures from node 1 and, as we will see, it is
related to the IPA part of our estimator®;x (resp.Rix) is the set of all events iBjx that
are arrivals to a busy (resp. idle) node.

Using the above definitions and (11), (14) yields the following expression for the change
in the departure tim®;y

ADk= > AS+ D Wi+ D Xi+ > If (17)

(j.hePi (j.DHeQik (j.heRik (j.heRik
and taking expectations
E[ADW]=E ) AS+E > W/+E Y X{+E Y I (18)
(j.hePk (j.heQik (j.heRi (j.heRi

In what follows, we will first concentrate on defining an appropriate characterization for
each termin (18).
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3.2. Defining Sample Path Characterizations

Our task now is to select an appropriate sample path characterization, which, as in Bao,
Cassandras, and Zazanis (1996), is a sequence of additional conditionings, one for each
termin (18). We remind the reader thaj is the routing indicator of the event (departure)
g occurring at timeD;;. Let us also denote bg/, the event that immediately followe,
and byUj, its associated routing indicator. L&t denote the information in the sample
path up to (and including) tim®;; (including also the value of the routing indicatdy;)
as well as the identity of the next eveejt and the value of its routing indicatdy;; .

Denote byM (t) the set of nodes that are busy at tim&he procesgM (t); t > 0} taking
values on the class of subsets of the set of node®, . .., m}, is assumed to hawight-
continuous pathsin particular, M(Dj_1)) is the set of nodes that are busy immediately
after the(j — 1)th departure from node Next, define

() = ageof service time of customer present at nddat timet if k € M (t)
|0 if kg M) ’

S = residualservice time of customer present at ndda timet if k € M (t)
10 if kg M) ’

total service timeof customer present at noéeat timet if k € M (t)
0 if kg M(t) ’

where, of courseS(t) = S (t) + S (t). Hence, we define the families of processes
{tt=>=0k=1....m,{SMt):;t=>0k=1....m,{St):t>0k=1....,m}
and, again, we consider thight-continuousversions of these processes.

We now impose a sequence of conditians,associated with evengg as follows: As we
have seenj; contains all events, event times, and routing indicators up to and including
Dj. In addition it includeshe identity of the next event; eand its routing indicator, {J.

In particular we point out thal\;; contains theagesof the service time processes of all
active nodes ab;; .
Now let Dj; denote the time of the next eveny,, and define the conditioz as follows:

S =

zy = {Aj, M(Dj), §(Dj); q € M(Dj)}. (19)

Note that, in addition to the history of the process up to the event time and the identity
of the next event;; includes the list of active nodes at the time the next event occurs, as
well as the residual service times at the time of the next event. Itrimglsowever, contain
thetime of the next event, ;D Readers familiar with the Smoothed Perturbation Analysis
(SPA) methodology will appreciate the importance of carefully selecting the conditions
zji: “just enough” information from the observed sample path is included in (19) to allow
us to “smooth out” discontinuities that prevent a PA estimator from being unbiased. The
justification for the specific choices made here will become clear in the analysis that follows.

Remark.In a simulation setting, conditioning on information such as the identity of the next
event or residual service times presents no implementation problem, since this information
is routinely available. In a real-time setting, on the other hand, future information is not
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available. This, however, presents no problem for the implementation of the estimators
we will derive; it simply requires additional memory associated with certain events. For
example, if one requires residual time data for certain active nodes whenegveaturs,

one should wait until all corresponding service completions take place and then proceed
with whatever computation is involved associated vejth

Returning to (18), our objective now becomes to evaluate explicitly appromaaei-
tional expectationsf the terms involving i, Wi, and X,
Define now the following three subsets of N{1, 2...., m}:

Q" = {(J.D: Dj-11 > Dy, Dj_11 # Dpgp,

and no events occur D, Dj 1))},
R* = {(j.D: Dj-11 < Dy, and no events occur iDj_1, D)},
R" = {(J,1): Dj-11 < Dy, Dji # D7z,

and no events occur ifD Dﬁr)}. (20)

it
In particular, we point out that ((j,1) € Q*) € Ajr, 1((j,) e R®) € Aj_qy, 1((j, 1) €
R) € Aj_1;. We also define

W = BikNQ*,
Rk = BkNRY,
Ri/k = BxNR. (22)

For an interpretation of these three sets, note @jatis a subset oR;x and R}, R, are
subsets oR. In Qj,, we exclude events such that the— 1)th departure from node
returns tol to become thej + 1)th customer, or such that the waiting period of ftie
customer contains at least one other event anywhere in the systef}, we exclude
events such that the idle period following the— 1)th departure at nodecontains at least
one other event anywhere in the system. FinallyRjp we exclude events such that the
jth departure from nodeimmediately returns tb to become thé&j + 1)th customer, or
such that the interval between two successive arrivdlédibwing an idle period contains
at least one other event anywhere in the system.

The above definitions are motivated by the following considerations: As we will see in
the sequel,

E|: YoowP+ > X+ ﬂ:O(A@Z)
(J,.DHeQik (J.heRik (j.heRik

and therefore will contribute to the second derivative estimator. However, as we will see,

E > W=o(a6
(1.HeQu\Q;

which means that we need not consider any evengirwhich do not belong t&@;, for
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the purpose of estimating second derivatives. Similarly,

E Y If=o0), and E > X[ =o0(a67.
(.HeR\R; (.DeRI\R,

We refer to events ifB;, that do not belong t®@;,, R}, or R\ asnon-critical and we will
show that their contribution is indeed of ordg#\62) in the next subsection.

3.3. Conditional Expectations for Non-Critical Events

We begin by considering all non-critical events in the induced everigete., those that
do not belong taR}}, R, or Q;i. We want to show that the contribution of such events is
of ordero(A6?).

LEMMA 1 For any events;g, g, such that [x(0) < D; (6) and the interval(Dj (6),
Dj (9)) contains at least one event,

ﬁP(Dik(e + Af) > Dj| (0 + AB)|Aik) < Vik(AB), (22)

where VY is a random variable such that BENA6) < oo.

Proof: See Appendix. ]

This lemma is similar in spirit to Glasserman and Gong (1991, Lemma 3). We condition
with respect to the information available at tifg, and argue that the probability that a
future event in the nominal path, namely the deparjg occurring beforeD;y in the
perturbed path i®(A#), when another event intervenes. This result is then used in the
following lemma to show that the contribution of non-critical events will not play a role in
the final expression for the second derivativeehD;x] and the resulting estimator.

LEMMA 2 Forthe sets Q, R, defined in (15) and the sets R, R, defined in (20):

IA

() If (j,1) € Q\ Q*, then  E[WF|A 4]

EKJ-\|N < 00, andlimg_.o Kj‘lN(AO) =0.

Kj‘lN(AG), where |§|N(A9) e A

it

A

(i) If (j,1) € R\ R, thenHE[I;7]Aj 1]

EKjj < oo, andlim g0 K} (A6) = 0.

K| (A6), where K| (A0) € Aj 1,

(i) If (j,1) € R\R, thenz5 E[X|A ] < K;(A6), where Kf(Af) € A, EK] <
00, andlim ag—0 KJ?"(AQ) =0.

Proof: See Appendix. [ |
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3.4. Conditional Expectations for Critical Events

Next, we consider critical events in the induced eventBgt We first need to obtain
some conditional densities. In particular, suppose egent occurs at timeD;_1, and

is followed by an idle period of duratioh);. In the following lemma, an expression for
the conditional density of; givenzj_1, gj', (x|z;-1,1), is obtained for the case where no
events occur during the idle period, or, equivalesz)(, occurs immediately afteg_q
(with obvious dual results fo/V; andX;).

LEMMA 3

(i) If event g_1, initiates an idle period of length;lat node | and the next event to
occur is e i.e., the event terminating the idle period, then the conditional density

of this idle period givenzy, ng| (X|zj—1)), Is

fr (S (Dj—1.) +X) [ Toero o fq(K(Dj—r.) = 1ji + X)]

azl

I fr (S (Dj—1) + W[ Taemo1n fq(S(Dj—1) =1 +w]ldu’

gl

ng| X|zj—11) =
(23)

(i) If customer G; upon arrival to node | at time [ finds the server busy and the
next event to occur isje1), Dj_1) # D— JEER) then the conditional density of this

customer’s waiting time given,z gJI (X1z;), is

fi(S (D) + 3D Taemoy f(S(Dy) — Wi + %]

W(X|Z.) = i . (24
9 X250 = TS0 ) 1 wTesoy (&) — Wy Fwldy )

a#l

(i) If event er initiates a busy period at node | and the next event to occuﬁ§|e| e,
the second arrival event at node | with inter-event time pf then the conditional
density of this period g|venA|z gJI X1z, is

(S D) + XD Teemop To(S(Dy) = Xji + )]

X = azl . 25
9 X150 = T GO + Wil Temoy fa(&D)— Xp Fwldy 2

a#

Proof: See Appendix. ]

We now consider the conditional expectatiEt\Ijﬂzj_U]. Unlike Lemma 1, however,
the condition here igj_1, notjustA;_1,. In the nextlemma we show that the contribution
of critical events is no longer of ordexA#?), but instead it depends on the conditional
density functiorgj', (-1zj—1)) and a quantityn(j'| defined next. LeSj}IA denote theageof the
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; I-1 A I-1
I e e

5 Y ] f—

e e s

I il J-11 i1

Figure 1. Illustrating the definitions oS"j‘lh and %afl -
; .

service time of customébl at the timeg;_1, occurs. In other words, using the definition
of a service time age, we simply Sé} $(DJ 11)-

As illustrated in Figure 1 (where, for simplicity, we have lset| — 1), this corresponds to
any event; which is the first departure in a busy period of nbdistiated byeﬁ following
an idle period of length;. The crucial observation here is tfﬁ} belongs to 7.1, the

condition imposed in Eljf|z,-_1,|]. Let us then define

(- 9
le - Z @S]r - Z 30 Sir — 60 j| (26)
(q,r)ePHJ (q.r)eP
(qm#(ﬁl‘)

Similarly, we usega 11 to denote thegeof the service time of customé) _; | attime Djr,
ie. Whene occurs (see Figure 1). Accordingly, we define

w ) d 9
Yir= ) S Y. %S S (27)
(q,r)eP/T ©@nePj_q1]
@n#(j-1h

Finally, we useSi: to denote thegeof the service time of customéy; at tlmeD/:1I
occurs (see Figure 1). Accordingly, we define

— 9 _ _ 0
Yil - Z aeSH Z aosﬂ ae ]+1| (28)
(q,r)ePﬂ» (qr)eP T
(q»r)#(ﬂrll)

LEMMA 4 For the sets @, R*, R defined in (20)
(i) if (j.1) € R*, then

. 1
Jim AQZE[I,mz, ul==Z gj'.<0|z;_1,|)<[\q'.]+>2. (29)
(i) if (j,1) € Q*, then

! 1
Am, g2 AG? E[WIz;] = > g’ 1z Y'TH2 0
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iy if (j.1) € R, then

. 1 1
Jim N E[X{1z;] = 3 g’ 01z, (Y7152 (31)
Proof: See Appendix. ]

3.5. Second Derivative Estimators using Conditional Expectations
Returning to (18)

E[ADW]=E > AS+E > W'+E > If+E > X|. (32

(j.hePk (j.1)eQik (j.heRi (j.heRi

Combining the results from the previous sections, we will now replace the rhs above by
terms involving conditional expectations. This leads to our main result, Theorem 1 below.
First, looking at (29) and (30) in Lemma 4, let us set

1 2
Zjll = égjl| Olzj-1)) ([YJ:]+) , (33)
1 2
zi¥ = Zql'oizp (V). (34)
x _ Lox R x71+)?
Zjl = 29“ (0|Zj|) ([Y“] ) . (35)

We are now ready to state our main result.

THEOREM1 With Z), Z}¥ and Z as defined above,

E[ADi] = E[ > oA =1)}

(J.DeBik

(i.heR; (i.heQ;, (1DeR,

+E|: YoozZh+ Y zZ¥y- Y zﬁ} A6? +0(A0?).  (36)

Proof: Recalling (12) and (14), we have

ADy = > AS§10=D+ Y WPLD_y > Dy)

(J,HeBik (j.heBik
+ > XUDj <D+ Y IPUDj_1y < Dyp)
(j,.hHeBik (j.heBik

Comparing the right-hand-side above with the right-hand-side of (36), note that the first
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summations are identical. Let us next consider the remaining three sums above. The last
one can be written as

[e¢]

> 10D <D = Y IPAD; 1 < DG, D) € B,

m
(j.h)eBik =1 j=1

Taking expectations and using Fubini’'s theorem we obtain

m

E D) 14D <Dy =Y Y E[fUDj_1; < D)1((j.1) € B]. (37)

(i.heBi =1 j=1
Define the set
r={(,h: j=12...,1=1....,m, (38)
and no events occur imin{D;_1, DﬂA}, max{Dj_1,, Dﬁ})}.
Recalling the definitions of the sel and R} we have
1((j. ) € Bi)1(Dj_11 < Dy = L(J.D) € Ry, (39)
1, D € R, H e = L(j,1) € Ry. (40)

We next note that the information ifyj_1 is enough to determine whethBs_1, < Djr,
and whetherj, I) belongs td" or not, that is

1(Dj_1’| < D.]Ar) S Aj_1,| CZ-1), (41)
and
1(j,D el e Aj_1) CzZ_q. (42)

The above two remarks are crucial in what follows. (41) is simply due to the facs{hai
includes the whole history of the process up to tilje |, so that by that time we obviously
know whetherD .; has occurred (in which case the inequality is satisfied) or not. To check
(42) we need to recall that;_, | contains the identity of the next event:f_1, < Dfr,
observe that no events occur(i@j_11, D) iff e; is the next event. If on the other hand
Dj_11 > Dﬁ then we can tell whether any events occurreajm)f, Dj_1,)) or not since
this time interval clearly belongs to the past history of the procggs, .

With these observations in mind, let us now return to the rhs of (37) and examine a typical
terminthe double summation. Notingtlatj, 1) € Bix) = 1((j, 1) € BkNI)+1((j, 1) €
Bik N T, we have

E[1P2((.) € B (D11 < D] = E[1(Dj-11 < Dyp)
X P11 € By T
+E[1D; 1) < Dy

x 101D € BT
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Next, take conditional expectations on the rhs of the above display, conditioninggn
for the first term above and o1, C z;_1 for the second term:

E [|j'|’1((j,|) € Bik) 1(Dj-11 < Dfl”)]

E [ E[UD;-11 < DIfL(G. D) € BN D) | Z-1] |

+ E[ E[LD; 11 < DpIPLGL D € BN T | Aj1y]]
= E[1D; 11 < D ENPLG D € B D) | 7 01]]
+ E[1Dj 11 < Dy ENPLCG, 1D € BT | A 1y]], (43)

where the last step above follows from (41).

Examine now the two terms on the rhs of (43) separately, starting with the second term.
First, note thaﬂjf > 0 w.p.1. Hence the conditional expectation in the second term is
dominated byE[Ij'lD | Aj_11]. By virtue of Lemma 2 it follows that the second term is of
ordero(A6?).

Turning our attention to the first term, we next argue that the random variilgles)

Bk NTI) andlj'ﬁl((j, I) € T') are conditionally independent givep_,. Indeed, recalling

the definition ofljf in (9), we see that it clearly depends only on events that have occurred
up to time D ;. Furthermore, note that, of, the event immediately aftesi_y) is €.
Therefore, by the definition in (19%;_1) contains the history of the process up to time
D;_11, as well as the identity of the next event, i@;, and hence the number of customers
at each node at tim®;;. In addition, the residual service times at the active nodes at
time Djr are also part of;_1. In other words, the complete state information at tibyg
(though not the timeDﬁ itself) is part ofz;_1 |, provided tha(j, 1) € I'.

Onthe otherhandj, |) € Bk is a statement about the future evolution of the system (after
time Djr). It is completely determined by the segment of the sample path of the system in
the interval(D;;, Dix), and depends on the succession of events but not on “absolute time”;
in particular, it is independent dd ;. Thus, it follows from the Strong Markov Property
that, on(j,|) € T, the future evolution of the network (and in particuldi, |) € Biy) is
conditionally independent of the past (and in particuh%) given the “present” state, i.e.
the state at timé® ;;.

Sincez;_, contains the complete state of the network at tID}g we see that((j, ) €
Bk NI) andljf’l((j, [) € I') are conditionally independent givep_,. Consequently,

E[IPL(G, D € BknDz-u1] = E[L((j, D) € DIFL(,1) € T)|z-11]
x E[1((}, ) € Biklzj—1.1)]
= 1(j.1) e DE[If1z-11]
x E[1((j, 1) € Biklzj—11].
where, in the last equation we have used (42).
From Lemma 4, using the definition ZI]-‘l in (33), we have

E[If1z-11] = Zj A6” + 0(A6%) on{(j.]) e T},



FIRST AND SECOND DERIVATIVE ESTIMATORS 45

Wherer'I belongs tazj_1. This in turn yields

E[IP2G.D € BN DIz | = (D € DE[L(. D € Bilz-11] Z) 62
+ 0(A6?).

Therefore, returning to (37) and combining all of the above results,

E ) 1/4(Dj_1y <Dy
(J,))eBik

= Y > E[E[LG.D € B 1 -1] (. D € 1) Z) 1Dy 11 < D] 462
=1 j=1
+ 0(A6?)

m

_ - | : X . . 2 2
j s i -1, h -1,
- E:E:E[ [ 1((j.1) € B NTYA(Dj_1) < D) | 7 1|]]A0 + 0(AG?)
1=

1=1

AO?E N D" Zj1((j.1) € Bk ND)A(D; 11 < Djp) + 0(A6?)
I=1 j=1

AH’E Zj) + 0o(A6?).
(i.heR:

Similarly, we can show that

E Y WDy, >Dp=E Y ZVAo?+o0(a0?),
(j.heBik (J,.DHeQj

E Z Xf1UDj_1) <Dy =-E Z Zf A0% + 0(A6?),
(J.DeBik (J,DeR,
which completes the proof. u

The desired first and second derivative estimators can be readily obtained from the above
theorem and the following

LEMMA 5

E|: Z A$1:|=E|: Z %31} A@—i—%E[ Z %:zﬁl]Agz—i-O(A@).

(j,DePi (j,DePx (j,DePi

Proof: See Appendix. ]
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Using Lemma 5, (36) can be written as

E[ADi] = E| Y £S10=1 |46

(j.hePi
1 -
(j.hePk
2 2
£ 3 dfozy () + X gz ([4i17)
(.heQ iR
2
— D gi0izp ([lexr) AO? 4 0(A62). (44)
(J.DeRy

From the expression abO\{e, lettiigk) = (N, 1), we obtain the following estimator for
the first-order derivative ob

(J,DePn1

Thus, we have recovered the standard IPA first derivative estimator for this type of network
(e.g. Cao 1990).

Similarly, our second derivative estimator Bfis given by

[ 82 D:| 1 Z 32 S
o - = 2 g
362 | o N, 062

j»DePny
W )
3 aom(| ¥ s
(1.heQyy (9,D)eP;
2
i) J
- 2 @5(11—@36‘—“})
(@.DePj_q
Q. D#(j-1D)
| J
+ > g,-l(0|zj_1,|)<[ Y ESu
(iheRy, @.DeP, 1,

(q.De Pif
@D#(D
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- ) gj)l((0|zjf)<|: Yo wmSu— ), wSa

(j,l)eRK,1 (q.l)ePﬂ» (q.l)ePTm

@D#G+I=<h
+
i
30 .l+1,f:| )

It readily follows from Theorem 1 that the two derivative estimators above are indeed
unbiased. Itis worth pointing out that in the second, third and forth terms of (45) above not
all (j, 1) belonging to the critical even se@y; and Ry, contribute to the estimator. This
is because the corresponding differences in fheif these terms may be negative.

An explicit algorithm for implementing the second-order derivative estimator above is
provided in the next section.

2

} . (46)

4. The Estimation Algorithm

Although the expression for the second derivative estimator in (45) is rather complicated, we
will present in this section an algorithm for implementing both first and second derivative
estimators which is quite simple.

We begin with the first derivative estimator in (45). Defining

. d
Lii.k= > -8t (47)

(J.DeRK

we have:

3 - 1
ZD| =ZLiN, 1.
30 | N

Now, letg, k, be the event that induceg. From the definition 0B in section 2, we know
that

Bik = Bipk, U{(I, K} Pk =P, U{(, K1lk=1},

where we agree to I€(i, k)1(k = 1)} be the empty set it(k = 1) = 0. Therefore, we
have the following iterative scheme for obtainibg(i, k) from L1(i1, Ky):

. ad . 0
La(i, k) = > o551 = Lalin k) + 1k = - S (48)

(1. )P,y iy Ul 1k=1))

We can obtain a similar iterative scheme for the second derivative. Define
2

0% -
LoG, k) = N[—D(e)} , 49
2 o g (49)
and

an . 3

L.k = > S+ Sk = Lalia ko) + 1k = Do S (50)

(1-DePig
(4. DK
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Then, from the definition ok 4 (i, k) in (47) and also (45), we have

. 92
Lk = > S

(j,DePx
A + 2
+ 3 g ([Ladh - 13 - 1))
(J.heQj
| . S 2
+ > gj.<0|z,-1,|)<[L1<J—1,I>—L1(JI)])
(1DeR;
R a2
- > 917(0|Z,;r)<[L1(f|)—Li‘(]+1,|)])
(J.heRy
82
= La(is, kl)+1(k:1)@51

. o . + 2
+ 1. k) € QilgkOiz ) ([Lla, K - L3 -1 k] )
~ 7t 2
+ 1. k) € Ridoh 01z -1 ([Lla L] )
) A P 2
— 1@, k) € Ri’k]gﬁi(0|zﬂz) <[L1(fk) —L30+1, k)] > (51)

The last expression above corresponds to the following four cases:

Casel. D1k > D;y and no event occurs during the waiting time of custo@gri.e.
during the time intervaf D; i Di—1k)-

It follows from the definition ofQ;}, andR;j that (51) yields:

. . 92
La(i, k) = La(is, k) + 1k = l)W51

A + 2
+ 0% _1(01Z; ) ([Ll(f, k) — L3G —1, k)] ) .

Case 2. D-1x < D;y and no event occurs during the idle period at nbdes. during the
time interval(D;_1 , D;p)- Then

. . 92
Lo, k) = La(is, k) + 1k = 1)8_

9231

. 1+ 2
+gil—1,k(0|zi—1,k)<[L1(| —1,k) — L2, k)] ) ,
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Case 3. D1k < Dyy and no event occurs between the arrivaCpf andC; ;1 g, i.e.
during the time interva{D; ¢, D.75¢)- Then

. _ a2
L2(|, k) = Lz(ll, kl) + 1(k = 1)8_

9231

2
— g0z ([Ll(ﬂz) — L3 + 1, R)]+) .

Case 4. Otherwise,

2

Lo, k) = La(is, k) + 1tk = 1)~

WSI'

Using (48) and the four cases in (51), we have the following:

First and Second Derivative Estimation Algorithm
1. Initialize: L1(1,k) :=0, L§(1, k) :=0, L»(1,k) :=0,fork=1,...,n.
2. Ateach (departure) evesf induced byg, k,:

2.1, L1(, k) := La(i1, k1), La(i, k) := La(i1, ko).
2.2. If k=1,

. . d
LiG, k) = Ll('»k)+£51,

. . 9
L3,k = Ll(l,k)+a—9331,

) ) 92
LoG, k) = Lz(l,k)-i-WSl-

2.3. If Di_1k > D; and no event has occurred (D; ;, Di-1) (i.e. if Cik had to
wait and no event occurred in the network during his waiting time),

2
LaGi. k) = LaG, k) + g% (01z) <[L1(f, k) — LaG — 1, k)]+> .

2.4. If Di_1x < D; and no event has occurred (D; 1, D) (i.e. if Cix did not
have to wait and no event occurred in the network during the idle period inknode
preceding his arrival),

2
uaxszme+ngaLu(ﬂﬂr—Lb—LﬂﬂbT).
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2.5. If Di_1x < Dy and no event has occurred (B, DI/JIR) (i.e. if Cjk started a
busy period and no event occurred bef@yg; k arrived),

. 11\
LaGi. k) = Lo, k) — g3 0lz¢) <[L1(fk)— LaG + 1, k)] ) .

3. If N events have occurred at node 1, stop and set:
1 1
Li(N, 1) = NLl(N» D, L2(N, 1) := NLZ(N’ D,

otherwise return to step 2 for the next observed event.

Intuitively, step 2.2. calculates first derivatives as well as the part of the second derivative
due to%sl. Step 2.3 accounts for the contribution to the second derivative of changes in
the order of events that create idle periods, while step 2.4 accounts for the disappearance
of idle periods. There is however a third type of event order change that contributes to
the second derivative in this system: a customer who initiates a busy period at a given
node in the nominal sample path may be overtaken by another customer (coming from a
different node) who now initiates the busy period instead, in the perturbed path. This effect
is accounted for by step 2.5. (This last scenario is clearly not possible in a single-server,
cyclic network and as a result this step was not necessary in Bao, Cassandras, and Zazanis
(submitted).) Note that in each of steps 2.3-2.5 the contribution to the second derivative
consists of two parts: the actual event time change given in terms afithieand L, (+)
expressions, and a conditional probability as evaluated in Lemma 3.

In checking the validity of conditions at each step, itis necessary to know the identity of the
next event. Furthermore, to carry out the computations involving the conditional densities,
we need to know the residual service times atitine of the next event¥When implementing
the algorithm this is accomplished by letting the second derivative calculations “lag behind”
the simulation until the necessary information becomes available (see also the Remark in
section 3.2). The calculations g§f (0z;), g\ (01z_1.x) andg} (0|z;) whenever required
in the algorithm for a particulai, k), are carried out by using (23),(24) and (25). Observe,
however, that the expressions for these conditional densities (and in particular the necessary
integrations) are performeuaff line before the simulation is carried out. The calculation of
the first and second derivatives of the service tiBe®) is done using standard techniques
(e.g. see 82 of Zazanis and Suri (1994)).

Finally, when the algorithm stops we have:

aD(® 32D (0
Ll(N,1>=[%} , Lz(N,1)=[aT(2)} .
est est

Finally, the reader may notice that calculations of first and second order derivatives at all
possible nodes are performed in parallel since, from the definiti@yofach calculation
of La(i, k) depends on the valuey(j, ) at some other node in steps 2.3-2.5 wierés a
neighboring event ofx andl could be any node in the network.
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5. Numerical Results

The numerical results in this section illustrate the performance of our algorithms. The
first two experiments refer to systems with exponential service times where the decision
parametep = 1/u is the mean service time of one of the nodes. The simulation horizon
was sufficiently long to permit comparison with the analytical results available for steady
state performance criteria in this case and the experiments indicate that the unbiasedness
of the proposed estimators for finite horizon simulations is likely to hold in the steady state
as well. We also present an experiment with non exponeritigl ¢ervice times at all
nodes and compare our estimators with “brute-force” simulation results. In the following
examples, the quantities with the subscrigst represent estimates which are compared

to the corresponding analytical results or brute force simulation results (designated by the
subscript b). Finally, D’(9) and D”(9) represent the first and second derivatives with
respect to parametér Each time, we have 25 runs. The results for diffefdrare shown
below (under a 95% confidence interval):

Case 1. Exponential system with 3 nodes and 3 customgis= u, = usz = 1.0 and
routing probabilities:

0.2 05 03
P=1] 04 03 03
0.5 025 025

N | D \ Dest \ D’(9) | D’ (0)est | D"(6) \ D" (0)est
node 1
10 | 1.56335 | 1.56317+ 0.00287 | 0.59145 | 0.59037+ 0.00312 | 0.37752 | 0.376184 0.04841
10° | 1.56335 | 1.55584+ 0.00120 | 0.59145 | 0.589764+ 0.00097 | 0.37752 | 0.37247+0.01176
1P | 1.56335 | 1.56304+ 0.00026 | 0.59145 | 0.59117+ 0.00024 | 0.37752 | 0.37707+ 0.00307
node 2
10* | 1.56335 [ 1.56921+ 0.00478 | 0.59145 | 0.59247+ 0.00439 | 0.37752 | 0.37770+ 0.04855
10° | 1.56335 | 1.56230+ 0.00084 | 0.59145 | 0.59218+ 0.00123 | 0.37752 | 0.37401+ 0.01181
10° | 1.56335 | 1.56368+ 0.00037 | 0.59145 | 0.59141+ 0.00030 | 0.37752 | 0.37722+ 0.00309
node 3
107 | 1.95419 | 1.92756+ 0.00543 | 0.73932 | 0.72765+ 0.00457 | 0.47190 | 0.46401+ 0.05952
10° | 1.95419 | 1.93489+ 0.00130 | 0.73932 | 0.73340+ 0.00125 | 0.47190 | 0.46325+ 0.01466
10° | 1.95419 | 1.95336+ 0.00036 | 0.73932 | 0.73880+ 0.00031 | 0.47190 | 0.47123+ 0.00385

Case 2. Exponential system with 3 nodes and 3 customeiss 1, u» = 5.0, uz = 0.6,
and routing probabilities:

0.3 04 03
P=] 02 02 06
05 02 03
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N[ D | Dest [ D'®) ] D@est | D'®) |  D'0est

node 1

10% | 3.96462 | 3.92519+ 0.01432 | 0.17430 | 0.17133+0.00339 | 0.20851 | 0.17765+ 0.03411

10° | 3.96462 | 3.92842+ 0.00362 | 0.17430 | 0.175664 0.00098 | 0.20851 | 0.20207+ 0.01327

10° | 3.96462 | 3.96447+ 0.00094 | 0.17430 | 0.174444+ 0.00033 | 0.20851 | 0.20606+ 0.00434
node 2

10 | 5.13068 [ 5.11731+0.01853 | 0.22556 | 0.22293+ 0.00477 | 0.26734 | 0.23205+ 0.04463

10° | 5.13068 | 5.10633+0.00174 | 0.22556 | 0.22828+ 0.00130 | 0.26734 | 0.26269+ 0.01723

1P | 5.13068 | 5.13383+ 0.00050 | 0.22556 | 0.22589+ 0.00045 | 0.26734 | 0.26685+ 0.00565
node 3

10* | 3.63423 [ 3.56614+ 0.01368 [ 0.15977 | 0.15542+ 0.00327 | 0.18937 | 0.16144+ 0.03100

10° | 3.63423 | 3.59194+ 0.00323 | 0.15977 | 0.16058+ 0.00091 | 0.18937 | 0.18475+ 0.01207

10° | 3.63423 | 3.63544+0.00075 | 0.15977 | 0.159964+ 0.00032 | 0.18937 | 0.18896+ 0.00398

Case 3. H system with 2 nodes and 2 customers

In this system, we have two nodes and two customers. The service time at each node
is Ho with service time distributiong;(x) = aue#* + (1 — a)ue#2* and fo(x) =
Brre X + (1 — B)re *2X respectively. Here, we chose= Mil andA@ = 0.002. The
parameters are

o | p1 | M2 | B | M| A
06|10]|20|04| 10|20
and routing probabilities:
P_ 0.5 05
~\ 04 06
N Dp D'(®) D'(®)est D" () D"(®)est
10| 2.68345£0.00216] 0.34882£0.00238] 0.360910.00124] 0.13396+0.01463] 0.1353G£0.00155
10° | 2.62246£0.00063] 0.35272£0.00059] 0.35793:0.00031] 0.12928:0.00587| 0.12848£0.00044
10° | 2.60669=0.00026] 0.35666+0.00020] 0.35818:0.00011] 0.13056£0.00169] 0.1312H0.00014

6. Pad® Approximation of Interdeparture Time through its Derivatives

As mentioned in the introduction, first and second derivatives can be used to obtain an ap-
proximation of entire response curves of interest. Using the Bpgfoximation approach,
we find that the approximated response curve is very close to the real response curve over
a large range, which means we can very confidently use the approximated curve for many
purposes such as optimization of the system performance. The benefit here is obvious,
since we need only one simulation run plus some additional calculation for first and second
derivative estimation, in order to obtain the response curve, instead of multiple simulation
runs.

In the following, we will generate the response curve for the expected interdeparture
time (hence, the throughput as well) by a Pagbproximation based on the results of the
previous sections. Since the throughput is the inverse of the expected interdeparture time,
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Expected Interdeparture Time of Node 1

' y n ' ' ' ' 4 ' ;. 4
) 0.5 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Expected Service Time of Node 1

Pade
Polynomial
=:='= Theoretical

Figure 2. Pad approximation of throughput for a three-node three-customer system.

we actually obtain the response curve of the throughput in the mean time. Using results
from Gong, Nananukul, and Yan (submitted), we have

[D(@)]approx = O + [2(D(O1)est — 01)°] {2(D(B1)est — 1)
— 2(D(01)est — 01)(D' (B1)est — 1)(6 — 61)
+[2(D’ (B1)est — 1)

— (D(B1)est — 01)(D" (B1)es)] (0 — 61)2} (52)

which is the equation we need for the Rapproximation. In the following example, we
simulate a 3-node 3-customer system with= 10°. The service time at each node is
exponentially distributed with service rate; = 1.0, u, = 5.0, andus = 0.6 respectively.
The routing probability (arbitrarily chosen) is as follows:

0.3 04 03
P=1] 02 02 06
05 02 03

Our results are shown in Figure 2. The curves marked “Polynomial” ance"Ragfesent

a polynomial and a Padapproximation respectively. The curve marked “Theoretical” is
obtained from the analytical expression for the throughput of this Markovian system. One
can see the “Pad’and “Theoretical” curves are virtually indistinguishable. The accuracy
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of “Polynomial”, on the other hand, is limited to a small range of values around the nominal
pointgy = 1.

7. Conclusions and Future Work

We have considered a Jackson-like closed queueing network with arbitrary service time
distributions and derived an unbiased second derivative estimator of the throughput over
N customers served at some node with respect to a parameter of the service distribution
at that node. Our approach is based on observing a single sample path of this system,
and evaluating all second-order effects on interdeparture times as a result of the parameter
perturbation. We then define an estimator as a conditional expectation over appropriate
observable quantities, as in Smoothed Perturbation Analysis (SPA). Along the way, we
have also recovered the first derivative estimator of the throughput, which can also be
derived using other techniques (e.g. Cao 1990). Our results can be easily extended to the
second derivative of the mean delay of customers between any two points in the network
proceeding as in Bao, Cassandras, and Zazanis (submitted) or other performance measures
of interest.

The analysis of higher-order event order changes has given us some new insights regarding
the type of sample path information we need to condition on in order to estimate higher-
order performance derivatives. As seen in section 4, even though the derivation of the
second-order derivative estimator is fairly elaborate, the actual algorithm for implementing
it on line is relatively simple. We have also established the unbiasedness of our estimators.

As mentioned in the introduction, a major motivation for this work is the possibility of
using the first and second derivatives of performance metrics of complex DEDS in order
to construct a global response surface. Recent developments exploitie@padxima-
tion techniques (Gong, Nananukul, and Yan, submitted) have made this possibility very
real. Our results in section 7 indicate that the entire throughput response surface of a serial
closed queueing network can be constructed with remarkable accuracy using only the first
and second derivative estimates we have developed. Moreover, we believe that the basic
approach presented here may be extended to more complex network topologies, which is
the subject of ongoing research.
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Appendix

We present here the proofs of Lemmas 1 through 4 as well as a number of auxiliary results
(Lemmas 5 through 8) that will be needed in the course of these proofs. While so far we
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described the sample paths of the system solely in terms of departure times, in some of the
Lemmas that follow, it will be useful to use both arrival times at, and departure times from,
the nodes of the network. We will denote By (9) the arrival time at nodk of the customer

who become€;i in the nominal sample path, and By, (6 + A9) the same arrival time in the
perturbed path. Thu8i(6) = D, and Ay (6 + Af) = Di‘i’k*. Finally, we will denote by

ik (0) the total number of events up to tinigy (0) (i.e., nik(0) = Z;’il Z,m:l L(Dji(0) <

Dik (6)). We start with a result due to Shanthikumar and Yao (1989).

LEMMA 6 i) The departure times are nondecreasingin.e. for all i, k, and6’ > 6,
Dik(") = Dik(0).

i) Furthermore, the departure times;6) are absolutely continuous functionstofv.p.
1.
iii) The arrival times Ay (0) are nondecreasing if, i.e. for all i, k, andé’ > 09,

Ai(8) = Ai(9).

iv) Aik(0) is an absolutely continuous function®fv.p. 1. for all i, k. Finally,
V) nik (@) is decreasing ird.

Proof: See Shanthikumar and Yao (1989) which proves the monotonicity results i), iii),
v). The absolute continuity ddix (6) and Aik (6) also follows easily from their arguments.
[ |

We next proceed to obtain two bounds that will be used repeatedly in the sequel. Note

that, W.p.l,d% Dik(9) exists for almost alb € ® and, as a result oA.1 is nonnegative.
Furthermore, by assumptiosl, A.2, for everyi, k, andf, d Sx/d0 < ¢Sk + ¢2. Thus

d D,
0< di < 1D (0) + Comic (). (53)

Also, in view of the absolute continuity d;x we have

0+A0
Dik( + Af) — Di(0) = / EDik(U)dU« (54)
0

In light of the fact thatyjx (0) > nik(u) for u > 6 (Lemma 6), (54), (53) imply in turn that

Dik(60 + AO) — Dik(0) < ;”M [c1Dik(u) + comik (6)] du, which, upon integration, gives
the bound
0 < Dix(@ + AB) — Dik(0) < (€4 — 1)(Dix(9) + 2nik(9))
C1AbO
=" (D G2
= 1= ng OO + Emk(©), (55)

the last inequality holding provided thab < 1/c;, as aresult of the elementary inequality

ey—1§r3’y,y<1.
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Proofof Lemma1: This proofis along the lines of the proof of Lemma 3 in Glasserman and
Gong (1991) with some modifications. We remind the reader that, because all service time
distributions have hazard rates bounded above b§AssumptionA.4) the point process

that consists of all departures in the network has stochastic intensity which is bounded above
by my. Since by the assumptions of the lemma at least one event intervenes b&yeen
andDj; in the nominal sample path, given the history of the process up toBimeAix,

D; — Dik is stochastically larger than the sum of two independent, exponential random
variables, each with ratay, i.e.

P(D;ji () — Dik(8) < X|Aik) < 1— (L +myx)e”™* < (myx)?,

where, we have used the elementary inequalitf’* > 1 — myx. In view of (54) and the
fact thatD;, (6 + A9) > D; () we have the inequality

P(Dik(@ + A0) > Dji (6 + AB)|Aix) < P(Dik(8 + A8) > Dj (0)|Aik)
P(Dji (0) — Dik(0) < ADik|Aik)
(my ADjk)?
2,10 2 2
my (e’ — 12 (D (®) + Zni(®) )
c2A6?
(1— c1A0)2
x (Dik(®) + 2k (®))

Al

IA

IA

(my)?
2
, (56)

the last inequality holding provided thab < 1/c;, as aresult of the elementary inequality
ey —1< l%y,y<1. Let

2 2
N . @2,
Vi = my (Dw® + Zmk(®)".
The proof of the lemma will be complete, provided we show B < oo. Anticipating
the requirements of the proof of Lemma 2 we will show that

E [(Dik@ + g—jnik(e)))s} < 0.

We do this next:

It is easy to see that the number of service completions by tiimeour network is
stochastically smaller than the superpositionnofindependent renewal processes with
interevent time distribution, ..., Fn. As a result we conclude th&n], < oo for
allr > 0 from the corresponding result for renewal processes, provided of course that
Fi(0) < 1 (e.g. seeCinlar 1975), a condition which is satisfied automatically under our
assumptions. To provide a bound for the time to completzvices at nodk, consider the
same networkvith a single customestarting his service at nodet time 0 and denote by
dik the time he will completé services at nodk. Suppose that the starting nodis such
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that, in the original network, the initial number of customegsz> 1. Based on the results
of Shanthikumar and Yao (1989)

dik >st Dik.
Examining the underlying Markov—Renewal proceSmiar 1975) we see that.5 implied

thatEd} < oo and, as a result of the above display, tBd3 < co. Finally, from the
inequality” (e.g. see Lewve 1977) we have

3
C 3

E<Dik+—2'7ik) §4<EDi3k+(%> Enigk) < 00.
C1 1

This establishes the proof of Lemma 1 sife¥), < oo. [ |

Proof of Lemma 2: Since the proofs of the three parts are similar, we focus only on part
(1). Recall that

WP = (D). — Dy )" = (A (0 + AB) — Dj_1, (0 + AO))* (57)
or, equivalently,

VVJ-F = (Aj — Dj_11 + AA; — ADj_1)". (58)
We will show that

1
<52 ELCAN = Dyai + AAy = AD 1) 1A < K, (A0), (59)

for some random variabld(}{"(A@) € Ay which is integrable for allA® and
liMmag_o Kj‘l’"(AG) = 0w.p. 1. There are three cases to consider for whjch € Q\ Q*:

() Dj-11 =Dy

(II) Dj_1,| = Dj/+\1,f; and

(i) ej_q, .&;; are not adjacent events.

It will be sufficient to show that in these three casEsKj‘{V(Ae) < oo and
limag—0 Kj‘l’V(AG) = 0. We do this next.

(i) (j,) e Qand D_y = Dfr (i.e. the customer C1, departing at _;; from
node | is immediately routed back to node | and becomgs Cn this case,A; (9)
= Djr = Dj_1,(0) and hence from (58)

W = (AAj — ADj 1)t
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Note that, since the routing decisions do not change in the perturbed path,Ajttses
A0) = Dj_11(0 + A09) or, if there is a change in the order of everkg, (0 + Af) <
Dj_1,1(60 + Af). Write

(AAj — ADj_1)* = (AA) — ADj_1) L(Dj_1,(6 + AB) = Aj (6 + AF))
+(AAJ'| — AD]',L|)+1(DJ',1,|(9 + Af) > Aj| 6+ AB)) (60)

and note than Ajj — ADj_1; = 0 whenDj_1,(0) = A; (#) (which is part ofAj_q

in this case) andj_1,(0 + A8) = A (@ + Af). Hence, the first term on the rhs of
the above equation vanishes. On the other hand, vien; (0 + A6) > Aji (6 + A0),
we must necessarily haveDj_1; > AAj_1 (sinceDj_11(0) = Aj(0)) implying that
(AA; — ADj_1))" = 0 and hence that the second term also vanishes. TheiW[E)ﬁe 0
w.p.1 for all A and the Lemmais trivially true in this case.

(i) (j,) e Qand D_y = Dirtr (i.e. the customer departing at; D from node
| is immediately routed back to node | and becomes the arrival;qf Cwhile the jth
customer is in service at |.Equivalently,D;_1; = Aj;11. Again, the routing indicator
Uj_1 dictates that customeZ;j_1, will return to nodel immediately (regardless of the
value of the parameté). Suppose that, in the perturbed paih, 1 leaves behind him
customers. TheDj_1 (0 + Af) = Aj1q,1 (0 + Af). SinceAjq(0+ AB) > A (6 + A6)
we see from (57) that\/jf’ = 0w.p. 1 for allAf and again the Lemma is trivially true.

(i) (j.1) € Q and g_4,, e; are not adjacent eventsWe start with the observation
that Dj_1; > Dfr since we are assuming,l) € Q. In other words, in the nominal
sample patlC; has to wait. Furthermore, since the two events in question are assumed
to be nonadjacen(,Djr, Dj_1,) contains at least one event. In view of (57) we see that a

necessary condition fc);f\ljlp >0is
max{Dyp(6 + A0);r =1,2,...,j} > Dj_1,(0 + A). (61)

To see this, observe that if (61) does not hold, tAgiid + A6) < Dj_1,(6 4+ Af) since the
routing indicators remain the same. loebe the value of corresponding to the maximum

in (61) and note that when (61) holds, thap(® + A9) < D,;(6 + AB). (We clarify that

o is an index whose value is determined “at the perturbed path,” i.e., with parameter value
6 + A6. Later on, when we refer to the eved}(9), o maintains the value determined
from (61).) Based on these remarks we see that

Wi

(A1 (6 + AB) — Dj_1,(0 + A6)) "
= (D, (6 + A8) — Dj_1,(6 + A))". (62)
Write D;;(6 + Af) = D,(9) + AD,; and observe that
D;1(0) = D;(6) < Dj—11(0) < Dj_1,1(60 + AD),

the second inequality following by the assumption ifjat) € Q. From the above inequal-
ity and (62) we obtain

Wi = (ADg; + D; 1(0) — Dj—11(6 + A6))

jl
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x 1(D,(0 + AG) — Dj_1, (6 + AB) > 0)
AD1(D,¢(6 + AB) — Dj_1,(6 + AB) > 0)

IA

C1AfO o A
= (1—c100) ( @) + "/|(9)> 1(D;i(0 + AO) — Dj_11(6 4 A6) > 0),
for A6 < 1/cy. In the last inequality we have used the fact that
C]_Ae C]_A9
AD.,<——— (D. _ GAb @
o= = quady (Ooi® + E1i®) = =5 (PO + En®)

(63)

the first inequality above following immediately from (54) while the second from Lemma 6
and the fact thaD,(9) < Dﬁ(e). Thus, for sufficiently small\6,

1 1 A6
E [ 2 (D0 + 200))

——_EWP|A] < —E|—2
62 [WirlAjl = AG2 | (1—ciA0)
x 1(Dy(6 + AB) — Dj_1,(6 + Ab) > 0)|Afr]

1 C1A0
AB2 (1 —c1A6)

x P (Dﬁr(9 + Af) — Dj_11(0 + AB) > O)|Afr) .

IA

(D5 ®) + Zn®))

Recall however that, since by assumpt((ml, D;_1,1) contains at least one event, so does
(D¢, Dj—11). Using an argument identical to that given in the proof of Lemma 1 and (63)
we obtain the bound

P (Dyi(6 + A0) = D116 + A9) > 0] A ) = (g (Dfr(9)+§—jnfr(9)))2

Hence

1 def

3
EMWPIA ] < A9m2y2<1 - (DJ|(9)+ Cznj|(9)>) Z K\ (A0).

To conclude the proof recall that in the last paragraph of Lemma 1 we showed that the
expectation of the above quantity is finite. ]

Proof of Lemma 3: We examine only the idle period case in detail, as the other two cases
are similar. We begin with the observation that necessﬁreﬂy/\/l(D,-,“), i.e., the node
which generates the arrival gth customer at nodemust be busy at tim®;_1,. Hence,

the idle period of lengtly; is the residual service time of the customeftimnode, at time
Dj_y,, defined aﬁ(Dj_u). Equivalently, we write

lji = §(Dj—11) — §F(Dj-1).

Because of the independence assumptions regarding the service processes at the nodes of
the network, the relevant part @f_;, is the set of active nodegy(Dj_1,), the ages of
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the service processes at the active nodes give(p§D;-11); g € M(Dj_1))}, the
identity of the next event, and the residual service timiethe end of the idle period; |
{§,(D;p) ; g € M(Dj_1D}-

Under the assumption of the lemneg; is the next event, i.e., no events occur during the
idle periodl;j;. This translates into the condition

§(Dj-1)) = F(Dj-11) = F(Dj-11) — F(Dj-11) — F(Djp),
forallqg e M(Dj_1)\ (I},

where$;(Dj-11) — §(Dj-1,) is the residual service time at nogat thebeginningof the
idle period, anc%(Dfr) is the residual service time at nodet theendof the idle period.

Denoting byg' (-|z_1,) the conditional density of;;, we then have
g' (XIz—1)dx oc P (SI‘(Djfl,I) — §(Dj-1)) € dx,
$(Dj-11) — §(Dj—11) — §,(Dj) € dx,
g€ M(Dj_1)\{f} |
§(D; 1) SO SOy, d €MD\ (1),
It is then straight—forward to obtain the following expression:

fi(S?(Dj—l,l) + X)[l—lquQflJ) fq(Sg(Dj—l,I) + S&(Dﬁ) + X)]

o

g (xlz-1) =

Jo~ S D1) + W[ Teema 1 fo(SqD-11) + SH(D;) + W]du’
" (64)
Taking into account that
S$(Dj-11) = §(Dj—1) + I + §(Dyp), 9 € M(Dj-11),
(64) can be rewritten as
f(§(Dj—10) + X)[]_[qu(DIJ;w fq(S(Dj-11) — lji +x)]
g' (X|zj_1)) = IS fr@(D,—,u) +u)[]‘[qu:TD{,1_.) f(S(Dj_11) — Iy + wldu’
" (65)
[ |

The following auxiliary result is needed in the proof of Lemma 4.
LEMMA 7 For the sets @, R*, R defined in (20)

(i) if (j,1) € Q*, then
E[WPIz,] = E[W]|z,] + 0(A6?) (66)
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(i) if (j,1) € R*, then
E[|j'|J|ijl,|] = E[Ij1z-11] + 0(A6?) (67)
(i) if (j,1) € R, then

E[X[11z;] = —E[X]}1z;{] + 0(A6?) (68)

whereWy, I}, X{} are defined as follows:

= (D —Dpl,)+ (ADj — ADj_1; —Wj)*

j? = (DJ 1l D )+ (AD;- 1|—AD —|]|)Jr
= (DF’ DA )7 =(AD; — ADygp = Xi)* (69)

Proof: Part (i): From (58), the fact thatV; = D;_1; — A;, and the above definitions
one can check that

W n = ﬁ :(AA“ — ADj_1) — W)t
— (ADj; — ADj_1) — V\/jl)+]
< Aigz AD;i — AA“‘(l(V\/“ < AD;— ADj_y))
+ LW < AA) — ADj-l,l))
< ﬁ AD_;F—AAH}(l(V\/ﬂ < ADj) +1(W < AAjl))’

the last inequality following from the fact thatD;_, is nonnegative. Note thatD,
AA; € z;, and hence, the conditional expectation of the rhs of the above inequality given
z;; can be written as

'AD_ﬂ” _AA

1 1
N ) (—P(AD > Wi lzy) + 5 P(AAL > Wi Iz )) (70)

A

AA”

Observe that, aad — 0, both Af' and converge w.p. 1 tonT and thus their

difference vanishes. On the other hand
1 1 AD i

—P(AD >VVJ||Z]|) = E

A9 g]l (X|Zj|)dx

AD.¢
_

20 oD .
- /0 O (yA8IZ)dy —> s 0 2 Gl 01z wip.L

A similar calculation can be carried out for the second term inside the parenthesis of (70).
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From the above we conclude that
1 n p

Part (ii): The proof is similar to parti ).
Part (iii): We remind the reader (8) tha¢]| =D} e — Dp First, observe thab", s =

mln{D/\; r =20,1,2,...}. To be specific, lep denote the value af for which the
m|n|mum achieved so theDJpH = Djﬁ\A If p = 0then bothXJI = 0 andXj} = 0, the
second equality following from definition (69) sinpe= 0 |mpI|esDj/+\lr > DJ"I fp=1

thenXj = D/\A - DJ'?IA = —XJ}. Therefore

p n_ (P
le + le = (Dm,f J+1|)1(p > 2). (71)

From the definition ofp we also have

D Dp (72)

J+p| -

while from the monotonicity of the departure process (Lemm@jﬁjﬂ > DT+\1| > D
From these inequalities and (71) we obtain '

XP 4 XD < (Djf’r - Dﬂ) 1(p = 2) = AD1(p = 2.

Hence, sinceADjr € z;,
1 P 1
7E[XjI I] < ADj; P(,o > 2|zy). (73)

Note that from the definition ob and (72),{p > 2} = {D]/\ (O + A8) < D0 + AD)
and there is at least one event in the mter(\mjlI (0), D—(0)) in the nommal sample
patht. An argument similar to that used in the proof o# Lemma 1 shows that

2 2

c 2
m (Dfr<9> + &1 fr<e>)

P(p = 2zj) < (my)?
From the above inequality, the bound obtainedAdp ;; from (54), and (73) we obtain
1
2 X X iz] < aomey? (1 - (DJ|(0) Ty nﬂ(e)))
which concludes the proof. [ |

Thefollowing lemma, also needed in the proof of Lemma 4, istaken from Bao, Cassandras,
and Zazanis (submitted) and presented here for convenience.
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LEMMA 8 LetsuppFi(-; #) denote the support of1F; 6) and ®ay: supFi(-; 0) — R
the function Ifl(Fl(-; 0); 0 + AB). Keeping fixed, consider the familid oy; A0 > 0}.
Then, for any S suppFi(-; 6),

. 1 S
AherﬂoA_e [Pao(S+ yAs) — § = 8 TV

Proof: Observe first thad, is the identity map on the support Bf(-; ) and

AIi9m0<I>A9(x) =x for x € suppF;. (74)

SiNCeDpp(S+ YAO) — S= Dpp(S+ YAO) — Ppg(S) + Das(S) — S, and

DAp(S) — S S
% ~ 2 for all S € suppF1(:; 6),

it is enough to show that

Dpo(S+ YAD) — Dpg(S) N
AO

Suppose that for some, f(x; 0) > 0. Note that, in view of the continuity of (x; ),
there existg such that whemx — xo| < €, A8 < €, T(X; 0+ A9) > 0. Also, (74) implies
that there exist8 > 0 such that forAf < 8, |®a9(Xg) — Xo| < €. From this follows that,
for A6 < 6§, f(Pae(Xp); 6 + AB) > 0, and hence that, fog € suppFi(:; 6),

y forall S e suppFi(;; ). (75)

0 D pp(X) Fx; 6) for AG <8
R = < 0.
ax A0 f(Dro(X): 6 + AB)

Therefore, from the mean value theorem,

f(¢;0)
(¢); 60 4+ A9)

1
E[CDAH(S‘F YAD) — Ppp(9)] =y (g

where¢ € [S, S+ yA#d].
Letting A6 — 0, and invoking the continuity of and (74), establishes (75). [ |

We can now provide the proof of Lemma 4:

Proof of Lemma 4: To avoid repetition we only examine the behavionEQiljﬁzj —11]and
establish(i). The proofs of(ii) and(iii) are similar. In view of Lemma 1 it is enough to
examine the behavior of

|er1 =[ADj_1 — ADﬂA— |j|]+. (76)
Setting

Gi(ag) = > Wh+ > 1h+XP.
(9.reQj (@,reRry
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we can easily see th%ig Gj-11(Af) — 0 asAf — 0. In particular, using (17) we have

ADj_1) = Z AS1+ Gj_11(A8), (77)
(@.DeP_1
and
AD;= > ASu+AS;+Gj(Af), (78)
(q,l)EPif

with both Gj_1,(A#) and G;r(Ae) € zj_1) when(j,l) € R*. We will also need the
guantity '

AD;i = AD;i — AS; (79)

which, unlikeA Dip belongs ta; 1) when(j,l) € R*. We now distinguish two cases:

Case 1:f # 1. Inthis case, since we have assumed that the parametdy affects the
service distribution of node 1, we haveS, = 0. Thus

E[INNZ 1] :/ [AD; 1 — AD; — x]*g} (xIz_11)dx (80)
0

ADﬂA

= AP /O [2552 - 508 — y] gl (yadlz 1ndy, (81)

the second equation following from the change of variakiles yA6. A straightforward
application of the Dominated Convergence Theorem gives then

. 1 o . AD:_ ADJ» +
A'LrﬂoA—ezE[lmzj—l,l] =/0 |:I|m R — g —Yi| gjll (0lzj—1,ndy. (82)

AHO—0

Finally, observe that since in this ca%%ﬂ =0, (26) reduces to

d d

Y| = Z i_z%. (83)
(@,r)eP-1) @n)ePsp
@n#jh

From (82), (83), the fact that for any reanlfow[a —y]tdy = %(a*)z, and Lemma 1 we
obtain

. 1 . 1 1
Jim —BElRIZ-] = lim =5 ElfIZi-u] = 5 610z (V1% (84)

Case 2:[ = 1. Using the same notation as before, let us set in addition:

FA(FL(Si1: 0); 0 + AG) if | =2,

0 otherwise. (85)
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Then, using the definition in Lemma 8 and observing 1Sj:f1t= S;"I + I (sinceDj_q
immediately precede@_;r when(j, ) € R*), we have

ASjp = @ag(Sy+ Ij) — S — Iji-
Thus,
E[l{1z-11] = E[ADj_1) — ADj; — AS; — ljizj_1,] (86)
N E/oOO[ADil.I — ADji = ®ay(Sj+%)

+ S; — 2x]7gj (X|z_1,)dX

)
= AGZ/ |:Aj_1,| — ADﬂA
0 .

CDAO(S; + yAl) — Sjl - |
- D =2y | g(yAdlz_1)dy.

However, Assumption A.2 and the triangle inequality lead to the bound

IA

|®20(S; + yAO) = SY| < |Pag(S + YAO) — S — YAO| + yAS

C1Af + czs;} + (2 + 1yAs. (87)

A

Furthermore, from Lemma 8,

CDA(J(S?I» + yAb) — S?r ISt

lim =1y 88
A9—0 A6 a0 Y (88)

The above equation together with (79) and (26) shows that

: ADj_1; ADy <I>A9(S;i‘r+yA9)—s‘?r
A6—0 AO AB A6

— + ! } =Y +y wp.l (89)

We can now divide (86) byr0? and take the limit a&é — 0. A Dominated Convergence
argument together with a computation similar to the one used to obtain (84) leads to

. 1
AI(IJEOEE[IJT'ZF“]

/O [Y; — y1*g} (0lz_1)dy

. 1
Al(larﬂoﬁE[lj'pm*l"]

1
= 5 910z (Y15 m
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Proof of Lemma 5: Indeed, from AssumptiorA.3 and Taylor's theoremAS;: =
L51(0)A0 + %;’72251(9 + BjAB) A%, wherep; € (0, 1). Observe that

, 4 1.
A'(';ToﬁE > Aﬁl—%sl(e)AQ—E%SﬂQ)AOZ
(j.DePx
= lim E| " 32510+ 8A0) — #25:0) |. (90)

(j,DePi

Let v be the time of the first departure from node 1 afdgr. Clearlyv is a stopping time
(with respect to the history of the process) with finite expectation. The quantity inside the
expectation on the rhs of the above equation is dominated by

v
> 2sup
o 0o

which has finite expectation (as a result of Assumpfa®iand Wald’s lemma). Therefore
we can pass the limit inside the expectation on the rhs of (89) and take advantage of the
continuity of%zs,l(e) to show that the limit vanishes. [ |
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