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Abstract. We consider a closed Jackson—like queueing network with arbitrary service time distributions and
derive an unbiased second derivative estimator of the throughput overN customers served at some node with
respect to a parameter of the service distribution at that node. Our approach is based on observing a single sample
path of this system, and evaluating all second-order effects on interdeparture times as a result of the parameter
perturbation. We then define an estimator as a conditional expectation over appropriate observable quantities,
as in Smoothed Perturbation Analysis (SPA). This process recovers the first derivative estimator along the way
(which can also be derived using other techniques), and gives new insights into event order change phenomena
which are of higher order, and on the type of sample path information we need to condition on for higher-order
derivative estimation. Despite the complexity of the analysis, the final algorithm we obtain is relatively simple.
Our estimators can be used in conjunction with other techniques to obtain rational approximations of the entire
throughput response surface as a function of system parameters.
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1. Introduction

In dealing with stochastic Discrete Event Dynamic Systems (DEDS), we are often faced
with situations where no functional relationship between design or control parameters and
performance metrics of interest is available. Still, by observing a single sample path of
such a system (in a simulation or in an actual operating environment) it is often possible
to efficiently estimate gradients of performance metrics with respect to various parameters.
This can be accomplished through techniques such as Perturbation Analysis (PA) (Ho and
Cao 1991, Suri 1989, Glasserman 1991) and the Likelihood Ratio (LR) methodology (Glynn
1987, Reiman and Weiss 1989, Rubinstein 1986). These techniques provide an alternative to
costly (sometimes infeasible in real-time) simulation where sensitivity estimation requires
multiple sample path generations. In addition, they can often be integrated into gradient-
based optimization algorithms (e.g. Cassandras, Abidi, and Towsley (1990), Chong and
Ramadge (1992)) for problems of considerable complexity.
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Techniques such as perturbation analysis can generally be used to estimate not only the
first, but also higher-order derivatives of performance metrics with respect to some parame-
ters (see Br´emaud and V´azquez-Abad (1992), Zazanis and Suri (1994), Fu and Hu (1997a),
Bao, Cassandras, and Zazanis (1996)). Although second derivative estimators become
difficult to analyze and are harder to implement in practice (compared to first derivative
estimators), there are two recent developments that have provided renewed motivation for
deriving higher-order derivative estimates for performance metrics of DEDS. First, as first
derivative estimators are used in gradient-based optimization, we are often faced with the
practical problem of instabilities in the form of large oscillations (Cassandras, Abidi, and
Towsley (1990), Bertsekas (1982)). To alleviate this problem, it is known that algorithms
using second derivative information may be used (Bertsekas, Gafni, and Gallager 1984).
The second, perhaps more important, development is the emergence of Pad´e approximation
techniques as viable means to accurately estimate the entire response surface of a complex
system with respect to some parameter. Given some functionJ(θ), a Pad´e approximant is
a rational function of the formPL(θ)/QM(θ), wherePL(θ) andQM(θ) are appropriately
selected polynomials of degreeL andM respectively (see Baker 1975). The coefficients
of these polynomials typically involve first and higher-order derivative information at a
single pointθ0. As was recently shown in Gong, Nananukul, and Yan (submitted), Pad´e
approximants of performance metrics of GI/G/1 systems show remarkable accuracy using
first and second derivative information alone. This opens up a range of exciting possibilities
for estimating global response surfaces of more complex systems based on information ex-
tracted from a single sample path observed under a parameter settingθ0. Lastly, it is worth
mentioning that a byproduct of sample-path-based first and second derivative estimators is
the fact that they sometimes lead directly to the establishment of structural properties of
a system, such as monotonicity or convexity/concavity of some performance metric with
respect to some parameter (if, for example, it turns out that the sign of an unbiased such
estimator is always positive/negative).

In this paper, we consider a Jackson-like closed queueing network consisting ofmservers,
providing service to a fixed population ofn customers. By “Jackson-like queueing network”
we mean that all service time distributions are arbitrary (except for some mild technical
conditions), routing is Markovian (as explained in section 2), and all queues are assumed
to have infinite capacity. This is an extension of our work in Bao, Cassandras, and Zazanis
(1996), where our analysis was limited to aserial closed network. PA techniques were
first applied to this type of system in Ho, Cao, and Cassandras (1983) to approximate first
derivatives of the throughput. In Ho and Cao (1983) and Cao (1987) estimators for the
throughput of closed Jackson queueing networks using Infinitesimal Perturbation Analysis
(IPA) were derived, and extended by Cao (1990) to general service time distributions.
However, IPA generally yields biased estimates if applied to second derivative estimation.
The main reason is that IPA is based on limited information obtained from the observed
sample path; to estimate second derivatives one needs additional information to account for
second-order effects in event order changes.

The main contribution of this paper is the derivation of second derivative estimators for
the throughput of closed Jackson-like networks. Our basic approach is to evaluate all
second-order effects on interdeparture times in a sample path of this network as a result of
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a parameter perturbation. We then proceed as in SPA (Gong and Ho 1987, Glasserman and
Gong 1991) to define an estimator as a conditional expectation. We derive along the way
a number of new results pointing at event order change phenomena which are of higher
order. The analysis in our paper is at times tedious, and the form of the second derivative
estimator appears complex. As we will show, however, its implementation turns out to be
relatively simple. Further, we show that our estimators over a fixed number of events are
unbiased.

The paper is organized as follows. In section 2, we set up the estimation problem and
introduce some notation. In section 3, we derive an unbiased second derivative estimator
for the throughput; in the process, our approach recovers the first derivative, which can also
be obtained through standard IPA. We also present an algorithm for implementing our first
and second derivative estimators in section 4. Some numerical examples are then presented
in section 5. In section 6, we present an application to the estimation of the throughput over
all parameter values, based on the analysis recently provided in Gong, Nananukul, and Yan
(submitted). Finally, section 7 contains a summary and discussion of future research in this
area.

2. Notation and Estimation Problem Setup

Consider anm-node,n-customer closed Jackson-like queueing network (as defined in the
previous section), with single server nodes. The routing is Markovian, i.e., a customer, upon
completing service at noder , moves to nodeq with probabilityprq independent of anything
else (without loss of generality we will assume the routing matrix [prq ], r,q = 1, . . . ,m
to be irreducible.) All queues have infinite capacity and all nodes serve customers in FCFS
fashion. LetSik denote the service time of thei th customer served at nodek. We assume
that the service times{Sik; i = 1, 2, . . .} are an i.i.d. sequence of random variables with
distribution Fk(·), k = 1, . . . ,m. The sequences{Sik; i = 1, 2, . . .}, k = 1, . . . ,m, are
also assumed independent.

Our objective is to estimate the first and second derivatives of the expected departure time
of the Nth customer served at a node, say node 1, with respect to a parameterθ of the
service time distribution of one of the nodes based on observations extracted from single
sample path (the “nominal sample path”). Without loss of generality we assume thatθ ∈ 2
is a parameter ofF1(·) and2 is an interval in IR.

As in previous related work in this area (e.g., Glasserman (1991), Suri and Zazanis
(1988)) suppose that our probability space,(Ä,F , P) supportsm sequences of i.i.d. ran-
dom variables{Uik; i = 1, 2, . . . , k = 1, . . . ,m}, uniformly distributed on [0, 1]. Let
F−1

1 (u, θ) = inf{x: F1(x, θ) > u}, F−1
k (u) = inf{x: Fk(x) > u}, k = 2, . . . ,m. Thus,

letting Si 1(θ) = F−1
1 (Ui 1, θ), Sik = F−1

k (Uik), k = 2, . . . ,m defines a family of sample
paths parameterized byθ .

We are now ready to state the assumptions under which we carry out our analysis and
derive the first and second derivative estimators.

ASSUMPTIONA.1 Si 1(θ) is an increasing function ofθ , i.e.1Si 1
def= Si 1(θ+1θ)−Si 1(θ) ≥

0 w.p.1, for1θ ≥ 0.
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This assumption simplifies the sample path analysis since it guarantees that a positive change
in the parameterθ will result in positive perturbations. It can be relaxed via the approach
described in §8 of Zazanis and Suri (1994).

ASSUMPTION A.2 The derivative∂Si 1
∂θ
(θ) = lim1θ→0

Si 1(θ+1θ)−Si 1(θ)

1θ
exists and is a con-

tinuous function ofθ ∈ 2 w.p.1. Furthermore, there exist positive constants c1, c2, such
that

∂Si 1

∂θ
≤ c1+ c2Si 1 w.p.1, for allθ ∈ 2 .

The above assumption (together with the mean value theorem) implies that

1Si 1

1θ
≤ c1+ c2Si 1. (1)

This assumption is introduced purely for convenience in our analysis. Note that it is
a condition which is easy to verify for any given distribution and is satisfied by most
commonly encountered parametric distribution families. In particular it is always satisfied
whenθ is a scale or a location parameter (see Suri and Zazanis 1988).

ASSUMPTIONA.3 The second derivative,∂
2Si 1
∂θ2 (θ) = lim1θ→0

1
1θ

[ ∂Si 1
∂θ
(θ +1θ)− ∂Si 1

dθ (θ)],

exists and is continuous for allθ ∈ 2 w.p.1. Furthermore, E| supθ∈2
∂2Si 1
∂θ2 (θ)| <∞.

ASSUMPTION A.4 The distributions Fk, k = 1, . . . ,m, are absolutely continuous with
density fk(t) and corresponding hazard ratefk(t)

1−Fk(t)
bounded above byγ for all t ≥ 0. In

particular, f1(t,θ)
1−F1(t,θ)

≤ γ for all θ ∈ 2.

The last part of the assumption above may be relaxed, though with considerable effort.
The reader is referred to Fu and Hu (1997b), Fu and Hu (1997c), and Zazanis (1995).

ASSUMPTIONA.5 The service times at all nodes have finite third moments:

max
1≤k≤m

∫ ∞
0

x3d Fk(x) <∞.

The following notation will be needed in the sample path analysis of section 3.

Cik : the i th customer served at nodek in the nominal path;

eik : departure event ofCik in the nominal path;

Sik : service time ofCik in the nominal path;

Aik : arrival time ofCik in the nominal path;
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Dik : departure time ofCik in the nominal path;

Uik : routing indicator of thei th departure at nodek in the nominal path;

wherei = 1, 2, . . . , k = 1, . . . ,n. The routing indicator is uniformly distributed over [0, 1]
and is used to implement the probabilistic mechanism through which thei th departure at
nodek is routed to nodej with the given probabilitypi j .

In this paper we focus on finite horizon performance metrics. With the above notation,
the main performance metric we consider is

D̄(θ) = 1

N
E[DN1] (2)

which can be thought of as the mean interdeparture time. Next, we seek an expression for
DN1 in terms of{Sik, i = 1, 2, . . . , k = 1, . . . ,n}. For this purpose, we proceed as in Bao,
Cassandras, and Zazanis (1996). First, we say that eventeik is inducedby another eventejl

if eik becomes feasible at the time whenejl takes place. Then, fixing a given sample path
and observing the precedence in the events, we construct a setBik associated with eventeik

as follows:

1. (i, k) ∈ Bik .

2. If ei1,k1 induceseik , then(i1, k1) ∈ Bik .

3. For all j = 2, 3, . . . , if ei j ,kj inducesei j−1,kj−1 and(i j−1, kj−1) ∈ Bik , then(i j , kj ) ∈ Bik .

4. The procedure ends at the beginning of the sample path with(i s, ks) ∈ Bik such that
Dis,ks = min{Djl : ( j, l ) ∈ Bik}.

Therefore,Bik is of the form

Bik = {(i s, ks), (i s−1, ks−1), . . . , (i2, k2), (i1, k1), (i, k)},
SinceDik is the time wheneik occurs, we have

Dik =
∑

( j,l )∈Bik

Sjl . (3)

Therefore,

E[Dik ] = E

[ ∑
( j,l )∈Bik

Sjl

]
. (4)

Since it is known (Glasserman 1991) that the commuting condition is satisfied in a closed
Jackson-like network, the interchangeability of the derivative and expectation operations is
allowed to first order, that is,

∂

∂θ
E DN1 = E

[
∂

∂θ
DN1

]
. (5)
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As also shown in Glasserman (1991), we have

∂

∂θ
Dik =

∑
( j,l )∈Bik

∂

∂θ
Sjl . (6)

Therefore, since only service timesSj 1, j = 1, 2, . . . are dependent onθ , we get[
∂

∂θ
E DN1

]
est.

=
∑

( j,l )∈BN1

∂

∂θ
Sjl =

∑
( j,1)∈BN1

∂

∂θ
Sj 1 (7)

which is an unbiased estimator of the first derivative ofE[DN1]. However, for the second
derivative ofE[DN1], by simply using

∑
( j,l )∈BN1

∂2

∂θ2 Sjl , we will generally have a biased
estimator. Roughly speaking, the problem is that withθ increasing toθ +1θ several event
order changes will result, and the probability of these event order changes isO(1θ). With
the increments themselves beingO(1θ), we see that the event order changes will produce
effects ofO(1θ2) which are not negligible as far as the second derivative is concerned.

With this observation in mind, in what follows we proceed in a way similar to the serial
network case considered in Bao, Cassandras, and Zazanis (1996). As we will see, how-
ever, the fact that customers are now routed to one of several nodes and may arrive at a
node from one of several other nodes introduces additional complexities which have to be
handled.

3. Derivation of Estimators

Whenθ is increased toθ+1θ , we get a perturbed sample path. We use the superscriptp to
denote various quantities in the perturbed path (for example,D p

ik denotes thei th departure
time from nodek in the perturbed path).

3.1. Lindley Recursions for Perturbed Event Times

Applying Lindley’s equation to both nominal and perturbed paths, we have:

Dik = Sik +max(Di−1,k, Aik)

D p
ik = Sp

ik +max(D p
i−1,k, Ap

ik).

whereD0k = D p
0k = 0 for all k = 1, . . . ,m. Defining1Dik = D p

ik − Dik ,

1Dik = 1Sik +max(D p
i−1,k, Ap

ik)−max(Di−1,k, Aik). (8)

We useı̂ , k̂, to denote the customer index and the node index respectively ofCik just
prior to arriving at nodek in the nominal path, i.e.,Cı̂k̂ becomesCik immediately after
eventêı k̂. Stated another way,Aik = Dı̂k̂. In general, in the perturbed path both the node
from whichCik comes and his index will be different and thus we will designate them by
k∗, i ∗ respectively. In other words, in the perturbed path customerCik arrives at node k



FIRST AND SECOND DERIVATIVE ESTIMATORS 35

at time Ap
ik = D p

i ∗k∗ . We note that, for cyclic, single server networks,k̂ = k∗ = k − 1
since customers arrive to nodek only from nodek− 1 directly upstream, and̂ı = i ∗ (Bao,
Cassandras, and Zazanis, 1996).

For consistency of notation, if there are initiallynk customers at nodek, we simply set
ı̂ = 0 (i.e. Aik = D0k = 0) for all i = 1, . . . ,nk. We also note that, since the service
distributions at all nodes are absolutely continuous (see AssumptionA.4), the probability of
two events occurring at the same time is zero. Denoting by(x)+ := max(0, x) the positive
part ofx ∈ IR, we now consider two cases in (8):

Case 1. Di−1,k ≥ Aik = Dı̂k̂ (Thus,Di1,k1 = Di−1,k or eik is induced byei−1,k).

1Dik = 1Sik +max(D p
i−1,k, Ap

ik)− Di−1,k

= 1Sik + (D p
i−1,k − Di−1,k)+max(0, Ap

ik − D p
i−1,k)

= 1Sik +1Di−1,k + (Ap
ik − D p

i−1,k)
+

= 1Sik +1Di1,k1 + (D p
i ∗k∗ − D p

i−1,k)
+.

Case 2. Di−1,k < Aik = Dı̂k̂ (Thus,Di1,k1 = Aik or eik is induced byêı k̂).

1Dik = 1Sik +max(D p
i−1,k, Ap

ik)− Aik

= 1Sik + (Ap
ik − Aik)+max(0, D p

i−1,k − Ap
ik)

= 1Sik + (D p
i ∗k∗ − Dı̂k̂)+ (D p

i−1,k − D p
i ∗k∗)

+

= 1Sik + (D p

ı̂k̂
− Dı̂k̂)+ (D p

i ∗k∗ − D p

ı̂k̂
)+ (D p

i−1,k − D p
i ∗k∗)

+

= 1Sik +1Di1,k1 + (D p
i ∗k∗ − D p

ı̂k̂
)+ (D p

i−1,k − D p
i ∗k∗)

+.

Combining the above two cases we write:

1Dik = 1Di1,k1 +1Sik + 1(Di−1,k ≥ Dı̂k̂)W
p

ik + 1(Di−1,k < Dı̂k̂)
{
X p

ik + I p
ik

}
where,

Wp
ik = (D p

i ∗k∗ − D p
i−1,k)

+

I p
ik = (D p

i−1,k − D p
i ∗k∗)

+

X p
ik = (D p

i ∗k∗ − D p

ı̂k̂
). (9)

Similarly we define the following quantities which will be needed later on:

Wik = (Dı̂k̂ − Di−1,k)
+

Iik = (Di−1,k − Dı̂k̂)
+

Xik = (D̂ı+1,k̂ − Dı̂k̂). (10)

Observing that the parameterθ affects only service times at node 1, we have1Sik =
Sp

ik − Sik = 0 for k 6= 1, and1Si 1 = Sp
i 1− Si 1 ≥ 0 (see AssumptionA.1). Therefore,

1Dik = 1Di1k1 +1Sik1(k = 1)+ 1(Di−1,k ≥ Dı̂k̂)W
p

ik

+ 1(Di−1,k < Dı̂k̂)X
p
ik + 1(Di−1,k < Dı̂k̂)I

p
ik . (11)
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The above equation provides an iterative expression for the perturbation of thei th departure
from nodek,1Dik : the first term on the rhs is the perturbation in the departure epochDi1,k1

which inducesdepartureDik . The second term is the perturbation in the service time of
customerCik (which is nonzero only ifk = 1), the third term represents a perturbation
that introduces an idle period at nodek in the perturbed path; the fifth term represents a
perturbation that causes the elimination of an idle period at nodek present in the nominal
path; and the fourth term represents a perturbation due to a change in the identity of the
node that terminates an idle period at nodek (whenever two or more nodes are supplying
input to nodek).

Define

11
ik = 1Sik1(k = 1)+ 1(Di−1,k ≥ Dı̂k̂)W

p
ik

+ 1(Di−1,k < Dı̂k̂)X
p
ik + 1(Di−1,k < Dı̂k̂)I

p
ik . (12)

We then have

1Dik = 1Di1,k1 +11
ik . (13)

By recursively applying (13) back to the beginning of the observed sample path, we have

1Dik =
∑

( j,l )∈Bik

11
j l . (14)

Define now the following three subsets of IN× {1, 2, . . . ,m}
P = {( j, l ): l = 1}
Q = {( j, l ): Dj−1,l ≥ D̂ l̂ }
R = {( j, l ): Dj−1,l < D̂ l̂ } (15)

and the corresponding subsets ofBik

Pik = P ∩ Bik

Qik = Q ∩ Bik

Rik = R∩ Bik . (16)

Pik contains those events inBik that are departures from node 1 and, as we will see, it is
related to the IPA part of our estimators.Qik (resp.Rik) is the set of all events inBik that
are arrivals to a busy (resp. idle) node.

Using the above definitions and (11), (14) yields the following expression for the change
in the departure timeDik

1Dik =
∑

( j,l )∈Pik

1Sjl +
∑

( j,l )∈Qik

Wp
jl +

∑
( j,l )∈Rik

X p
jl +

∑
( j,l )∈Rik

I p
jl (17)

and taking expectations

E[1Dik ] = E
∑

( j,l )∈Pik

1Sjl + E
∑

( j,l )∈Qik

Wp
jl + E

∑
( j,l )∈Rik

X p
jl + E

∑
( j,l )∈Rik

I p
jl . (18)

In what follows, we will first concentrate on defining an appropriate characterization for
each term in (18).
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3.2. Defining Sample Path Characterizations

Our task now is to select an appropriate sample path characterization, which, as in Bao,
Cassandras, and Zazanis (1996), is a sequence of additional conditionings, one for each
term in (18). We remind the reader thatUjl is the routing indicator of the event (departure)
ejl occurring at timeDjl . Let us also denote bye′j l the event that immediately followsejl

and byU ′j l its associated routing indicator. Let3j l denote the information in the sample
path up to (and including) timeDjl (including also the value of the routing indicatorUjl )
as well as the identity of the next evente′j l and the value of its routing indicator,U ′j l .

Denote byM(t) the set of nodes that are busy at timet . The process{M(t); t ≥ 0} taking
values on the class of subsets of the set of nodes,{1, 2, . . . ,m}, is assumed to haveright-
continuous paths. In particular,M(Dj−1,l ) is the set of nodes that are busy immediately
after the( j − 1)th departure from nodel . Next, define

Sa
k (t) =

{
ageof service time of customer present at nodek at timet if k ∈M(t)
0 if k 6∈M(t)

,

Sr
k(t) =

{
residualservice time of customer present at nodek at timet if k ∈M(t)
0 if k 6∈M(t)

,

Sk(t) =
{

total service timeof customer present at nodek at timet if k ∈M(t)
0 if k 6∈M(t)

,

where, of course,Sk(t) = Sa
k (t) + Sr

k(t). Hence, we define the families of processes
{Sa

k (t); t ≥ 0, k = 1, . . . ,m}, {Sr
k(t); t ≥ 0, k = 1, . . . ,m}, {Sk(t); t ≥ 0, k = 1, . . . ,m},

and, again, we consider theright-continuousversions of these processes.
We now impose a sequence of conditions,zjl , associated with eventsejl as follows: As we

have seen,3j l contains all events, event times, and routing indicators up to and including
Djl . In addition it includesthe identity of the next event, e′j l , and its routing indicator, U′j l .
In particular we point out that3j l contains theagesof the service time processes of all
active nodes atDjl .

Now let D′j l denote the time of the next event,e′j l , and define the conditionzjl as follows:

zjl = {3j l ,M(D′j l ), Sr
q(D

′
j l ) ; q ∈M(D′j l )}. (19)

Note that, in addition to the history of the process up to the event time and the identity
of the next event,zjl includes the list of active nodes at the time the next event occurs, as
well as the residual service times at the time of the next event. It doesnot, however, contain
the time of the next event, D′j l . Readers familiar with the Smoothed Perturbation Analysis
(SPA) methodology will appreciate the importance of carefully selecting the conditions
zjl : “just enough” information from the observed sample path is included in (19) to allow
us to “smooth out” discontinuities that prevent a PA estimator from being unbiased. The
justification for the specific choices made here will become clear in the analysis that follows.

Remark.In a simulation setting, conditioning on information such as the identity of the next
event or residual service times presents no implementation problem, since this information
is routinely available. In a real-time setting, on the other hand, future information is not
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available. This, however, presents no problem for the implementation of the estimators
we will derive; it simply requires additional memory associated with certain events. For
example, if one requires residual time data for certain active nodes when eventejl occurs,
one should wait until all corresponding service completions take place and then proceed
with whatever computation is involved associated withejl .

Returning to (18), our objective now becomes to evaluate explicitly appropriatecondi-
tional expectationsof the terms involvingI p

jl , Wp
jl , andX p

ji .
Define now the following three subsets of IN× {1, 2. . . . ,m}:

Q∗ = {( j, l ): Dj−1,l > D̂ l̂ , Dj−1,l 6= D
̂+1,l̂ ,

and no events occur in(D̂ l̂ , Dj−1,l )},
R∗ = {( j, l ): Dj−1,l < D̂ l̂ , and no events occur in(Dj−1,l D̂ l̂ )},
R′ = {( j, l ): Dj−1,l < D̂ l̂ , Djl 6= D

̂+1,l̂ ,

and no events occur in(D̂ l̂ , D
̂+1,l̂ )}. (20)

In particular, we point out that1(( j, l ) ∈ Q∗) ∈ 3̂ l̂ , 1(( j, l ) ∈ R∗) ∈ 3j−1,l , 1(( j, l ) ∈
R′) ∈ 3j−1,l . We also define

Q∗ik = Bik ∩ Q∗,
R∗ik = Bik ∩ R∗,
R′ik = Bik ∩ R′. (21)

For an interpretation of these three sets, note thatQ∗ik is a subset ofQik and R∗ik , R′ik are
subsets ofRik . In Q∗ik , we exclude events such that the( j − 1)th departure from nodel
returns tol to become the( j + 1)th customer, or such that the waiting period of thej th
customer contains at least one other event anywhere in the system. InR∗ik , we exclude
events such that the idle period following the( j − 1)th departure at nodel contains at least
one other event anywhere in the system. Finally, inR′ik , we exclude events such that the
j th departure from nodel immediately returns tol to become the( j + 1)th customer, or
such that the interval between two successive arrivals atl following an idle period contains
at least one other event anywhere in the system.

The above definitions are motivated by the following considerations: As we will see in
the sequel,

E

[ ∑
( j,l )∈Qik

Wp
jl +

∑
( j,l )∈Rik

X p
jl +

∑
( j,l )∈Rik

I p
jl

]
= O(1θ2)

and therefore will contribute to the second derivative estimator. However, as we will see,

E
∑

( j,l )∈Qik\Q∗ik
Wp

jl = o(1θ2)

which means that we need not consider any events inQik which do not belong toQ∗ik for
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the purpose of estimating second derivatives. Similarly,

E
∑

( j,l )∈Rik\R∗ik
I p
jl = o(1θ2), and E

∑
( j,l )∈Rik\R′ik

X p
jl = o(1θ2).

We refer to events inBik that do not belong toQ∗ik , R∗ik , or R′ik asnon-critical and we will
show that their contribution is indeed of ordero(1θ2) in the next subsection.

3.3. Conditional Expectations for Non-Critical Events

We begin by considering all non-critical events in the induced event setBik , i.e., those that
do not belong toR∗ik , R′ik or Q∗ik . We want to show that the contribution of such events is
of ordero(1θ2).

LEMMA 1 For any events eik, ejl , such that Dik(θ) < Djl (θ) and the interval(Dik(θ),

Djl (θ)) contains at least one event,

1

1θ2 P(Dik(θ +1θ) > Djl (θ +1θ)|3ik) ≤ Vik(1θ), (22)

where Vik is a random variable such that EVik(1θ) <∞.

Proof: See Appendix.

This lemma is similar in spirit to Glasserman and Gong (1991, Lemma 3). We condition
with respect to the information available at timeDik and argue that the probability that a
future event in the nominal path, namely the departureDjl , occurring beforeDik in the
perturbed path iso(1θ), when another event intervenes. This result is then used in the
following lemma to show that the contribution of non-critical events will not play a role in
the final expression for the second derivative ofE[Dik ] and the resulting estimator.

LEMMA 2 For the sets Q, R, defined in (15) and the sets Q∗, R∗, R′, defined in (20):

(i) If ( j, l ) ∈ Q \ Q∗, then 1
1θ2 E[Wp

jl |3̂ l̂ ] ≤ K W
jl (1θ), where KW

jl (1θ) ∈ 3̂ l̂ ,

E KW
jl <∞, andlim1θ→0 K W

jl (1θ) = 0.

(ii) If ( j, l ) ∈ R \ R∗, then 1
1θ2 E[ I p

jl |3j−1,l ] ≤ K I
jl (1θ), where KI

jl (1θ) ∈ 3j−1,l ,
E K I

jl <∞, andlim1θ→0 K I
jl (1θ) = 0.

(iii) If ( j, l ) ∈ R\R′, then 1
1θ2 E[X p

jl |3̂ l̂ ] ≤ K X
jl (1θ), where KX

jl (1θ) ∈ 3̂ l̂ , E KX
jl <

∞, andlim1θ→0 K X
jl (1θ) = 0.

Proof: See Appendix.
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3.4. Conditional Expectations for Critical Events

Next, we consider critical events in the induced event setBik . We first need to obtain
some conditional densities. In particular, suppose eventej−1,l occurs at timeDj−1,l and
is followed by an idle period of durationI jl . In the following lemma, an expression for
the conditional density ofI jl given zj−1,l , gI

jl (x|zj−1,l ), is obtained for the case where no
events occur during the idle period, or, equivalently,ê l̂ occurs immediately afterej−1,l

(with obvious dual results forWjl andXjl ).

LEMMA 3

(i) If event ej−1,l initiates an idle period of length Ijl at node l and the next event to
occur is ê l̂ , i.e., the event terminating the idle period, then the conditional density

of this idle period given zj−1,l , gI
jl (x|zj−1,l ), is

gI
jl (x|zj−1,l ) =

fl̂ (S
a
l̂
(Dj−1,l )+x))[

∏
q∈M(Dj−1,l )

q 6=l̂

fq(Sq(Dj−1,l )− I jl + x)]∫∞
0 fl̂ (S

a
l̂
(Dj−1,l )+u)[

∏
q∈M(Dj−1,l )

q 6=l̂

fq(Sq(Dj−1,l )− I jl+u)]du
.

(23)

(ii) If customer Cjl upon arrival to node l at time D̂ l̂ finds the server busy and the
next event to occur is ej−1,l , Dj−1,l 6= D

̂+1,l̂ then the conditional density of this

customer’s waiting time given ẑ l̂ , gW
jl (x|ẑ l̂ ), is

gW
jl (x|ẑ l̂ ) =

fl (Sa
l (D̂ l̂ )+ x))[

∏
q∈M(D

̂ l̂
)

q 6=l

fq(Sq(D̂ l̂ )−Wjl + x)]∫∞
0 fl (Sa

l (D̂ l̂ )+ u))[
∏

q∈M(D
̂ l̂
)

q 6=l

fq(Sq(D̂ l̂ )−Wjl + u)]du
. (24)

(iii) If event ê l̂ initiates a busy period at node l and the next event to occur is e
̂+1,l̂ , i.e.,

the second arrival event at node l with inter-event time of Xjl , then the conditional
density of this period given ẑ l̂ , gX

jl (x|ẑ l̂ ), is

gX
jl (x|ẑ l̂ ) =

fl (Sa
l (D̂ l̂ )+ x))[

∏
q∈M(D

̂ l̂
)

q 6=l̂

fq(Sq(D̂ l̂ )− Xjl + x)]∫∞
0 fl (Sa

l (D̂ l̂ )+ u)[
∏

q∈M(D
̂ l̂
)

q 6=l̂

fq(Sq(D̂ l̂ )− Xjl + u)]du
. (25)

Proof: See Appendix.

We now consider the conditional expectationE[ I p
jl |zj−1,l ]. Unlike Lemma 1, however,

the condition here iszj−1,l , not just3j−1,l . In the next lemma we show that the contribution
of critical events is no longer of ordero(1θ2), but instead it depends on the conditional
density functiongI

jl (·|zj−1,l ) and a quantityYI
jl defined next. LetSa

̂ l̂
denote theageof the
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Figure 1. Illustrating the definitions ofSa
̂ l̂

andSa
j−1,l .

service time of customerĈ l̂ at the timeej−1,l occurs. In other words, using the definition
of a service time age, we simply setSa

̂ l̂
= Sa

l̂
(Dj−1,l ).

As illustrated in Figure 1 (where, for simplicity, we have setl̂ = l−1), this corresponds to
any eventejl which is the first departure in a busy period of nodel initiated byê l̂ following
an idle period of lengthI jl . The crucial observation here is thatSa

̂ l̂
belongs to zj−1,l , the

condition imposed in E[ I p
jl |zj−1,l ]. Let us then define

YI
jl =

∑
(q,r )∈Pj−1,l

∂
∂θ

Sqr −
∑

(q,r )∈P
̂ l̂

(q,r )6=(̂ ,l̂ )

∂
∂θ

Sqr − ∂
∂θ

Sa
̂ l̂
. (26)

Similarly, we useSa
j−1,l to denote theageof the service time of customerCj−1,l at timeD̂ l̂ ,

i.e. whenê l̂ occurs (see Figure 1). Accordingly, we define

YW
jl =

∑
(q,r )∈P̂ l̂

∂
∂θ

Sqr −
∑

(q,r )∈Pj−1,l
(q,r )6=( j−1,l )

∂
∂θ

Sqr − ∂
∂θ

Sa
j−1,l (27)

Finally, we useSa
̂+1,l̂

to denote theageof the service time of customerCjl at timeD
̂+1,l̂

occurs (see Figure 1). Accordingly, we define

YX
jl =

∑
(q,r )∈P̂ l̂

∂
∂θ

Sqr −
∑

(q,r )∈P̂
+1,l̂

(q,r )6=(̂+1,l̂ )

∂
∂θ

Sqr − ∂
∂θ

Sa
̂+1,l̂

. (28)

LEMMA 4 For the sets Q∗, R∗, R′ defined in (20)

(i) if ( j, l ) ∈ R∗, then

lim
1θ→0

1

1θ2 E[ I p
jl |zj−1,l ] = 1

2
gI

jl (0|zj−1,l )([Y
I
jl ]
+)2. (29)

(ii) if ( j, l ) ∈ Q∗, then

lim
1θ→0

1

1θ2 E[Wp
jl |ẑ l̂ ] =

1

2
gW

jl (0|ẑ l̂ )([YW
jl ]+)2. (30)
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(iii) if ( j, l ) ∈ R′, then

lim
1θ→0

1

1θ2 E[X p
jl |ẑ l̂ ] = −

1

2
gW

jl (0|ẑ l̂ )([YX
jl ]+)2. (31)

Proof: See Appendix.

3.5. Second Derivative Estimators using Conditional Expectations

Returning to (18)

E[1Dik ] = E
∑

( j,l )∈Pik

1Sjl + E
∑

( j,l )∈Qik

Wp
jl + E

∑
( j,l )∈Rik

I p
jl + E

∑
( j,l )∈Rik

X p
jl . (32)

Combining the results from the previous sections, we will now replace the rhs above by
terms involving conditional expectations. This leads to our main result, Theorem 1 below.

First, looking at (29) and (30) in Lemma 4, let us set

ZI
jl =

1

2
gI

jl (0|zj−1,l )
([

YI
jl

]+)2
, (33)

ZW
jl =

1

2
gW

jl (0|ẑ l̂ )
([

YW
jl

]+)2
, (34)

ZX
jl =

1

2
gX

jl (0|ẑ l̂ )
([

YX
jl

]+)2
. (35)

We are now ready to state our main result.

THEOREM1 With ZI
jl , ZW

jl and ZX
jl as defined above,

E[1Dik ] = E

[ ∑
( j,l )∈Bik

1Sjl 1(l = 1)

]

+ E

 ∑
( j,l )∈R∗ik

Z I
jl +

∑
( j,l )∈Q∗ik

ZW
jl −

∑
( j,l )∈R′ik

ZX
jl

1θ2+ o(1θ2). (36)

Proof: Recalling (12) and (14), we have

1Dik =
∑

( j,l )∈Bik

1Sjl 1(l = 1)+
∑

( j,l )∈Bik

Wp
jl 1(Dj−1,l > D̂ l̂ )

+
∑

( j,l )∈Bik

X p
jl 1(Dj−1,l < D̂ l̂ )+

∑
( j,l )∈Bik

I p
jl 1(Dj−1,l < D̂ l̂ )

Comparing the right-hand-side above with the right-hand-side of (36), note that the first
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summations are identical. Let us next consider the remaining three sums above. The last
one can be written as∑

( j,l )∈Bik

I p
jl 1(Dj−1,l < D̂ l̂ ) =

m∑
l=1

∞∑
j=1

I p
jl 1(Dj−1,l < D̂ l̂ )1[( j, l ) ∈ Bik ].

Taking expectations and using Fubini’s theorem we obtain

E
∑

( j,l )∈Bik

I p
jl 1(Dj−1,l < D̂ l̂ ) =

m∑
l=1

∞∑
j=1

E[ I p
jl 1(Dj−1,l < D̂ l̂ )1(( j, l ) ∈ Bik)]. (37)

Define the set

0 = {( j, l ): j = 1, 2, . . . , l = 1, . . . ,m, (38)

and no events occur in(min{Dj−1,l , D̂ l̂ }, max{Dj−1,l , D̂ l̂ })}.
Recalling the definitions of the setsRik andR∗ik we have

1(( j, l ) ∈ Bik)1(Dj−1,l < D̂ l̂ ) = 1(( j, l ) ∈ Rik), (39)

1(( j, l ) ∈ Rik)1(( j, l ) ∈ 0) = 1(( j, l ) ∈ R∗ik). (40)

We next note that the information in3j−1,l is enough to determine whetherDj−1,l < D̂ l̂ ,
and whether( j, l ) belongs to0 or not, that is

1(Dj−1,l < D̂ l̂ ) ∈ 3j−1,l ⊂ zj−1,l , (41)

and

1(( j, l ) ∈ 0) ∈ 3j−1,l ⊂ zj−1,l . (42)

The above two remarks are crucial in what follows. (41) is simply due to the fact that3j−1,l

includes the whole history of the process up to timeDj−1,l , so that by that time we obviously
know whetherD̂ l̂ has occurred (in which case the inequality is satisfied) or not. To check
(42) we need to recall that3j−1,l contains the identity of the next event: IfDj−1,l < D̂ l̂ ,
observe that no events occur in(Dj−1,l , D̂ l̂ ) iff ê l̂ is the next event. If on the other hand
Dj−1,l > D̂ l̂ then we can tell whether any events occurred in(D̂ l̂ , Dj−1,l ) or not since
this time interval clearly belongs to the past history of the process,3j−1,l .

With these observations in mind, let us now return to the rhs of (37) and examine a typical
term in the double summation. Noting that1(( j, l ) ∈ Bik) = 1(( j, l ) ∈ Bik∩0)+1(( j, l ) ∈
Bik ∩ 0c), we have

E
[
I p
jl 1(( j, l ) ∈ Bik) 1(Dj−1,l < D̂ l̂ )

]
= E

[
1(Dj−1,l < D̂ l̂ )

× I p
jl 1(( j, l ) ∈ Bik ∩ 0)

]
+ E

[
1(Dj−1,l < D̂ l̂ )

× I p
jl 1(( j, l ) ∈ Bik ∩ 0c)

]
.
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Next, take conditional expectations on the rhs of the above display, conditioning onzj−1,l

for the first term above and on3j−1,l ⊂ zj−1,l for the second term:

E
[
I p
jl 1(( j, l ) ∈ Bik) 1(Dj−1,l < D̂ l̂ )

]
= E

[
E[1(Dj−1,l < D̂ l̂ )I

p
jl 1(( j, l ) ∈ Bik ∩ 0) | zj−1,l ]

]
+ E

[
E[1(Dj−1,l < D̂ l̂ )I

p
jl 1(( j, l ) ∈ Bik ∩ 0c) | 3j−1,l ]

]
= E

[
1(Dj−1,l < D̂ l̂ ) E[ I p

jl 1(( j, l ) ∈ Bik ∩ 0) | zj−1,l ]
]

+ E
[
1(Dj−1,l < D̂ l̂ ) E[ I p

jl 1(( j, l ) ∈ Bik ∩ 0c) | 3j−1,l ]
]
, (43)

where the last step above follows from (41).
Examine now the two terms on the rhs of (43) separately, starting with the second term.

First, note thatI p
jl ≥ 0 w.p.1. Hence the conditional expectation in the second term is

dominated byE[ I p
jl | 3j−1,l ]. By virtue of Lemma 2 it follows that the second term is of

ordero(1θ2).
Turning our attention to the first term, we next argue that the random variables1(( j, l ) ∈

Bik ∩ 0) and I p
jl 1(( j, l ) ∈ 0) are conditionally independent givenzj−1,l . Indeed, recalling

the definition ofI p
jl in (9), we see that it clearly depends only on events that have occurred

up to time D̂ l̂ . Furthermore, note that, on0, the event immediately afterej−1,l is ê l̂ .
Therefore, by the definition in (19),zj−1,l contains the history of the process up to time
Dj−1,l , as well as the identity of the next event, i.e.,ê l̂ , and hence the number of customers
at each node at timeD̂ l̂ . In addition, the residual service times at the active nodes at
time D̂ l̂ are also part ofzj−1,l . In other words, the complete state information at timeD̂ l̂
(though not the timeD̂ l̂ itself) is part ofzj−1,l , provided that( j, l ) ∈ 0.

On the other hand,( j, l ) ∈ Bik is a statement about the future evolution of the system (after
time D̂ l̂ ). It is completely determined by the segment of the sample path of the system in
the interval(Djl , Dik), and depends on the succession of events but not on “absolute time”;
in particular, it is independent ofD̂ l̂ . Thus, it follows from the Strong Markov Property
that, on( j, l ) ∈ 0, the future evolution of the network (and in particular1( j, l ) ∈ Bik) is
conditionally independent of the past (and in particularI p

jl ) given the “present” state, i.e.
the state at timeD̂ l̂ .

Sincezj−1,l contains the complete state of the network at timeD̂ l̂ , we see that1(( j, l ) ∈
Bik ∩ 0) and I p

jl 1(( j, l ) ∈ 0) are conditionally independent givenzj−1,l . Consequently,

E[ I p
jl 1(( j, l ) ∈ Bik ∩ 0)|zj−1,l ] = E[1(( j, l ) ∈ 0)I p

jl 1(( j, l ) ∈ 0)|zj−1,l ]

× E[1(( j, l ) ∈ Bik |zj−1,l )]

= 1(( j, l ) ∈ 0)E[ I p
jl |zj−1,l ]

× E[1(( j, l ) ∈ Bik |zj−1,l )],

where, in the last equation we have used (42).
From Lemma 4, using the definition ofZI

jl in (33), we have

E[ I p
jl |zj−1,l ] = ZI

jl1θ
2+ o(1θ2) on {( j, l ) ∈ 0},
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whereZI
jl belongs tozj−1,l . This in turn yields

E
[
I p
jl 1(( j, l ) ∈ Bik ∩ 0)|zj−1,l

]
= 1(( j, l ) ∈ 0) E

[
1(( j, l ) ∈ Bik)|zj−1,l

]
ZI

jl1θ
2

+ o(1θ2).

Therefore, returning to (37) and combining all of the above results,

E
∑

( j,l )∈Bik

I p
jl 1(Dj−1,l < D̂ l̂ )

=
m∑

l=1

∞∑
j=1

E
[
E
[
1(( j, l ) ∈ Bik) | zj−1,l

]
1(( j, l ) ∈ 0) ZI

jl 1(Dj−1,l < D̂ l̂ )
]
1θ2

+ o(1θ2)

=
m∑

l=1

∞∑
j=1

E
[
E
[
ZI

jl 1(( j, l ) ∈ Bik ∩ 0)1(Dj−1,l < D̂ l̂ ) | zj−1,l

]]
1θ2+ o(1θ2)

= 1θ2 E
m∑

l=1

∞∑
j=1

ZI
jl 1(( j, l ) ∈ Bik ∩ 0)1(Dj−1,l < D̂ l̂ )+ o(1θ2)

= 1θ2E
∑

( j,l )∈R∗ik

Z I
jl + o(1θ2).

Similarly, we can show that

E
∑

( j,l )∈Bik

Wp
jl 1(Dj−1,l > D̂ l̂ ) = E

∑
( j,l )∈Q∗ik

ZW
jl 1θ

2+ o(1θ2),

E
∑

( j,l )∈Bik

X p
jl 1(Dj−1,l < D̂ l̂ ) = −E

∑
( j,l )∈R′ik

ZX
jl 1θ

2+ o(1θ2),

which completes the proof.

The desired first and second derivative estimators can be readily obtained from the above
theorem and the following

LEMMA 5

E

[ ∑
( j,1)∈Pik

1Sj 1

]
= E

[ ∑
( j,1)∈Pik

∂
∂θ

Sj 1

]
1θ + 1

2
E

[ ∑
( j,1)∈Pik

∂2

∂θ2 Sj 1

]
1θ2+ o(1θ).

Proof: See Appendix.
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Using Lemma 5, (36) can be written as

E[1Dik ] = E

 ∑
( j,l )∈Pik

∂
∂θ

Sjl 1(l = 1)

1θ
+ 1

2
E

[ ∑
( j,l )∈Pik

∂2

∂θ2 Sjl 1(l = 1)

+
∑

( j,l )∈Q∗ik

gW
jl (0|ẑ l̂ )

([
YW

jl

]+)2
+
∑

( j,l )∈R∗ik

gI
jl (0|zj−1,l )

([
YI

jl

]+)2

−
∑

( j,l )∈R′ik

gX
jl (0|ẑ l̂ )

([
YX

jl

]+)2

1θ2+ o(1θ2). (44)

From the expression above, letting(i, k) = (N, 1), we obtain the following estimator for
the first-order derivative of̄D

[
∂

∂θ
D̄

]
est.

= 1

N

∑
( j,1)∈PN1

∂
∂θ

Sj 1. (45)

Thus, we have recovered the standard IPA first derivative estimator for this type of network
(e.g. Cao 1990).

Similarly, our second derivative estimator ofD̄ is given by

[
∂2

∂θ2
D̄

]
est.

= 1

N

{ ∑
( j,1)∈PN1

∂2

∂θ2 Sj 1

+
∑

( j,l )∈Q∗N1

gW
jl (0|ẑ l̂ )

([ ∑
(q,1)∈P̂ l̂

∂
∂θ

Sq1

−
∑

(q,1)∈Pj−1,l
(q,1)6=( j−1,l )

∂
∂θ

Sq1− ∂
∂θ

Sa
j−1,l

]+)2

+
∑

( j,l )∈R∗N1

gI
jl (0|zj−1,l )

([ ∑
(q,1)∈Pj−1,l

∂
∂θ

Sq1

−
∑

(q,1)∈P
̂ l̂

(q,1)6=(̂ l̂ )

∂
∂θ

Sq1− ∂
∂θ

Sa
̂ l̂

]+)2
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−
∑

( j,l )∈R∗N1

gX
jl (0|ẑ l̂ )

([ ∑
(q,1)∈P̂ l̂

∂
∂θ

Sq1−
∑

(q,1)∈P̂
+1l̂

(q,1)6=(̂+1<l̂ )

∂
∂θ

Sq1

− ∂
∂θ

Sa
̂+1,l̂

]+)2 }
. (46)

It readily follows from Theorem 1 that the two derivative estimators above are indeed
unbiased. It is worth pointing out that in the second, third and forth terms of (45) above not
all ( j, l ) belonging to the critical even setsQ∗N1 andR∗N1 contribute to the estimator. This
is because the corresponding differences in the [·]+ in these terms may be negative.

An explicit algorithm for implementing the second-order derivative estimator above is
provided in the next section.

4. The Estimation Algorithm

Although the expression for the second derivative estimator in (45) is rather complicated, we
will present in this section an algorithm for implementing both first and second derivative
estimators which is quite simple.

We begin with the first derivative estimator in (45). Defining

L1(i, k) =
∑

( j,1)∈Pik

∂

∂θ
Sj 1, (47)

we have:[
∂

∂θ
D̄

]
est.

= 1

N
L1(N, 1).

Now, letei1,k1 be the event that induceseik . From the definition ofBik in section 2, we know
that

Bik = Bi1,k1 ∪ {(i, k)}; Pik = Pi1,k1 ∪ {(i, k)1(k = 1)},
where we agree to let{(i, k)1(k = 1)} be the empty set if1(k = 1) = 0. Therefore, we
have the following iterative scheme for obtainingL1(i, k) from L1(i1, k1):

L1(i, k) =
∑

( j,1)∈Pi1,k1∪{(i,k)1(k=1)}

∂

∂θ
Sj 1 = L1(i1, k1)+ 1(k = 1)

∂

∂θ
Sik . (48)

We can obtain a similar iterative scheme for the second derivative. Define

L2(i, k) = N

[
∂2

∂θ2
D̄(θ)

]
est.

, (49)

and

La
1(i, k) =

∑
( j,1)∈Pik
( j,1)6=(i,k)

∂
∂θ

Sj 1+ ∂
∂θ

Sa
ik = L1(i1, k1)+ 1(k = 1)

∂

∂θ
Sa

ik . (50)
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Then, from the definition ofL1(i, k) in (47) and also (45), we have

L2(i, k) =
∑

( j,1)∈Pik

∂2

∂θ2
Sj 1

+
∑

( j,l )∈Q∗ik

gW
jl (0|ẑ l̂ )

([
L1(̂ l̂ )− La

1( j − 1, l )
]+)2

+
∑

( j,l )∈R∗ik

gI
jl (0|zj−1,l )

([
L1( j − 1, l )− La

1(̂ l̂ )
]+)2

−
∑

( j,l )∈R′ik

gX
jl (0|ẑ l̂ )

([
L1(̂ l̂ )− La

1(̂ + 1, l̂ )
]+)2

= L2(i1, k1)+ 1(k = 1)
∂2

∂θ2
Si 1

+ 1[(i, k) ∈ Q∗ik ]gW
i,k(0|zı̂,k̂)

([
L1(ı̂, k̂)− La

1(i − 1, k)
]+)2

+ 1[(i, k) ∈ R∗ik ]gI
ik(0|zi−1,k)

([
L1(i − 1, k)− La

1(ı̂, k̂)
]+)2

− 1[(i, k) ∈ R′ik ]gX
ik(0|zı̂k̂)

([
L1(ı̂ k̂)− La

1(ı̂ + 1, k̂)
]+)2

(51)

The last expression above corresponds to the following four cases:

Case 1. Di−1,k > Dı̂,k̂ and no event occurs during the waiting time of customerCik i.e.
during the time interval(Dı̂,k̂, Di−1,k).

It follows from the definition ofQ∗ik andR∗ik that (51) yields:

L2(i, k) = L2(i1, k1)+ 1(k = 1)
∂2

∂θ2
Si 1

+ gW
ı̂,k−1(0|zı̂,k̂)

([
L1(ı̂, k̂)− La

1(i − 1, k)
]+)2

.

Case 2. Di−1,k ≤ Dı̂,k̂ and no event occurs during the idle period at nodek, i.e. during the
time interval(Di−1,k, Dı̂,k̂). Then

L2(i, k) = L2(i1, k1)+ 1(k = 1)
∂2

∂θ2
Si 1

+ gI
i−1,k(0|zi−1,k)

([
L1(i − 1, k)− La

1(ı̂, k̂)
]+)2

.
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Case 3. Di−1,k ≤ Dı̂,k̂ and no event occurs between the arrival ofCik andCi+1,k, i.e.
during the time interval(Dı̂,k̂, D̂ı+1,k̂). Then

L2(i, k) = L2(i1, k1)+ 1(k = 1)
∂2

∂θ2
Si 1

− gX
ik(0|zı̂k̂)

([
L1(ı̂ k̂)− La

1(ı̂ + 1, k̂)
]+)2

.

Case 4. Otherwise,

L2(i, k) = L2(i1, k1)+ 1(k = 1)
∂2

∂θ2
Si 1.

Using (48) and the four cases in (51), we have the following:

First and Second Derivative Estimation Algorithm

1. Initialize: L1(1, k) := 0, La
1(1, k) := 0, L2(1, k) := 0, for k = 1, . . . ,n.

2. At each (departure) eventeik induced byei1,k1:

2.1. L1(i, k) := L1(i1, k1), L2(i, k) := L2(i1, k1).

2.2. If k = 1,

L1(i, k) := L1(i, k)+ ∂

∂θ
Si 1,

La
1(i, k) := L1(i, k)+ ∂

∂θ
Sa

i 1,

L2(i, k) := L2(i, k)+ ∂2

∂θ2
Si 1.

2.3. If Di−1,k > Dı̂,k̂ and no event has occurred in(Dı̂,k̂, Di−1,k) (i.e. if Cik had to
wait and no event occurred in the network during his waiting time),

L2(i, k) := L2(i, k)+ gW
ik (0|zı̂k̂)

([
L1(ı̂, k̂)− La

1(i − 1, k)
]+)2

.

2.4. If Di−1,k ≤ Dı̂,k̂ and no event has occurred in(Di−1,k, Dı̂k̂) (i.e. if Cik did not
have to wait and no event occurred in the network during the idle period in nodek
preceding his arrival),

L2(i, k) := L2(i, k)+ gI
ik(0|zi−1,k)

([
L1(i − 1, k)− La

1(ı̂, k̂)
]+)2

.
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2.5. If Di−1,k ≤ Dı̂k̂ and no event has occurred in(Dı̂k̂, D̂ı+1,k̂) (i.e. if Cik started a
busy period and no event occurred beforeCi+1,k arrived),

L2(i, k) := L2(i, k)− gX
ik(0|zı̂k̂)

([
L1(ı̂ k̂)− La

1(ı̂ + 1, k̂)
]+)2

.

3. If N events have occurred at node 1, stop and set:

L1(N, 1) := 1

N
L1(N, 1), L2(N, 1) := 1

N
L2(N, 1),

otherwise return to step 2 for the next observed event.

Intuitively, step 2.2. calculates first derivatives as well as the part of the second derivative
due to ∂2

∂θ2 Si 1. Step 2.3 accounts for the contribution to the second derivative of changes in
the order of events that create idle periods, while step 2.4 accounts for the disappearance
of idle periods. There is however a third type of event order change that contributes to
the second derivative in this system: a customer who initiates a busy period at a given
node in the nominal sample path may be overtaken by another customer (coming from a
different node) who now initiates the busy period instead, in the perturbed path. This effect
is accounted for by step 2.5. (This last scenario is clearly not possible in a single-server,
cyclic network and as a result this step was not necessary in Bao, Cassandras, and Zazanis
(submitted).) Note that in each of steps 2.3–2.5 the contribution to the second derivative
consists of two parts: the actual event time change given in terms of theL1(·) andL2(·)
expressions, and a conditional probability as evaluated in Lemma 3.

In checking the validity of conditions at each step, it is necessary to know the identity of the
next event. Furthermore, to carry out the computations involving the conditional densities,
we need to know the residual service times at thetime of the next event. When implementing
the algorithm this is accomplished by letting the second derivative calculations “lag behind”
the simulation until the necessary information becomes available (see also the Remark in
section 3.2). The calculations ofgW

ik (0|zı̂k̂), gI
ik(0|zi−1,k) andgX

ik(0|zı̂k̂) whenever required
in the algorithm for a particular(i, k), are carried out by using (23),(24) and (25). Observe,
however, that the expressions for these conditional densities (and in particular the necessary
integrations) are performedoff linebefore the simulation is carried out. The calculation of
the first and second derivatives of the service timesSi 1(θ) is done using standard techniques
(e.g. see §2 of Zazanis and Suri (1994)).

Finally, when the algorithm stops we have:

L1(N, 1) =
[
∂ D̄(θ)

∂θ

]
est.

, L2(N, 1) =
[
∂2D̄(θ)

∂θ2

]
est.

.

Finally, the reader may notice that calculations of first and second order derivatives at all
possible nodes are performed in parallel since, from the definition ofBik , each calculation
of L2(i, k) depends on the valueL2( j, l ) at some other node in steps 2.3–2.5 whereejl is a
neighboring event ofeik andl could be any node in the network.
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5. Numerical Results

The numerical results in this section illustrate the performance of our algorithms. The
first two experiments refer to systems with exponential service times where the decision
parameterθ = 1/µ is the mean service time of one of the nodes. The simulation horizon
was sufficiently long to permit comparison with the analytical results available for steady
state performance criteria in this case and the experiments indicate that the unbiasedness
of the proposed estimators for finite horizon simulations is likely to hold in the steady state
as well. We also present an experiment with non exponential (H2) service times at all
nodes and compare our estimators with “brute-force” simulation results. In the following
examples, the quantities with the subscript ‘est’ represent estimates which are compared
to the corresponding analytical results or brute force simulation results (designated by the
subscript ‘b’). Finally, D̄′(θ) and D̄′′(θ) represent the first and second derivatives with
respect to parameterθ . Each time, we have 25 runs. The results for differentN are shown
below (under a 95% confidence interval):

Case 1. Exponential system with 3 nodes and 3 customers,µ1 = µ2 = µ3 = 1.0 and
routing probabilities:

P =
 0.2 0.5 0.3

0.4 0.3 0.3
0.5 0.25 0.25



N D̄ D̄est. D̄′(θ) D̄′(θ)est. D̄′′(θ) D̄′′(θ)est.
node 1

104 1.56335 1.56317± 0.00287 0.59145 0.59037± 0.00312 0.37752 0.37618± 0.04841
105 1.56335 1.55584± 0.00120 0.59145 0.58976± 0.00097 0.37752 0.37247± 0.01176
106 1.56335 1.56304± 0.00026 0.59145 0.59117± 0.00024 0.37752 0.37707± 0.00307

node 2
104 1.56335 1.56921± 0.00478 0.59145 0.59247± 0.00439 0.37752 0.37770± 0.04855
105 1.56335 1.56230± 0.00084 0.59145 0.59218± 0.00123 0.37752 0.37401± 0.01181
106 1.56335 1.56368± 0.00037 0.59145 0.59141± 0.00030 0.37752 0.37722± 0.00309

node 3
104 1.95419 1.92756± 0.00543 0.73932 0.72765± 0.00457 0.47190 0.46401± 0.05952
105 1.95419 1.93489± 0.00130 0.73932 0.73340± 0.00125 0.47190 0.46325± 0.01466
106 1.95419 1.95336± 0.00036 0.73932 0.73880± 0.00031 0.47190 0.47123± 0.00385

Case 2. Exponential system with 3 nodes and 3 customers,µ1 = 1,µ2 = 5.0,µ3 = 0.6,
and routing probabilities:

P =
 0.3 0.4 0.3

0.2 0.2 0.6
0.5 0.2 0.3
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N D̄ D̄est. D̄′(θ) D̄′(θ)est. D̄′′(θ) D̄′′(θ)est.
node 1

104 3.96462 3.92519± 0.01432 0.17430 0.17133± 0.00339 0.20851 0.17765± 0.03411
105 3.96462 3.92842± 0.00362 0.17430 0.17566± 0.00098 0.20851 0.20207± 0.01327
106 3.96462 3.96447± 0.00094 0.17430 0.17444± 0.00033 0.20851 0.20606± 0.00434

node 2
104 5.13068 5.11731± 0.01853 0.22556 0.22293± 0.00477 0.26734 0.23205± 0.04463
105 5.13068 5.10633± 0.00174 0.22556 0.22828± 0.00130 0.26734 0.26269± 0.01723
106 5.13068 5.13383± 0.00050 0.22556 0.22589± 0.00045 0.26734 0.26685± 0.00565

node 3
104 3.63423 3.56614± 0.01368 0.15977 0.15542± 0.00327 0.18937 0.16144± 0.03100
105 3.63423 3.59194± 0.00323 0.15977 0.16058± 0.00091 0.18937 0.18475± 0.01207
106 3.63423 3.63544± 0.00075 0.15977 0.15996± 0.00032 0.18937 0.18896± 0.00398

Case 3. H2 system with 2 nodes and 2 customers
In this system, we have two nodes and two customers. The service time at each node

is H2 with service time distributionsf1(x) = αµ1e−µ1x + (1− α)µ2e−µ2x and f2(x) =
βλ1e−λ1x + (1− β)λ2e−λ2x respectively. Here, we choseθ = 1

µ1
and1θ = 0.002. The

parameters are

α µ1 µ2 β λ1 λ2

0.6 1.0 2.0 0.4 1.0 2.0

and routing probabilities:

P =
(

0.5 0.5
0.4 0.6

)

N D̄b D̄′(θ)b D̄′(θ)est. D̄′′(θ)b D̄′′(θ)est.

104 2.68345±0.00216 0.34882±0.00238 0.36091±0.00124 0.13396±0.01463 0.13530±0.00155
105 2.62246±0.00063 0.35272±0.00059 0.35793±0.00031 0.12928±0.00587 0.12848±0.00044
106 2.60669±0.00026 0.35666±0.00020 0.35818±0.00011 0.13056±0.00169 0.13121±0.00014

6. Padé Approximation of Interdeparture Time through its Derivatives

As mentioned in the introduction, first and second derivatives can be used to obtain an ap-
proximation of entire response curves of interest. Using the Pad´e approximation approach,
we find that the approximated response curve is very close to the real response curve over
a large range, which means we can very confidently use the approximated curve for many
purposes such as optimization of the system performance. The benefit here is obvious,
since we need only one simulation run plus some additional calculation for first and second
derivative estimation, in order to obtain the response curve, instead of multiple simulation
runs.

In the following, we will generate the response curve for the expected interdeparture
time (hence, the throughput as well) by a Pad´e approximation based on the results of the
previous sections. Since the throughput is the inverse of the expected interdeparture time,
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Figure 2. Padé approximation of throughput for a three-node three-customer system.

we actually obtain the response curve of the throughput in the mean time. Using results
from Gong, Nananukul, and Yan (submitted), we have

[ D̄(θ)]approx. = θ + [2(D̄(θ1)est. − θ1)
3
] {

2(D̄(θ1)est. − θ1)
2

− 2(D̄(θ1)est. − θ1)(D̄
′(θ1)est. − 1)(θ − θ1)

+ [2(D̄′(θ1)est. − 1)2

− (D̄(θ1)est. − θ1)(D̄
′′(θ1)est.)](θ − θ1)

2
}−1

(52)

which is the equation we need for the Pad´e approximation. In the following example, we
simulate a 3-node 3-customer system withN = 106. The service time at each node is
exponentially distributed with service rate:µ1 = 1.0,µ2 = 5.0, andµ3 = 0.6 respectively.
The routing probability (arbitrarily chosen) is as follows:

P =
 0.3 0.4 0.3

0.2 0.2 0.6
0.5 0.2 0.3


Our results are shown in Figure 2. The curves marked “Polynomial” and “Pad´e” represent
a polynomial and a Pad´e approximation respectively. The curve marked “Theoretical” is
obtained from the analytical expression for the throughput of this Markovian system. One
can see the “Pad´e” and “Theoretical” curves are virtually indistinguishable. The accuracy
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of “Polynomial”, on the other hand, is limited to a small range of values around the nominal
point θ0 = 1.

7. Conclusions and Future Work

We have considered a Jackson-like closed queueing network with arbitrary service time
distributions and derived an unbiased second derivative estimator of the throughput over
N customers served at some node with respect to a parameter of the service distribution
at that node. Our approach is based on observing a single sample path of this system,
and evaluating all second-order effects on interdeparture times as a result of the parameter
perturbation. We then define an estimator as a conditional expectation over appropriate
observable quantities, as in Smoothed Perturbation Analysis (SPA). Along the way, we
have also recovered the first derivative estimator of the throughput, which can also be
derived using other techniques (e.g. Cao 1990). Our results can be easily extended to the
second derivative of the mean delay of customers between any two points in the network
proceeding as in Bao, Cassandras, and Zazanis (submitted) or other performance measures
of interest.

The analysis of higher-order event order changes has given us some new insights regarding
the type of sample path information we need to condition on in order to estimate higher-
order performance derivatives. As seen in section 4, even though the derivation of the
second-order derivative estimator is fairly elaborate, the actual algorithm for implementing
it on line is relatively simple. We have also established the unbiasedness of our estimators.

As mentioned in the introduction, a major motivation for this work is the possibility of
using the first and second derivatives of performance metrics of complex DEDS in order
to construct a global response surface. Recent developments exploiting Pad´e approxima-
tion techniques (Gong, Nananukul, and Yan, submitted) have made this possibility very
real. Our results in section 7 indicate that the entire throughput response surface of a serial
closed queueing network can be constructed with remarkable accuracy using only the first
and second derivative estimates we have developed. Moreover, we believe that the basic
approach presented here may be extended to more complex network topologies, which is
the subject of ongoing research.
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Appendix

We present here the proofs of Lemmas 1 through 4 as well as a number of auxiliary results
(Lemmas 5 through 8) that will be needed in the course of these proofs. While so far we
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described the sample paths of the system solely in terms of departure times, in some of the
Lemmas that follow, it will be useful to use both arrival times at, and departure times from,
the nodes of the network. We will denote byAik(θ) the arrival time at nodek of the customer
who becomesCik in the nominal sample path, and byAik(θ+1θ) the same arrival time in the
perturbed path. ThusAik(θ) = Dı̂k̂ andAik(θ +1θ) = D p

i ∗,k∗ . Finally, we will denote by
ηik(θ) the total number of events up to timeDik(θ) (i.e.,ηik(θ) =

∑∞
j=1

∑m
l=1 1(Djl (θ) ≤

Dik(θ)). We start with a result due to Shanthikumar and Yao (1989).

LEMMA 6 i) The departure times are nondecreasing inθ , i.e. for all i, k, andθ ′ ≥ θ ,

Dik(θ
′) ≥ Dik(θ).

ii) Furthermore, the departure times Dik(θ) are absolutely continuous functions ofθ w.p.
1.

iii) The arrival times Aik(θ) are nondecreasing inθ , i.e. for all i, k, andθ ′ ≥ θ ,

Aik(θ
′) ≥ Aik(θ).

iv) Aik(θ) is an absolutely continuous function ofθ w.p. 1. for all i, k. Finally,
v) ηik(θ) is decreasing inθ .

Proof: See Shanthikumar and Yao (1989) which proves the monotonicity results i), iii),
v). The absolute continuity ofDik(θ) andAik(θ) also follows easily from their arguments.

We next proceed to obtain two bounds that will be used repeatedly in the sequel. Note
that, w.p.1, d

dθ Dik(θ) exists for almost allθ ∈ 2 and, as a result ofA.1 is nonnegative.
Furthermore, by assumptionsA.1, A.2, for everyi, k, andθ , dSik/dθ ≤ c1Sik + c2. Thus

0≤ d Dik

dθ
≤ c1Dik(θ)+ c2ηik(θ). (53)

Also, in view of the absolute continuity ofDik we have

Dik(θ +1θ)− Dik(θ) =
∫ θ+1θ

θ

d

du
Dik(u)du. (54)

In light of the fact thatηik(θ) ≥ ηik(u) for u ≥ θ (Lemma 6), (54), (53) imply in turn that
Dik(θ +1θ)− Dik(θ) ≤

∫ θ+1θ
θ

[c1Dik(u)+ c2ηik(θ)] du, which, upon integration, gives
the bound

0≤ Dik(θ +1θ)− Dik(θ) ≤ (ec11θ − 1)(Dik(θ)+ c2
c1
ηik(θ))

≤ c11θ

1− c11θ
(Dik(θ)+ c2

c1
ηik(θ)), (55)

the last inequality holding provided that1θ ≤ 1/c1, as a result of the elementary inequality
ey − 1≤ y

1−y , y < 1.
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Proof of Lemma 1: This proof is along the lines of the proof of Lemma 3 in Glasserman and
Gong (1991) with some modifications. We remind the reader that, because all service time
distributions have hazard rates bounded above byγ , (AssumptionA.4) the point process
that consists of all departures in the network has stochastic intensity which is bounded above
by mγ . Since by the assumptions of the lemma at least one event intervenes betweenDik

andDjl in the nominal sample path, given the history of the process up to timeDik , 3ik ,
Djl − Dik is stochastically larger than the sum of two independent, exponential random
variables, each with ratemγ , i.e.

P(Djl (θ)− Dik(θ) ≤ x|3ik) ≤ 1− (1+mγ x)e−mγ x ≤ (mγ x)2,

where, we have used the elementary inequalitye−mγ x ≥ 1−mγ x. In view of (54) and the
fact thatDjl (θ +1θ) ≥ Djl (θ) we have the inequality

P(Dik(θ +1θ) > Djl (θ +1θ)|3ik) ≤ P(Dik(θ +1θ) > Djl (θ)|3ik)

= P(Djl (θ)− Dik(θ) < 1Dik |3ik)

≤ (mγ1Dik)
2

≤ mγ 2(ec11θ − 1)2
(

Dik(θ)+ c2
c1
ηik(θ)

)2

≤ (mγ )2
c2

11θ
2

(1− c11θ)2

×
(

Dik(θ)+ c2
c1
ηik(θ)

)2
, (56)

the last inequality holding provided that1θ ≤ 1/c1, as a result of the elementary inequality
ey − 1≤ y

1−y , y < 1. Let

Vik := mγ 2 c2
1

(1− c11θ)2

(
Dik(θ)+ c2

c1
ηik(θ)

)2
.

The proof of the lemma will be complete, provided we show thatEVik <∞. Anticipating
the requirements of the proof of Lemma 2 we will show that

E

[(
Dik(θ)+ c2

c1
ηik(θ)

)3
]
<∞.

We do this next:
It is easy to see that the number of service completions by timet in our network is

stochastically smaller than the superposition ofm independent renewal processes with
interevent time distributionsF1, . . . , Fm. As a result we conclude thatEηr

ik < ∞ for
all r > 0 from the corresponding result for renewal processes, provided of course that
Fi (0) < 1 (e.g. see ¸Cinlar 1975), a condition which is satisfied automatically under our
assumptions. To provide a bound for the time to completei services at nodek, consider the
same networkwith a single customerstarting his service at nodel at time 0 and denote by
dik the time he will completei services at nodek. Suppose that the starting nodel is such
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that, in the original network, the initial number of customers,nl ≥ 1. Based on the results
of Shanthikumar and Yao (1989)

dik ≥st Dik .

Examining the underlying Markov–Renewal process ( ¸Cinlar 1975) we see thatA.5 implied
that Ed3

ik <∞ and, as a result of the above display, thatE D3
ik <∞. Finally, from the “cr

inequality” (e.g. see Lo´eve 1977) we have

E

(
Dik + c2

c1
ηik

)3

≤ 4

(
E D3

ik +
(

c2
c1

)3
Eη3

ik

)
<∞.

This establishes the proof of Lemma 1 sinceEVik <∞.

Proof of Lemma 2: Since the proofs of the three parts are similar, we focus only on part
(1). Recall that

Wp
jl = (D p

j ∗l ∗ − D p
j−1,l )

+ = (Ajl (θ +1θ)− Dj−1,l (θ +1θ))+ (57)

or, equivalently,

Wp
jl = (Ajl − Dj−1,l +1Ajl −1Dj−1,l )

+. (58)

We will show that

1

1θ2 E[(Ajl − Dj−1,l +1Ajl −1Dj−1,l )
+|3̂ l̂ ] ≤ K W

jl (1θ), (59)

for some random variableK W
jl (1θ) ∈ 3̂ l̂ which is integrable for all1θ and

lim1θ→0 K W
jl (1θ) = 0 w.p. 1. There are three cases to consider for which( j, l ) ∈ Q\Q∗:

(i) Dj−1,l = D̂ l̂ ;

(ii) D j−1,l = Dĵ+1,l̂ ; and

(iii) e j−1,l ,ê l̂ are not adjacent events.

It will be sufficient to show that in these three casesE KW
jl (1θ) < ∞ and

lim1θ→0 K W
jl (1θ) = 0. We do this next.

(i) ( j, l ) ∈ Q and Dj−1,l = D̂ l̂ (i.e. the customer Cj−1,l departing at Dj−1,l from
node l is immediately routed back to node l and becomes Cjl ). In this case,Ajl (θ)

= D̂ l̂ = Dj−1,l (θ) and hence from (58)

Wp
jl = (1Ajl −1Dj−1,l )

+.
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Note that, since the routing decisions do not change in the perturbed path, eitherAjl (θ +
1θ) = Dj−1,l (θ + 1θ) or, if there is a change in the order of events,Ajl (θ + 1θ) <
Dj−1,l (θ +1θ). Write

(1Ajl −1Dj−1,l )
+ = (1Ajl −1Dj−1,l )

+1(Dj−1,l (θ +1θ) = Ajl (θ +1θ))
+(1Ajl −1Dj−1,l )

+1(Dj−1,l (θ +1θ) > Ajl (θ +1θ)) (60)

and note that1Ajl − 1Dj−1,l = 0 when Dj−1,l (θ) = Ajl (θ) (which is part of3j−1,l

in this case) andDj−1,l (θ + 1θ) = Ajl (θ + 1θ). Hence, the first term on the rhs of
the above equation vanishes. On the other hand, whenDj−1,l (θ + 1θ) > Ajl (θ + 1θ),
we must necessarily have1Dj−1,l > 1Aj−1,l (sinceDj−1,l (θ) = Ajl (θ)) implying that
(1Ajl −1Dj−1,l )

+ = 0 and hence that the second term also vanishes. ThereforeWp
jl = 0

w.p.1 for all1θ and the Lemma is trivially true in this case.
(ii) ( j, l ) ∈ Q and Dj−1,l = Dĵ+1,l̂ (i.e. the customer departing at Dj−1,l from node

l is immediately routed back to node l and becomes the arrival of Cj+1,l while the j th
customer is in service at l.)Equivalently,Dj−1,l = Aj+1,l . Again, the routing indicator
Uj−1,l dictates that customerCj−1,l will return to nodel immediately (regardless of the
value of the parameterθ ). Suppose that, in the perturbed path,Cj−1,l leaves behind himq
customers. ThenDj−1,l (θ+1θ) = Aj+q,l (θ+1θ). SinceAj+q,l (θ+1θ) ≥ Ajl (θ+1θ)
we see from (57) thatWp

jl = 0 w.p. 1 for all1θ and again the Lemma is trivially true.
(iii) ( j, l ) ∈ Q and ej−1,l , ê l̂ are not adjacent events. We start with the observation

that Dj−1,l ≥ D̂ l̂ since we are assuming( j, l ) ∈ Q. In other words, in the nominal
sample pathCjl has to wait. Furthermore, since the two events in question are assumed
to be nonadjacent,(D̂ l̂ , Dj−1,l ) contains at least one event. In view of (57) we see that a
necessary condition forWp

jl > 0 is

max{Dr̂ l̂ (θ +1θ); r = 1, 2, . . . , j } > Dj−1,l (θ +1θ). (61)

To see this, observe that if (61) does not hold, thenAjl (θ+1θ) < Dj−1,l (θ+1θ) since the
routing indicators remain the same. Letσ be the value ofr corresponding to the maximum
in (61) and note that when (61) holds, thenAjl (θ +1θ) ≤ Dσ̂ l̂ (θ +1θ). (We clarify that
σ is an index whose value is determined “at the perturbed path,” i.e., with parameter value
θ + 1θ . Later on, when we refer to the eventDσ̂ l̂ (θ), σ maintains the value determined
from (61).) Based on these remarks we see that

Wp
jl =

(
Ajl (θ +1θ)− Dj−1,l (θ +1θ)

)+
= (

Dσ̂ ,l̂ (θ +1θ)− Dj−1,l (θ +1θ)
)+
. (62)

Write Dσ̂ l̂ (θ +1θ) = Dσ̂ l̂ (θ)+1Dσ̂ l̂ and observe that

Dσ̂ l̂ (θ) ≤ D̂ l̂ (θ) < Dj−1,l (θ) ≤ Dj−1,l (θ +1θ),
the second inequality following by the assumption that( j, l ) ∈ Q. From the above inequal-
ity and (62) we obtain

Wp
jl =

(
1Dσ̂ l̂ + Dσ̂ ,l̂ (θ)− Dj−1,l (θ +1θ)

)
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× 1(Dσ̂ l̂ (θ +1θ)− Dj−1,l (θ +1θ) > 0)

≤ 1Dσ̂ l̂ 1(Dσ̂ l̂ (θ +1θ)− Dj−1,l (θ +1θ) > 0)

≤ c11θ

(1− c11θ)

(
D̂ l̂ (θ)+ c2

c1
η̂ l̂ (θ)

)
1(Dσ̂ l̂ (θ +1θ)− Dj−1,l (θ +1θ) > 0),

for 1θ ≤ 1/c1. In the last inequality we have used the fact that

1Dσ̂ l̂ ≤
c11θ

(1− c11θ)

(
Dσ̂ l̂ (θ)+ c2

c1
ησ̂ l̂ (θ)

)
≤ c11θ

(1− c11θ)

(
D̂ l̂ (θ)+ c2

c1
η̂ l̂ (θ)

)
,

(63)

the first inequality above following immediately from (54) while the second from Lemma 6
and the fact thatDσ̂ l̂ (θ) ≤ D̂ l̂ (θ). Thus, for sufficiently small1θ ,

1

1θ2 E[Wp
jl |3̂ l̂ ] ≤

1

1θ2 E

[
c11θ

(1− c11θ)

(
D̂ l̂ (θ)+ c2

c1
η̂ l̂ (θ)

)
× 1 (Dσ̂ l̂ (θ +1θ)− Dj−1,l (θ +1θ) > 0)|3̂ l̂

]
≤ 1

1θ2

c11θ

(1− c11θ)

(
D̂ l̂ (θ)+ c2

c1
η̂ l̂ (θ)

)
× P

(
Dσ̂ l̂ (θ +1θ)− Dj−1,l (θ +1θ) > 0)|3̂ l̂

)
.

Recall however that, since by assumption(D̂ l̂ , Dj−1,l ) contains at least one event, so does
(Dσ̂ l̂ , Dj−1,l ). Using an argument identical to that given in the proof of Lemma 1 and (63)
we obtain the bound

P
(

Dσ̂ l̂ (θ +1θ)− Dj−1,l (θ +1θ) > 0)|3̂ l̂

)
≤
(
1θmγ c1

1−c11θ

(
D̂ l̂ (θ)+ c2

c1
η̂ l̂ (θ)

))2

Hence

1

1θ2 E[Wp
jl |3̂ l̂ ] ≤ 1θm2γ 2

(
c1

1−c11θ

(
D̂ l̂ (θ)+ c2

c1
η̂ l̂ (θ)

))3 def= K W
jl (1θ).

To conclude the proof recall that in the last paragraph of Lemma 1 we showed that the
expectation of the above quantity is finite.

Proof of Lemma 3: We examine only the idle period case in detail, as the other two cases
are similar. We begin with the observation that necessarilyl̂ ∈M(Dj−1,l ), i.e., the node
which generates the arrival ofj th customer at nodel must be busy at timeDj−1,l . Hence,
the idle period of lengthI jl is the residual service time of the customer inl̂ th node, at time
Dj−1,l , defined asSr

l̂
(Dj−1,l ). Equivalently, we write

I jl = Ŝl (Dj−1,l )− Sa
l̂
(Dj−1,l ).

Because of the independence assumptions regarding the service processes at the nodes of
the network, the relevant part ofẑj−1,l is the set of active nodes,M(Dj−1,l ), the ages of
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the service processes at the active nodes given by{Sa
q(Dj−1,l ); q ∈ M(Dj−1,l )}, the

identity of the next event, and the residual service timesat the end of the idle period Ijl ,
{Sr

q(D̂ l̂ ) ; q ∈M(Dj−1,l )}.
Under the assumption of the lemma,ê l̂ is the next event, i.e., no events occur during the

idle periodI jl . This translates into the condition

Ŝl (Dj−1,l )− Sa
l̂
(Dj−1,l ) = Sq(Dj−1,l )− Sa

q(Dj−1,l )− Sr
q(D̂ l̂ ),

for all q ∈M(Dj−1,l ) \ {l̂ },
whereSq(Dj−1,l )− Sa

q(Dj−1,l ) is the residual service time at nodeq at thebeginningof the
idle period, andSr

q(D̂ l̂ ) is the residual service time at nodeq at theendof the idle period.
Denoting bygI (·|zj−1,l ) the conditional density ofI jl , we then have

gI (x|zj−1,l ) dx ∝ P
(

Ŝl (Dj−1,l )− Sa
l̂
(Dj−1,l ) ∈ dx,

Sq(Dj−1,l )− Sa
q(Dj−1,l )− Sr

q(D̂ l̂ ) ∈ dx,

q ∈M(Dj−1,l ) \ {l̂ } |
Sa

l̂
(Dj−1,l ), Sa

q(Dj−1,l ), Sr
q(D̂ l̂ ), q ∈M(Dj−1,l ) \ {l̂ }

)
.

It is then straight–forward to obtain the following expression:

gI(x|zj−1,l) =
f l̂(S

a
l̂
(Dj−1,l)+ x)[

∏
q∈M(Dj−1,l )

q6=l̂

fq(Sa
q(Dj−1,l)+ Sr

q(D̂ l̂)+ x)]∫∞
0 fl̂(S

a
l̂
(Dj−1,l)+ u)[

∏
q∈M(Dj−1,l )

q6=l̂

fq(Sq(Dj−1,l)+ Sr
q(D̂ l̂)+ u)] du

.

(64)

Taking into account that

Sq(Dj−1,l ) = Sa
q(Dj−1,l )+ I jl + Sr

q(D̂ l̂ ), q ∈M(Dj−1,l ),

(64) can be rewritten as

gI (x|zj−1,l ) =
fl̂ (S

a
l̂
(Dj−1,l )+ x)[

∏
q∈M(Dj−1,l )

q 6=l̂

fq(Sq(Dj−1,l )− I jl + x)]∫∞
0 fl̂ (S

a
l̂
(Dj−1,l )+ u)[

∏
q∈M(Dj−1,l )

q 6=l̂

fq(Sq(Dj−1,l )− I jl + u)]du
.

(65)

The following auxiliary result is needed in the proof of Lemma 4.

LEMMA 7 For the sets Q∗, R∗, R′ defined in (20)

(i) if ( j, l ) ∈ Q∗, then

E[Wp
jl |ẑ l̂ ] = E[Wn

jl |ẑ l̂ ] + o(1θ2) (66)
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(ii) if ( j, l ) ∈ R∗, then

E[ I p
jl |zj−1,l ] = E[ I n

jl |zj−1,l ] + o(1θ2) (67)

(iii) if ( j, l ) ∈ R′, then

E[X p
jl |ẑ l̂ ] = −E[Xn

jl |ẑ l̂ ] + o(1θ2) (68)

whereWn
jl , I n

jl , Xn
jl are defined as follows:

Wn
jl = (D p

̂ l̂
− D p

j−1,l )
+ = (1D̂ l̂ −1Dj−1,l −Wjl )

+

I n
jl = (D p

j−1,l − D p

̂ l̂
)+ = (1Dj−1,l −1D̂ l̂ − I jl )

+

Xn
jl = (D p

̂ l̂
− D p

ĵ+1,l̂
)+ = (1D̂ l̂ −1Dĵ+1,l̂ − Xjl )

+ (69)

Proof: Part (i): From (58), the fact thatWjl = Dj−1,l − Ajl , and the above definitions
one can check that

1

1θ2 |W
p
jl −Wn

jl | =
1

1θ2

[
(1Ajl −1Dj−1,l −Wjl )

+

− (1D̂ l̂ −1Dj−1,l −Wjl )
+
]

≤ 1

1θ2

∣∣∣1D̂ l̂ −1Ajl

∣∣∣ (1(Wjl < 1D̂ l̂ −1Dj−1,l )

+ 1(Wjl < 1Ajl −1Dj−1,l )
)

≤ 1

1θ2

∣∣∣1D̂ l̂ −1Ajl

∣∣∣ (1(Wjl < 1D̂ l̂ )+ 1(Wjl < 1Ajl )
)
,

the last inequality following from the fact that1Dj−1,l is nonnegative. Note that1D̂ l̂ ,
1Ajl ∈ ẑ l̂ , and hence, the conditional expectation of the rhs of the above inequality given
ẑ l̂ can be written as∣∣∣∣1D̂ l̂

1θ
− 1Ajl

1θ

∣∣∣∣ ( 1

1θ
P(1D̂ l̂ > Wjl |ẑ l̂ )+

1

1θ
P(1Ajl > Wjl |ẑ l̂ )

)
(70)

Observe that, as1θ → 0, both
1D̂ l̂

1θ
and 1Ajl

1θ
converge w.p. 1 to

∂D̂ l̂

∂θ
and thus their

difference vanishes. On the other hand

1

1θ
P(1D̂ l̂ > Wjl |ẑ l̂ ) =

1

1θ

∫ 1D̂ l̂

0
gW

jl (x|ẑ l̂ )dx

=
∫ 1D

̂ l̂
1θ

0
gW

jl (y1θ |ẑ l̂ )dy−→1θ→0

∂D̂ l̂

∂θ
gW

jl (0|ẑ l̂ ) w.p.1.

A similar calculation can be carried out for the second term inside the parenthesis of (70).
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From the above we conclude that

1

1θ2 E[Wn
jl −Wp

jl |ẑ l̂ ] → 0.

Part (ii): The proof is similar to part(i ).
Part (iii) : We remind the reader (8) thatX p

jl = D p
j ∗l ∗ − D p

̂ l̂
. First, observe thatD p

j ∗l ∗ =
min{D p

ĵ+r ,l̂
: r = 0, 1, 2, . . .}. To be specific, letρ denote the value ofr for which the

minimum achieved so thatD p
j ∗l ∗ = D p

ĵ+ρ,l̂ . If ρ = 0 then bothX p
jl = 0 andXn

jl = 0, the

second equality following from definition (69) sinceρ = 0 impliesD p

ĵ+1,l̂
> D p

̂ l̂
. If ρ = 1

thenX p
jl = D p

ĵ+1,l̂
− D p

̂ l̂
= −Xn

jl . Therefore

X p
jl + Xn

jl = (D p

ĵ+ρ,l̂ − D p

ĵ+1,l̂
)1(ρ ≥ 2). (71)

From the definition ofρ we also have

D p

ĵ+ρ,l̂ ≤ D p

̂ l̂
, (72)

while from the monotonicity of the departure process (Lemma 6)D p

ĵ+1,l̂
≥ Dĵ+1,l̂ ≥ D̂ l̂ .

From these inequalities and (71) we obtain

X p
jl + Xn

jl ≤
(

D p

̂ l̂
− D̂ l̂

)
1(ρ ≥ 2) = 1D̂ l̂ 1(ρ ≥ 2).

Hence, since1D̂ l̂ ∈ ẑ l̂ ,

1

1θ2 E[X p
jl + Xn

jl |ẑ l̂ ] ≤ 1D̂ l̂

1

1θ2 P(ρ ≥ 2|ẑ l̂ ). (73)

Note that from the definition ofρ and (72),{ρ ≥ 2} = {Dĵ+ρ,l̂ (θ +1θ) ≤ D̂ l̂ (θ +1θ)
and there is at least one event in the interval(D̂ l̂ (θ), Dĵ+ρ,l̂ (θ)) in the nominal sample
path}. An argument similar to that used in the proof of Lemma 1 shows that

P(ρ ≥ 2|ẑ l̂ ) ≤ (mγ )2
c2

11θ
2

(1− c11θ)2

(
D̂ l̂ (θ)+ c2

c1
η̂ l̂ (θ)

)2

From the above inequality, the bound obtained for1D̂ l̂ from (54), and (73) we obtain

1

1θ2 E[X p
jl + Xn

jl |ẑ l̂ ] ≤ 1θm2γ 2
(

c1
1−c11θ

(
D̂ l̂ (θ)+ c2

c1
η̂ l̂ (θ)

))3

which concludes the proof.

The following lemma, also needed in the proof of Lemma 4, is taken from Bao, Cassandras,
and Zazanis (submitted) and presented here for convenience.
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LEMMA 8 Let suppF1(·; θ) denote the support of F1(·; θ) and81θ : suppF1(·; θ) → IR+

the function F−1
1 (F1(·; θ); θ +1θ). Keepingθ fixed, consider the family{81θ ;1θ ≥ 0}.

Then, for any S∈ suppF1(·; θ),

lim
1θ→0

1

1θ
[81θ(S+ y1θ) − S] = ∂S

∂θ
+ y.

Proof: Observe first that80 is the identity map on the support ofF1(·; θ) and

lim
1θ→0

81θ(x) = x for x ∈ suppF1. (74)

Since81θ(S+ y1θ) − S= 81θ(S+ y1θ) −81θ(S) + 81θ(S)− S, and

81θ(S) − S

1θ
→ ∂S

∂θ
for all S∈ suppF1(·; θ),

it is enough to show that

81θ(S+ y1θ) − 81θ(S)

1θ
→ y for all S∈ suppF1(·; θ). (75)

Suppose that for somex0, f (x0; θ) > 0. Note that, in view of the continuity off (x; θ),
there existsε such that when|x− x0| < ε,1θ < ε, f (x; θ +1θ) > 0. Also, (74) implies
that there existsδ > 0 such that for1θ < δ, |81θ(x0)− x0| < ε. From this follows that,
for 1θ < δ, f (81θ(x0); θ +1θ) > 0, and hence that, forx0 ∈ suppF1(·; θ),

∂

∂x
81θ(x) = f (x; θ)

f (81θ(x); θ +1θ) for 1θ < δ.

Therefore, from the mean value theorem,

1

1θ
[81θ(S+ y1θ) − 81θ(S)] = y

f (ζ ; θ)
f (81θ(ζ ); θ +1θ)

whereζ ∈ [S, S+ y1θ ].
Letting1θ → 0, and invoking the continuity off and (74), establishes (75).

We can now provide the proof of Lemma 4:

Proof of Lemma 4: To avoid repetition we only examine the behavior ofE[ I p
jl |zj−1,l ] and

establish(i). The proofs of(ii) and(iii) are similar. In view of Lemma 1 it is enough to
examine the behavior of

I n
jl = [1Dj−1,l −1D̂ l̂ − I jl ]

+. (76)

Setting

Gjl (1θ) :=
∑

(q,r )∈Qjl

Wp
qr +

∑
(q,r )∈Rjl

I p
qr + X p

qr ,
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we can easily see that1
1θ

Gj−1,l (1θ)→ 0 as1θ → 0. In particular, using (17) we have

1Dj−1,l =
∑

(q,1)∈Pj−1,l

1Sq1+ Gj−1,l (1θ), (77)

and

1D̂ l̂ =
∑

(q,1)∈P̂ l̂

1Sq1+1Ŝ l̂ + Ĝ l̂ (1θ), (78)

with both Gj−1,l (1θ) and Ĝ l̂ (1θ) ∈ zj−1,l when ( j, l ) ∈ R∗. We will also need the
quantity

1D̂ l̂ = 1D̂ l̂ −1Ŝ l̂ (79)

which, unlike1D̂ l̂ , belongs tozj−1,l when( j, l ) ∈ R∗. We now distinguish two cases:

Case 1:l̂ 6= 1. In this case, since we have assumed that the parameterθ only affects the
service distribution of node 1, we have1Ŝ l̂ = 0. Thus

E[ I n
jl |zj−1,l ] =

∫ ∞
0

[1Dj−1,l −1D̂ l̂ − x]+gI
jl (x|zj−1,l )dx (80)

= 1θ2
∫ ∞

0

[
1Dj−1,l

1θ
− 1D̂ l̂

1θ
− y

]+
gI

jl (y1θ |zj−1,l )dy, (81)

the second equation following from the change of variablesx = y1θ . A straightforward
application of the Dominated Convergence Theorem gives then

lim
1θ→0

1

1θ2 E[ I n
jl |zj−1,l ] =

∫ ∞
0

[
lim
1θ→0

1Dj−1,l

1θ
− 1D̂ l̂

1θ
− y

]+
gI

jl (0|zj−1,l )dy. (82)

Finally, observe that since in this case
1Ŝ l̂
1θ
= 0, (26) reduces to

YI
jl =

∑
(q,r )∈Pj−1,l

∂Sqr

∂θ
−

∑
(q,r )∈P

̂ l̂

(q,r )6=(̂ l̂ )

∂Sqr

∂θ
. (83)

From (82), (83), the fact that for any reala
∫∞

0 [a − y]+dy = 1
2(a
+)2, and Lemma 1 we

obtain

lim
1θ→0

1

1θ2 E[ I p
jl |zj−1,l ] = lim

1θ→0

1

1θ2 E[ I n
jl |zj−1,l ] = 1

2
gI

jl (0|zj−1,l ) ([Y
I
jl ]
+)2. (84)

Case 2:l̂ = 1. Using the same notation as before, let us set in addition:

1Ŝ l̂ =
{

F−1
1 (F1(Ŝ1; θ); θ +1θ) if l = 2,

0 otherwise.
(85)
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Then, using the definition in Lemma 8 and observing thatŜ l̂ = Sa
̂ l̂
+ I jl (sinceDj−1,l

immediately precedesD̂ l̂ when( j, l ) ∈ R∗), we have

1Ŝ l̂ = 81θ(S
a
̂ l̂
+ I jl )− Sa

̂ l̂
− I jl .

Thus,

E[ I n
jl |zj−1,l ] = E[1Dj−1,l −1D̂ l̂ −1Ŝ l̂ − I jl |zj−1,l ] (86)

= E
∫ ∞

0
[1Dj−1,l −1D̂ l̂ −81θ(S

a
̂ l̂
+ x)

+ Sa
̂ l̂
− 2x]+gI

jl (x|zj−1,l )dx

= 1θ2
∫ ∞

0

[
1j−1,l −1D̂ l̂

−
81θ(Sa

̂ l̂
+ y1θ)− Sa

̂ l̂

1θ
− 2y

]+
gI

jl (y1θ |zj−1,l )dy.

However, Assumption A.2 and the triangle inequality lead to the bound

|81θ(S
a
̂ l̂
+ y1θ)− Sa

̂ l̂
| ≤ |81θ(S

a
̂ l̂
+ y1θ)− Sa

̂ l̂
− y1θ | + y1θ

≤ c11θ + c2Sa
̂ l̂
+ (c2+ 1)y1θ. (87)

Furthermore, from Lemma 8,

lim
1θ→0

81θ(Sa
̂ l̂
+ y1θ)− Sa

̂ l̂

1θ
=
∂Sa

̂ l̂

∂θ
+ y. (88)

The above equation together with (79) and (26) shows that

lim
1θ→0

[
1Dj−1,l

1θ
− 1D̂ l̂

1θ
+
81θ(Sa

̂ l̂
+ y1θ)− Sa

̂ l̂

1θ

]
= YI

jl + y w.p.1. (89)

We can now divide (86) by1θ2 and take the limit as1θ → 0. A Dominated Convergence
argument together with a computation similar to the one used to obtain (84) leads to

lim
1θ→0

1

1θ2 E[ I p
jl |zj−1,l ] = lim

1θ→0

1

1θ2 E[ I n
jl |zj−1,l ]

=
∫ ∞

0
[YI

jl − y]+gI
jl (0|zj−1,l )dy

= 1

2
gI

jl (0|zj−1,l ) ([Y
I
jl ]
+)2.
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Proof of Lemma 5: Indeed, from AssumptionA.3 and Taylor’s theorem,1Sj 1 =
∂
∂θ

Sj 1(θ)1θ + 1
2
∂2

∂θ2 Sj 1(θ + βj1θ)1θ
2, whereβj ∈ (0, 1). Observe that

lim
1θ→0

1

1θ2 E

[ ∑
( j,1)∈Pik

1Sj 1− ∂
∂θ

Sj 1(θ)1θ − 1

2
∂2

∂θ2 Sj 1(θ)1θ
2

]

= lim
1θ→0

E

[ ∑
( j,1)∈Pik

∂2

∂θ2 Sj 1(θ + βj1θ)− ∂2

∂θ2 Sj 1(θ)

]
. (90)

Let ν be the time of the first departure from node 1 afterDik . Clearlyν is a stopping time
(with respect to the history of the process) with finite expectation. The quantity inside the
expectation on the rhs of the above equation is dominated by

ν∑
j=1

2 sup
θ∈2

∣∣∣ ∂2

∂θ2 Sj 1(θ)

∣∣∣
which has finite expectation (as a result of AssumptionA.3 and Wald’s lemma). Therefore
we can pass the limit inside the expectation on the rhs of (89) and take advantage of the
continuity of ∂

2

∂θ2 Sj 1(θ) to show that the limit vanishes.

Notes
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