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1 Introduction

• Poisson distribution → has been widely used as a simple modelling approach
for predicting the number of goals in football (see, for example, Lee, 1997,
Karlis and Ntzoufras, 2000).

• Empirical evidence has shown a (relatively low) correlation between the goals
in a football game. This correlation must be incorporated in the model.

• It is reasonable to assume that the two outcome variables in football are
correlated since the two teams interact during the game.
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• We can assume → bivariate Poisson distribution (see Karlis and Ntzoufras,
2003).

• The marginal distributions are simple Poisson distributions, while the random
variables are now dependent.

• Important issue → model extra variation of draws (mainly 0-0, 1-1, 2-2).
This problem has been effectively handled by Dixon and Coles (1997) and
Karlis and Ntzoufras (2003)
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The Bivariate Poisson Model (Karlis and Ntzoufras, 2003)

(Xi, Yi) ∼ BP (λ1i, λ2i, λ3i)

where BP (λ1, λ2, λ3) is the bivariate Poisson distribution with parameters
λi, i = 1, 2, 3 and probability function

P (X = x, Y = y) = e−(λ1+λ2+λ3)
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• Marginals: X ∼ Poisson(λ1 + λ3) and Y ∼ Poisson(λ2 + λ3)

• Means and Variance: E(X) = V (X) = λ1 + λ3, E(Y ) = V (X) = λ2 + λ3

• Covariance: Cov(X, Y ) = λ3 > 0

• Can be derived using latent variables Wi ∼ Poisson(λi), for i = 1, 2, 3 with
X = W1 + W3 and with Y = W2 + W3 .
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• Covariates can be linked directly on the means of the latent variables as in
Karlis and Ntzoufras (2003) or directly on the marginal means.

• A Simple Model (Karlis and Ntzoufras, 2003)

– Response variables (X, Y ) are the home and away goals in each game.

– Consider the structure of Lee (1997) for λ1 and λ2

log(λ1i) = µ + H + AHTi + DATi (2)

log(λ2i) = µ + AATi + DHTi (3)

µ: constant; H: home effect; Ak, Dk attacking and defensive parameters of
team k; HTi, ATi home and away team in i game.

– Constant covariance λ3
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Advantages

• Accounts for the covariance which can be modelled

• Has he latent variables decomposition which can be used for data augmentation

• Poisson Marginals

• Easy interpretation

• Easy extension to similar models.

Karlis & Ntzoufras: Bayesian modelling of football outcomes 8

Disadvantages

• How to model λ3? Is constant λ3 sufficient? Does λ3 varies across teams or
time?

• Underestimates the number of draws in certain cases (while it provides better
results on this from the double Poisson model)

• Poisson Marginals while empirical evidence has shown slight over-dispersion:
need to adjust

• The model allows only for positive correlation, if the data show negative
correlation (even slow) the model cannot handle it



Karlis & Ntzoufras: Bayesian modelling of football outcomes 9

marginal means λ3 win draw loss ratio

1.5 0.00 0.378 0.243 0.378

0.02 0.378 0.245 0.378 1.008

0.05 0.376 0.248 0.376 1.012

0.10 0.374 0.253 0.374 1.020

0.20 0.368 0.264 0.368 1.044

2.0 0.00 0.396 0.207 0.396

0.02 0.396 0.208 0.396 1.006

0.05 0.395 0.210 0.395 1.008

0.10 0.394 0.213 0.394 1.014

0.20 0.390 0.219 0.390 1.030

Table 1: The effect on the predicted probabilities when ignoring the covariance; the
BP increases the probability of a draw.
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Diagonal Inflated Bivariate Poisson Model

Under this approach a diagonal inflated model is specified by

PD(x, y) =

⎧⎨
⎩

(1 − p)BP (x, y | λ1, λ2, λ3), x �= y

(1 − p)BP (x, y | λ1, λ2, λ3) + pD(x, θ), x = y,
(4)

where D(x, θ) is discrete distribution with parameter vector θ. Such models can be
fitted using the EM algorithm.

Important: diagonal inflation improves in several aspects: better draw prediction,
overdipsersed marginals, introduce correlation
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Skellam’s distribution (1)

For any pair of variables (X, Y ) that can be written as

X = W1 + W3, Y = W2 + W3 with

W1 ∼ Poisson(λ1), W2 ∼ Poisson(λ2) and

W3 ∼ any distribution with parameters θ3

then

Z = X − Y ∼ PD(λ1, λ2)

(Poisson difference or Skellam’s distribution with parameters λ1 and λ2).
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Skellam’s distribution (2)

Z = X − Y ∼ PD(λ1, λ2)

Poisson difference or Skellam’s distribution with

⎧⎨
⎩

Mean E(Z) = λ1 − λ2

Variance V ar(Z) = λ1 + λ2

and density function

fPD(z|λ, λ2) = P (Z = z|λ1, λ2) = e−(λ1+λ2)
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for all z ∈ Z, where Ir(x) is the modified Bessel function of order r
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(see Abramowitz and Stegun, 1974, pp. 375).
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Advantages

• Removes additive covariance (do not need to model it)

• Has an Poisson latent variable interpretation

• Does not assumes Poisson marginals (i.e. one may assume an overdispersed
marginal distribution)

• Easy interpretation

• Simpler Model set-up than the corresponding Biv. Poisson model

Disadvantages

• Discards part of the information

• Cannot model covariance and final full score (only differences).
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Bayesian approach

(see, Karlis and Ntzoufras,2006, SIM)

Used Discrete differences of dental data to

• test for differences of means between two repeated measurements

• test for zero inflated components

using the Bayes Factor approach (and RJMCMC to estimate it).

The same approach can be used to quantify (using the Bayes factor) Used Discrete
differences of dental data to

• the importance of home effect (by testing for the equality of expected home
and away goals) and

• the excess of draws (by testing the importance of the zero inflated component).
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Skellam’s Distribution for Football Scores

• Response variable: Z = X − Y the goal difference in each game.

• Same structure for parameters λ1 and λ2 as in Bivariate Poisson:

log(λ1i) = µ + H + AHTi + DATi (6)

log(λ2i) = µ + AATi + DHTi (7)

µ: constant; H: home effect; Ak, Dk attacking and defensive parameters of
team k; HTi, ATi home and away team in i game.

• Use the zero inflated variation of Skellam’s distribution to model the excess of
draws. Hence we define the zero inflated Poisson Difference (ZPD)
distribution as

fZPD(0| p, λ1, λ2) = p + (1 − p)fPD(0| λ1, λ2) and

fZPD(z| p, λ1, λ2) = (1 − p)fPD(z| λ1, λ2), (8)

for z ∈ Z \ {0}; where p ∈ (0, 1) and fPD(z| λ1, λ2) is given by (5).
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Posterior Distributions

The key element for building an MCMC algorithm for the above models is to use
augmented data

• Sample latent data w1i and w2i from

f(w1i, w2i|zi = w1i − w2i, λ1i, λ2i) ∝ λw1i

1i

w1i!
λw2i

2i

w2i!
I(zi = w1i − w2i)

where I(A) = 1 if A is true and zero otherwise.

• Sample [δi|zi, λ1i, λ2i] ∼ Bernoulli(p̃i) from

p̃i =
p

p + (1 − p)fPD(zi| λ1i, λ2i)

[δi indicates the mixing (zero inflated or PD) component]

Then we MCMC algorithm for model parameters is similar to the one used in
Poisson regression models.

We can additionally model p as in logistic regression models.
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Example: Premiership season 2006-7 data

Data from the premiership for the 2006-7 season are used to fit the PD and ZPD
models.

Results using PD

Posterior summaries for µ and home effect

Min. 1st Qu. Median Mean 3rd Qu. Max. s.d.

mu -0.793 -0.457 -0.390 -0.386 -0.316 -0.024 0.109

home 0.165 0.384 0.432 0.436 0.486 0.720 0.074
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Posterior Predictive Table Observed Final Table
Pred.(Obs.) Post. Expectations Obs. Obs. values

Rank Team Pts G.Dif. Rank Team Pts G.Dif.
1 (1) Man Utd 86.7 56.0 1 Man Utd 89 56
2 (2) Chelsea 81.0 40.0 2 Chelsea 83 40
3 (3) Arsenal 70.5 28.0 3 Liverpool 68 30
4 (3) Liverpool 69.4 30.2 4 Arsenal 68 28
5 (6) Everton 62.5 16.0 5 Tottenham 60 3
6 (8) Reading 55.5 5.4 6 Everton 58 16
7 (5) Tottenham 54.0 3.2 7 Bolton 56 -5
8 (9) Portsmouth 53.3 2.8 8 Reading 55 5
9 (10) Blackburn 51.8 -2.1 9 Portsmouth 54 3

10 (11) Aston Villa 51.5 1.6 10 Blackburn 52 -2
11 (12) Middlesbrough 49.0 -4.7 11 Aston Villa 50 2
12 (7) Bolton 49.0 -5.7 12 Middlesbrough 46 -5
13 (13) Newcastle 43.8 -8.8 13 Newcastle 43 -9
14 (14) Man City 41.8 -14.8 14 Man City 42 -15
15 (15) West Ham 38.6 -24.3 15 West Ham 41 -24
16 (17) Wigan 38.1 -21.6 16 Fulham 39 -22
17 (18) Sheff Utd 37.0 -23.0 17 Wigan 38 -22
18 (19) Charlton 35.7 -25.9 18 Sheff Utd 38 -23
19 (16) Fulham 33.1 -22.0 19 Charlton 34 -26
20 (20) Watford 29.7 -30.3 20 Watford 28 -30
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Deviations between observed and predictive measures

Comparison Deviation

1. Relative Frequencies (counts/games) 1.06%

2. Frequencies (counts) 4.04

3. Relative Frequencies of win/draw/lose 2.20%

4. Frequencies of win/draw/lose 8.30

5. Expected points 3.02

6. Expected goal difference 0.28

Deviation =
1
K

√√√√ K∑
i=1

(
E(QPred

i |y) − Qobs
i

)2

where K is the lengths of vector Q (K = 13 for comparisons 1-4, K = 20 for
comparisons 5-6).
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Results using ZPD

Posterior summaries for µ and home effect

Min. 1st Qu. Median Mean 3rd Qu. Max. s.d.

mu -0.785 -0.432 -0.355 -0.360 -0.284 -0.019 0.115

home 0.184 0.378 0.432 0.434 0.486 0.705 0.082

p 0.000 0.006 0.014 0.018 0.025 0.114 0.015

• The posterior distribution of p is close to zero

• Small deviations between µ for PD and ZPD

• Home effect is similar in both models

Results from PD

Min. 1st Qu. Median Mean 3rd Qu. Max. s.d.

mu -0.793 -0.457 -0.390 -0.386 -0.316 -0.024 0.109

home 0.165 0.384 0.432 0.436 0.486 0.720 0.074
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Comment: No major differences between the two models are observed.
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Deviations between observed and predictive measures

Deviation

Comparison PD ZPD

1. Relative Frequencies (counts/games) 1.06% 1.32%

2. Frequencies (counts) 4.04 5.04

3. Relative Frequencies of win/draw/lose 2.20% 2.80%

4. Frequencies of win/draw/lose 8.30 10.65%

5. Expected points 3.02 3.07

6. Expected goal difference 0.28 0.40

Comments

• Zero inflation component does not improves the performance (as expected)

• Prediction of goal differences for ZPD are worse than the corresponding ones
for PD

• Nevertheless, differences in the final rankings are minimal
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Discussion and further research

• Although in the simple and bivariate Poisson model we underestimate draws
here using PD we have overestimated draws.

• No zero inflation is needed. We might need to add a component which will
reduce the predicted draws.

• Can covariates on p improve the model?

• Apply Bayesian variable selection and Bayesian model averaging techniques.

• Apply other distributions defined on the same range.
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