Some Thoughts on Prior Distributions and Posterior Model Probabilities

Ioannis Ntzoufras.

Department of Business Administration, University of the Aegean, 8 Michalon $Street, \ Island \ of \ Chios \ , \ Greece, \ e-mail: \ ntzoufras@aegean.gr.$

Petros Dellaportas

 $Department\ of\ Statistics,\ Athens\ University\ of\ Economics\ and\ Business,\ 76$ $Patission\ Street,\ 10434,\ Athens,\ Greece,\ e-mail:petros@aueb.gr.$

Jonathan J. Forster

 $Faculty\ of\ Mathematics,\ University\ of\ Southampton,\ UK,$ e-mail:iif@maths.soton.ac.uk

Contents

- 1. Knuiman and Speed Example
- 2. Expressing Posterior Model Odds as Penalised Information
- 3. More Results on the Example
- 4. Discussion

Ntzoufras I., Dellaportas P. and Forster J.J.

Ntzoufras I., Dellaportas P. and Forster J.J.

Knuiman and Speed Example

- Knuiman and Speed (1988, Biometrics) Dataset
- $3 \times 2 \times 4$ Contingency Table
- 491 individuals classified by 3 categorical variables:
 - obesity (O: low,average,high)
 - hypertension (H:yes,no) and
 - alcohol consumption (A: 1,1-2,3-5,6+ drinks per day)
- Consider Poisson log-linear models to examine the association between them.

- Knuiman and Speed (1988), are setting rules for constructing meaningful prior distributions for the parameters of Poisson log-linear models used for inference in cross-tabulated data.
- Dellaportas and Forster (1999, Biometrika) have also used this dataset to illustrate Bayesian model selection using MCMC.
- Here, we incorporate the prior information of Knuiman and Speed (1988) in the model selection procedure.
- We illustrate results using a variety of prior distributions and adjusting dimensionality according to our desired penalty specification.

Ntzoufras I., Dellaportas P. and Forster J.J.

• The full Poisson log-linear model is given by

$$y_{ijk} \sim Poisson(\lambda_{ijk})$$

$$\log(\lambda_{ijk}) = \beta_0 + \beta_i^O + \beta_j^H + \beta_k^A + \beta_{ij}^{OH} + \beta_{ik}^{OA} + \beta_{jk}^{HA} + \beta_{ijk}^{OHA}$$
for $i = 1, 2, 3, j = 1, 2$ and $k = 1, 2, 3, 4$ using sum-to-zero constraints.

• We use the general prior setup

$$\boldsymbol{\beta}_{j} \sim N\left(\boldsymbol{\mu}_{j}, \quad c_{j}^{2}\left(\boldsymbol{X}_{j}^{T}\boldsymbol{X}_{j}\right)^{-1}\right)$$
 (1)

- Initially we use two prior setups:
 - 1. Knuiman and Speed (1988) 'Informative Setup' used for
 - 2. Dellaportas and Forster (1999) 'Low information' prior used for Bayesian Model Selection

Ntzoufras I., Dellaportas P. and Forster J.J.

- 1. Knuiman and Speed (1988) Prior:
 - Initial information

 - $\begin{array}{ll} \ \beta_{jjk}^{OHA} \ {\rm and} \ \beta_{jk}^{OA} \ {\rm are \ zero} \\ \ \beta_{jk}^{HA} \ {\rm is \ non-zero} \ {\rm with \ a \ priori} \ {\rm estimated \ effects} \\ \bar{\beta}_{HA}^T \ = \ (\beta_{22}^{HA}, \beta_{23}^{HA}, \beta_{24}^{HA}) = (-0.204, 0.088, 0.271). \end{array}$
 - $\bullet\,$ Knuiman and Speed used a prior of type (1) with
 - $\mu_{HA} = (\beta_{22}^{HA}, \beta_{23}^{HA}, \beta_{24}^{HA}) = (-0.204, 0.088, 0.271)$ and
 - $-\mu_j = \mathbf{0} \text{ for all } j \in \mathcal{V} \setminus \{HA\}$
 - $-c_{OA}^{2'}=c_{OHA}^{2}=0,$
 - $c_{HA}^2 = 0.05$ and
 - $-\ c_j^2 = \infty \text{ for } j \in \{\emptyset, O, H, A, OH\}.$
 - In order to avoid intractabilities in posterior model probabilities we adopt a slightly modified prior distribution with
 - $-\ c_{OA}^2 = c_{OHA}^2 = 10^{-4},$
 - $-\ c_{HA}^2 = 0.05,$
 - $-c_j^2 = 10^4 \text{ for } j \in \{\emptyset, O, H, A, OH\}$

- 2. Dellaportas and Forster (1999) Prior: If no prior information is available then
 - $\mu_j = \mathbf{0}$
 - Considered various choices for c_j : $c_j^2 = d, 2d, 4d$ (d is the number of cells of the contingency table). Here we consider the choice $c_j^2 = 2d$.

The Uniform distribution on model space was a priori adopted. $\,$

Results were extracted using reversible jump MCMC methodology.

		$f(m \mathbf{y})$		KS prior
		DF	KS	information
1	O+H+A	0.680	0.056	no info
2	$_{\mathrm{OH+A}}$	0.315	0.000	no info
3	$_{\mathrm{OA+H}}$		0.056	zero
4	O+HA	0.003	0.443	non zero
5	$_{\mathrm{OH+OA}}$		0.000	zero
6	$_{ m OH+HA}$	0.002	0.001	non zero
7	OA+HA		0.443	zero
8	$_{\mathrm{OH+OA+HA}}$		0.001	zero
9	OHA		0.000	zero

Table 1: Reversible Jump Estimated Posterior Model Probabilities (100,000 Iterations, Additional 10,000 Burn-in); DF= Dellaportas and Forster (1999) Prior, KS= Knuiman and Speed Prior.

Ntzoufras I., Dellaportas P. and Forster J.J.

		$f(Term \mathbf{y})$		KS prior
		DF	KS	information
1	ОН	0.317	0.002	no info
2	OA	0.000	0.500	zero
3	$_{\mathrm{HA}}$	0.005	0.888	non zero
4	OHA	0.000	0.000	zero

Table 2: Reversible Jump Estimated Posterior Term Probabilities (100,000 Iterations, Additional 10,000 Burn-in); DF= Dellaportas and Forster (1999) Prior, KS= Knuiman and Speed Prior.

Ntzoufras I., Dellaportas P. and Forster J.J.

Some Comments on Results

- Using DF Prior,
 - data support independence model (post.prob.=0.68)
 - Some support on the posterior significance of OH term (post.prob.=0.32).
- Using KS prior
 - OH term is not supported in contradiction to DF results
 - OA term is a posteriori supported by 50% [we cannot decide for its significance]. This is in contradiction to prior information and posterior results using DF prior
 - HA term is highly supported as a priori indicated [prior might be too strong]
 - OHA term is not supported [is in agreement with prior information and DF posterior results].

Ntzoufras I., Dellaportas P. and Forster J.J.

2 Expressing Posterior Model Odds as Penalised Information Criteria

Use more general setup than (1) given by

$$\boldsymbol{\beta}_{m} \sim N\left(\boldsymbol{\mu}_{m}, \quad \boldsymbol{C}_{m}\boldsymbol{\Sigma}_{m}\boldsymbol{C}_{m}\right)$$
 (2)

where

- \bullet m: model indicator
- $\bullet \ \pmb{C}_m = Diag(c_{m,j} \pmb{I}_{d_{m,j}})$
- $\bullet \ c_{m,j}$ is a variance multiplicator controlling the prior information for model parameters
- $d_{m,j}$ is the dimension of j term in m model
- Σ_m is a base variance covariance matrix

Ntzoufras I., Dellaportas P. and Forster J.J.

11

$$\begin{split} & \text{Then } log f(m|y) = \\ & = \quad C + \log f(y|m, \tilde{\beta}_m) - \frac{1}{2} (\tilde{\beta}_m - \mu_m)^T C_m^{-1} \boldsymbol{\Sigma}_m^{-1} \boldsymbol{C}_m^{-1} (\tilde{\beta}_m - \mu_m) - \frac{1}{2} \psi_m \\ & \psi_m \quad = \quad \sum_{j \in m} d_{m,j} \log c_{m,j}^2 + \log |\boldsymbol{\Sigma}_m| + \log |\boldsymbol{C}_m^{-1} \boldsymbol{\Sigma}_m^{-1} \boldsymbol{C}_m^{-1} - H(\tilde{\beta}_m)| \\ & \quad - 2 \log f(m). \end{split}$$

- * C: constant
- * $\tilde{\boldsymbol{\beta}}_m$ is the posterior mode
- * $H(\beta_m)$: second derivative matrix for $\log f(y|m,\beta_m)$

Interesting cases (f(m) \propto 1):

- $\Sigma_m = (-H(\beta_m))^{-1}, c_{m,j} = c_m \text{ then } \psi_m = d_m \log c_m^2$
- $-c_m^2 = n$: Unit information prior (BIC penalty)
- $\Sigma_m = (-H(\beta_m))^{-1}$, $H(\beta_m)$ diagonal, $\psi_m = \sum_{j \in m} d_{m,j} \log(c_{m,j}^2 + 1)$

If we a priori penalise by ${\cal F}$ for each additional parameter added in the model then

$$f(m) \propto e^{-Fd_m/2}$$

resulting to

$$\psi_m = \sum_{j \in m} d_{m,j} (\log c_{m,j}^2 + F) + \log |\mathbf{\Sigma}_m| + \log |\mathbf{C}_m^{-1} \mathbf{\Sigma}_m^{-1} \mathbf{C}_m^{-1} - H(\tilde{\boldsymbol{\beta}}_m)|.$$

If we desire to imply posterior penalty $\psi_m = \log p_m$ the prior model odds should be specified by

$$f(m) \propto \sqrt{p_m^{-1}|C_m^T \Sigma_m C_m||C_m^{-1} \Sigma_m^{-1} C_m^{-1} - H(\tilde{\beta}_m)|}$$
. (3)

If the prior base matrix Σ_m is equal to the Fisher information matrix then

$$f(m) \propto \sqrt{p_m^{-1} | \boldsymbol{C}_m^T \boldsymbol{C}_m + \boldsymbol{I} |} = \sqrt{p_m^{-1} \prod_{j \in m} (c_{m,j}^2 + 1)^{d_{m,j}}}.$$

Using the above prior model probabilities results to

$$\psi_m = \log p_m + \sum_{j \in m} d_{m,j} \log \left(\frac{c_{m,j}^2}{c_{m,j}^2 + 1} \right)$$

$$+ \log |\mathbf{\Sigma}_m| + \log |\mathbf{C}_m^{-1} \mathbf{\Sigma}_m^{-1} \mathbf{C}_m^{-1} - H(\tilde{\beta}_m)|.$$

Ntzoufras I., Dellaportas P. and Forster J.J.

Advantages:

• Bounded penalty function for $c_{m,j} \to \infty$ [avoid Lindley's paradox].

$$\psi_m \to \log p_m + \log |\mathbf{\Sigma}_m| + \log |-H(\tilde{\boldsymbol{\beta}}_m)|.$$

- Use informative prior within each model
- The penalty function is expressed as sum of
 - prior parameter p_m and
 - a distance measure between prior base matrix and posterior variance covariance function.
- Prior base matrix may be specified to have determinant equal to posterior covariance matrix.

Ntzoufras I., Dellaportas P. and Forster J.J.

3 More Results on the Example

Use two new prior setups:

Use Knuiman and Speed Prior within each model and

$$f(m) \propto \sqrt{p_m^{-1} | \boldsymbol{C}_m^T \boldsymbol{C}_m + \boldsymbol{I} |}$$
 (4)

with

$$\log(p_m) = \sum_{j \in m} d_j F_j. \tag{5}$$

- 1. $F_j = \log(2d)$ for all terms (following Dellaportas and Forster arguments)
- 2. $F_j = \log(2d)$ for $j \neq HA$ and $F_{HA} = \log(2)$ [small penalty equal to two data points].

Ntzoufras I., Dellaportas P. and Forster J.J.

f(m|y)DF KS KS KS O+H+A0.680 0.056 0.624 0.144 $_{\rm OH+A}$ 0.315 0.000 0.298 0.070 OA+H0.056O+HA0.003 0.443 0.057 0.533 OH + OA0.000 OH+HA 0.002 0.001 0.024 0.253 $_{\mathrm{OA+HA}}$ 0.443 0.000 OH+OA+HA0.001 0.000 OHA0.000 (4) & (5) (4) & (5) $f(m) \propto$ 1 $F_j, j \neq HA$ log(2d)log(2d) $\log(2d)$ $\log(2)$

Table 3: Reversible Jump Estimated Posterior Model Probabilities (100,000 Iterations, Additional 10,000 Burn-in).

Ntzoufras I., Dellaportas P. and Forster J.J.

17

		$f(Term oldsymbol{y})$				
		DF	KS	KS	KS	
1	ОН	0.317	0.002	0.322	0.323	
2	OA	0.000	0.500	0.000	0.000	
3	HA	0.005	0.888	0.081	0.786	
4	OHA	0.000	0.000	0.000	0.000	
	$f(m) \propto$	1	1	(4) & (5)	(4) & (5)	
	$F_j, j \neq HA$	-	-	$\log(2d)$	$\log(2d)$	
	F_{HA}	-	-	log(2d)	log(2)	

Table 4: Reversible Jump Estimated Posterior Term Probabilities (100,000 Iterations, Additional 10,000 Burn-in); DF= Dellaportas and Forster (1999) Prior, KS= Knuiman and Speed Prior.

16

18

Ntzoufras I., Dellaportas P. and Forster J.J.

Ntzoufras I., Dellaportas P. and Forster J.J.

Comments on Results

- Posterior model probabilities using KS prior and prior model probabilities defined by (4)& (5) are similar to Dellaportas and Forster results. Differences are due to prior information within each model.
- Prior information on the significance of a term may be expressed by using lower penalty without affecting the significance of the other terms.

4 Discussion

- The specification of Prior distributions is Important for Bayesian Model Selection
- Why not express our beliefs for models via prior penalties?
- $\bullet\,$ Divide model selection procedure in:
 - (a) Estimation (prior of $\boldsymbol{\beta}_{(m)}$)
 - (b) Model selection (penalize to support parsimony principle).

20