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1 Knuiman and Speed Example

• Knuiman and Speed (1988, Biometrics) Dataset

• 3× 2× 4 Contingency Table

• 491 individuals classified by 3 categorical variables:

– obesity (O: low,average,high)

– hypertension (H:yes,no) and

– alcohol consumption (A: 1,1–2,3–5,6+ drinks per day)

• Consider Poisson log-linear models to examine the association
between them.
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• Knuiman and Speed (1988), are setting rules for constructing
meaningful prior distributions for the parameters of Poisson
log-linear models used for inference in cross-tabulated data.

• Dellaportas and Forster (1999, Biometrika) have also used this
dataset to illustrate Bayesian model selection using MCMC.

• Here, we incorporate the prior information of Knuiman and
Speed (1988) in the model selection procedure.

• We illustrate results using a variety of prior distributions and
adjusting dimensionality according to our desired penalty
specification.
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• The full Poisson log-linear model is given by

yijk ∼ Poisson(λijk)

log(λijk) = β0 + βO
i + βH

j + βA
k + βOH

ij + βOA
ik + βHA

jk + βOHA
ijk

for i = 1, 2, 3, j = 1, 2 and k = 1, 2, 3, 4 using sum-to-zero
constraints.

• We use the general prior setup

βj ∼ N

(
µj , c2

j

(
XT

j Xj

)−1
)

(1)

• Initially we use two prior setups:

1. Knuiman and Speed (1988) ‘Informative Setup’ used for
Inference

2. Dellaportas and Forster (1999) ‘Low information’ prior used
for Bayesian Model Selection
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1. Knuiman and Speed (1988) Prior:

• Initial information

– βOHA
ijk and βOA

ik are zero

– βHA
jk is non-zero with a priori estimated effects

β̄
T
HA = (βHA

22 , βHA
23 , βHA

24 ) = (−0.204, 0.088, 0.271).

• Knuiman and Speed used a prior of type (1) with

– µHA = (βHA
22 , βHA

23 , βHA
24 ) = (−0.204, 0.088, 0.271) and

– µj = 0 for all j ∈ V \ {HA}
– c2

OA = c2
OHA = 0,

– c2
HA = 0.05 and

– c2
j = ∞ for j ∈ {∅, O, H, A, OH}.

• In order to avoid intractabilities in posterior model probabilities we

adopt a slightly modified prior distribution with

– c2
OA = c2

OHA = 10−4,

– c2
HA = 0.05,

– c2
j = 104 for j ∈ {∅, O, H, A, OH}
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2. Dellaportas and Forster(1999) Prior:

If no prior information is available then

• µj = 0

• Considered various choices for cj :

c2
j = d, 2d, 4d

(d is the number of cells of the contingency table).

Here we consider the choice c2
j = 2d.

The Uniform distribution on model space was a priori adopted.

Results were extracted using reversible jump MCMC methodology.
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f(m|y) KS prior

DF KS information

1 O+H+A 0.680 0.056 no info

2 OH+A 0.315 0.000 no info

3 OA+H 0.056 zero

4 O+HA 0.003 0.443 non zero

5 OH+OA 0.000 zero

6 OH+HA 0.002 0.001 non zero

7 OA+HA 0.443 zero

8 OH+OA+HA 0.001 zero

9 OHA 0.000 zero

Table 1: Reversible Jump Estimated Posterior Model Probabilities
(100,000 Iterations, Additional 10,000 Burn-in); DF= Dellaportas and
Forster (1999) Prior, KS= Knuiman and Speed Prior.
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f(Term|y) KS prior

DF KS information

1 OH 0.317 0.002 no info

2 OA 0.000 0.500 zero

3 HA 0.005 0.888 non zero

4 OHA 0.000 0.000 zero

Table 2: Reversible Jump Estimated Posterior Term Probabilities
(100,000 Iterations, Additional 10,000 Burn-in); DF= Dellaportas and
Forster (1999) Prior, KS= Knuiman and Speed Prior.
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Some Comments on Results

• Using DF Prior,

– data support independence model (post.prob.=0.68)

– Some support on the posterior significance of OH term

(post.prob.=0.32).

• Using KS prior

– OH term is not supported in contradiction to DF results

– OA term is a posteriori supported by 50% [we cannot decide for its

significance]. This is in contradiction to prior information and

posterior results using DF prior

– HA term is highly supported as a priori indicated [prior might be

too strong]

– OHA term is not supported [is in agreement with prior information

and DF posterior results].
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2 Expressing Posterior Model Odds as

Penalised Information Criteria

Use more general setup than (1) given by

βm ∼ N (µm, CmΣmCm) (2)

where

• m: model indicator

• Cm = Diag(cm,jIdm,j
)

• cm,j is a variance multiplicator controlling the prior information
for model parameters

• dm,j is the dimension of j term in m model

• Σm is a base variance - covariance matrix
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Then logf(m|y) =

= C + log f(y|m, β̃m)− 1

2
(β̃m − µm)T C−1

m Σ−1
m C−1

m (β̃m − µm)− 1

2
ψm.

ψm =
∑
j∈m

dm,j log c2
m,j + log |Σm|+ log |C−1

m Σ−1
m C−1

m − H(β̃m)|

−2 log f(m).

* C: constant

* β̃m is the posterior mode

* H(βm) : second derivative matrix for log f(y|m, βm)

Interesting cases (f(m) ∝ 1):

• Σm = (−H(βm))−1, cm,j = cm then ψm = dm log c2
m

– c2
m = n: Unit information prior (BIC penalty)

• Σm = (−H(βm))−1, H(βm) diagonal, ψm =
∑

j∈m
dm,j log(c

2
m,j + 1)
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If we a priori penalise by F for each additional parameter added in
the model then

f(m) ∝ e−Fdm/2

resulting to

ψm =
∑
j∈m

dm,j(log c2
m,j +F )+ log |Σm|+ log |C−1

m Σ−1
m C−1

m −H(β̃m)|.

If we desire to imply posterior penalty ψm = log pm the prior model
odds should be specified by

f(m) ∝
√

p−1
m |CT

mΣmCm||C−1
m Σ−1

m C−1
m − H(β̃m)|. (3)
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If the prior base matrix Σm is equal to the Fisher information matrix
then

f(m) ∝
√

p−1
m |CT

mCm + I| =
√

p−1
m

∏
j∈m

(c2
m,j + 1)dm,j .

Using the above prior model probabilities results to

ψm = log pm +
∑
j∈m

dm,j log

(
c2
m,j

c2
m,j + 1

)

+ log |Σm|+ log |C−1
m Σ−1

m C−1
m − H(β̃m)|.
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Advantages:

• Bounded penalty function for cm,j → ∞ [avoid Lindley’s
paradox].

ψm → log pm + log |Σm|+ log | − H(β̃m)|.

• Use informative prior within each model

• The penalty function is expressed as sum of

– prior parameter pm and

– a distance measure between prior base matrix and posterior
variance covariance function.

• Prior base matrix may be specified to have determinant equal to
posterior covariance matrix.
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3 More Results on the Example

Use two new prior setups:

Use Knuiman and Speed Prior within each model and

f(m) ∝
√

p−1
m |CT

mCm + I| (4)

with
log(pm) =

∑
j∈m

djFj . (5)

1. Fj = log(2d) for all terms (following Dellaportas and Forster
arguments)

2. Fj = log(2d) for j 	= HA and FHA = log(2) [small penalty equal
to two data points].
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f(m|y)
DF KS KS KS

1 O+H+A 0.680 0.056 0.624 0.144

2 OH+A 0.315 0.000 0.298 0.070

3 OA+H 0.056

4 O+HA 0.003 0.443 0.057 0.533

5 OH+OA 0.000

6 OH+HA 0.002 0.001 0.024 0.253

7 OA+HA 0.443 0.000

8 OH+OA+HA 0.001 0.000

9 OHA 0.000

f(m) ∝ 1 1 (4) & (5) (4) & (5)

Fj , j �= HA - - log(2d) log(2d)

FHA - - log(2d) log(2)

Table 3: Reversible Jump Estimated Posterior Model Probabilities
(100,000 Iterations, Additional 10,000 Burn-in).
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f(Term|y)
DF KS KS KS

1 OH 0.317 0.002 0.322 0.323

2 OA 0.000 0.500 0.000 0.000

3 HA 0.005 0.888 0.081 0.786

4 OHA 0.000 0.000 0.000 0.000

f(m) ∝ 1 1 (4) & (5) (4) & (5)

Fj , j 	= HA - - log(2d) log(2d)

FHA - - log(2d) log(2)

Table 4: Reversible Jump Estimated Posterior Term Probabilities (100,000 It-

erations, Additional 10,000 Burn-in); DF= Dellaportas and Forster (1999) Prior,

KS= Knuiman and Speed Prior.
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Comments on Results

• Posterior model probabilities using KS prior and prior model
probabilities defined by (4)& (5) are similar to Dellaportas and
Forster results. Differences are due to prior information within
each model.

• Prior information on the significance of a term may be expressed
by using lower penalty without affecting the significance of the
other terms.
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4 Discussion

• The specification of Prior distributions is Important for Bayesian
Model Selection

• Why not express our beliefs for models via prior penalties?

• Divide model selection procedure in:
(a) Estimation (prior of β(m))
(b) Model selection (penalize to support parsimony principle).


