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1 Introduction to Model Selection

What is Model Selection?

• Evaluation of performance of scientific scenarios and
• Selection of the ‘best’.

’Best’ Model?

• The ’best’ performed model is totally subjective
• Different procedures (or scientists) support different scientific
theories, scenarios and models.
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Two MAJOR principles:

1. Goodness of Fit

How close is theory [model] to reality [data].

2. Parsimony

Simplicity of theory;

In stats: Economy in parameters.
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Available Methods

• Classical Model Selection: Significance Tests and Stepwise
Methods:
(Forward Strategy, Backward Elimination, Stepwise Procedures).

• Bayesian Model Selection
– Posterior odds and posterior model probabilities.

– Utility measures.

– Predictive criteria.

• Model Selection Criteria
– Akaike Information Criterion (AIC).

– Bayes Information Criterion (BIC).

– Other criteria.
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Disadvantages of Classical Stepwise Procedures

• Large datasets we observe small p-values even if the hypothesized
model is plausible.

• Exact significance level cannot be calculated since stepwise
methods are sequential application of simple significance tests
(Freedman, 1983).

• The maximum F -to-enter statistic ‘is not even remotely like an
F-distribution’ (Miller, 1984).

• The selection of a single model ignores model uncertainty.
• We can compare only nested models.
• Different models are selected if we use different procedures or
start from different models.
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Bayesian Model Selection

Bayesian model selection is based on

1. Posterior odds of model m0 versus model m1 given by

PO01 =
f(m0|y)
f(m1|y) =

f(y|m0)
f(y|m1)︸ ︷︷ ︸

Bayes Factor

× f(m0)
f(m1)︸ ︷︷ ︸

Prior Odds

.

2. Posterior probabilities given by

f(m|y) = f(y|m)f(m)∑
ml∈M

f(y|ml)f(ml)
=

( ∑
ml∈M

POml,m

)−1

,

• M: set of models under consideration,

• ∑
m′∈M f(m|y) = 1.
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log10(B10) B10 Evidence against H0

0.0 to 0.5 1.0 to 3.2 Not worth than a bare mention

0.5 to 1.0 3.2 to 10 Substantial

1.0 to 2.0 10 to 100 Strong

greater than 2 greater than 100 Decisive

Table 1: Bayes Factor Interpretation according to Kass and Raftery

(log of 10).
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ln(B10) B10 Evidence against H0

0 to 2 1 to 3 Not worth than a bare mention

2 to 5 3 to 12 Positive

5 to 10 12 to 150 Strong

greater than 10 greater than 150 Decisive

Table 2: Bayes Factor Interpretation according to Kass and Raftery

(Natural logarithm).
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Bayesian Model Averaging

• Adjust predictions (and inference) according to the observed
model uncertainty.

• Average over all conditional model specific posterior
distributions. weighted by their posterior model probabilities.

• Base predictions on all models under consideration and therefore
account for model uncertainty.

• Predictive distribution of a quantity ∆

f (∆|y) =
∑
m∈M

f (∆|m, y)f (m|y)
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Wasserman (1997) and Hoeting et al. (1998) recently provided two
well written papers that both review Bayesian model averaging.

Logarithmic scoring rule (LS): Measure of the predictive performance
of a model m given by

LSm = −E{log[f (∆|m, y)]}

and by

LS = −E

{
log

[ ∑
m∈M

f (∆|m, y)f (m|y)
]}

for Bayesian model averaging. Lower values of the logarithmic
scoring rule indicate better predictive power.

Bayesian model averaging method: better predictive ability since
LS ≤ LSm, ∀ m ∈ M; see Madigan and Raftery (1994), Kass and
Raftery (1995) and Raftery et al. (1997).
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2 Model Selection via Markov Chain

Monte Carlo Methods

Problems in Bayesian model selection:

• Integrals involved in f(m|y) and
• Size of M.

Hence, MCMC methods become an extremely attractive alternative.
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Descriprion:

• Generate sample (m(t′), β(t′), t′ = 1, . . . , t)

• Estimate posterior model probabilities by

f̂(m) =
1
t

t∑
t′=1

I(m(t′) = m) m ∈ M

I(·): Indicator function.
• Get samples from f(β

(m)
|m, y) (automatically available).
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Why use MCMC in Model selection:

• Automatic after defining the prior distribution,
• Cannot explore the model space otherwise,
• Integrals involved are intractable.
• Bayesian model averaging is straightforward.
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• General Model Selection Algorithms
– Reversible jump (Green, 1995, Bk).

– Carlin and Chib (1995, JRSS B) Gibbs sampler.

– Markov chain Monte Carlo model composition [MC3]
(Madigan and York, 1995, I.S.R.).

– Metropolised Carlin and Chib Algorithm (Dellaportas et al. ,
2002, Stats & Comp.)

• Variable selection samplers
– Stochastic Search Variable Selection [SSVS] (George and
McCulloch, 1993, JASA).

– Kuo and Mallick (1998, Sank, B) Gibbs sampler.

– Gibbs Variable Selection (Dellaportas et al. , 2000,2002).
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• Fast variable selection algorithms for normal models
– Clyde et al. (1996).

– Smith and Kohn (1996).

– Clyde (1998).
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2.1 General Model Selection Methods

2.1.1 Reversible Jump

The Procedure
If the current state of the Markov chain is

(
β

(m)
,m

)
, then

• Generate β
(m)

from f(β
(m)

|y,m) (optional).
• Propose a new model m′ with probability j(m,m′).

• Generate u from proposal q(u|β
(m)

,m,m′).

• Set (β′
(m′)

, u′) = hm,m′(β
(m)

, u).

– d(m) + d(u) = d(m′) + d(u′) and

– hm′,m = h−1
m,m′ .
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• Accept the proposed move to model m′ with probability
α = min(1, A)

A =
f(y|β′

(m′),m
′)f(β′

(m′)|m
′)f(m′)j(m′,m)q(u′|β′

(m′),m
′,m)

f(y|β
(m)
,m)f(β

(m)
|m)f(m)j(m,m′)q(u|β

(m)
,m,m′)

∣∣∣∣∣∂h(β(m)
, u)

∂(β
(m)
, u)

∣∣∣∣∣ .
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2.1.2 Carlin and Chib Gibbs Sampler

Characteristic:
Requires realisations of {β

(mk)
: mk ∈ M,m}.

The Procedure
Suppose that the current state is

(
{β

(mk)
: mk ∈ M,m}

)
, then

• Generate β
(m)

from f(β
(m)

|y,m).

• Generate β
(ml)

from f(β
(ml)

|ml �= m).

– Pseudo-parameters: β
(ml)

are called,

– Pseudopriors or linking densities: f(β
(ml)

|ml �= m).

– No need to specify different f(β
(ml)

|ml �= m) for different m.
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• The model indicator m is generated by

f(m|{β
(mk)

: mk ∈ M}, y) = Am∑
mk∈M

Amk

Am = f(y|β
(m)

,m)
∏

ml∈M

{
f(β

(ml)
|m)

}
f(m).
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Drawback:
Specification and generation from many pseudopriors (at least
|M| − 1)

• computationally demanding (time, memory and hard disk
limitations)

• procedure is impracticable for large problems.
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2.1.3 Metropolised Carlin and Chib Algorithm

The Procedure
Suppose that the current state is

(
β

(m)
,m

)
, then

• Generate β
(m)

from f(β
(m)

|y,m).

• Propose a new model m′ with probability j(m,m′).

• Generate β′
(m′)

from the proposal f(β′
(m′)

|m′ �= m).

• Accept the proposed move with probability α = min(1, A)

A =
f(y|β′

(m′)
,m′)f(β′

(m′)
|m′)f(β

(m)
|m′)f(m′)j(m′,m)

f(y|β
(m)

,m)f(β
(m)

|m)f(β′
(m′)

|m)f(m)j(m,m′)
.
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Important Features

• Requires (only) β
(m)

and β′
(m′)

to calculate α.

• Model m′ is proposed with probability j(m,m′), independently
of the values of any model parameters.

Only need to sample from pseudoprior f(β′
(m′)

|m′ �= m)!!!
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RJ and MCC

• MCC is a reversible jump with . . .
–

(
β′

(m′)
, u′

)
=

(
u, β

(m)

)
,

u′ = {β
(ml)

: ml �= m′}, u = {β
(ml)

: ml �= m},
– proposal densities are replaced by

q(u|β
(m)

,m,m′) =
∏
ml∈M\{m′}

{
f(β

(ml)
|m′)

}
and

q(u′|β′
(m′)

,m′,m) =
∏
ml∈M\{m}

{
f(β

(ml)
|m)

}
.

• MCC also coincides to the simpler RJ with:
–

(
β′

(m′)
, u′

)
=

(
u, β

(m)

)
, u′ = β

(m)
and u = β′

(m′)
,

– proposal densities are replaced by
q(u|β

(m)
,m,m′) = f(β′

(m′)
|m′ �= m) and

q(u′|β′
(m′)

,m,m′) = f(β
(m)

|m �= m′)
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2.1.4 Markov chain Monte Carlo model composition (MC3)

The Procedure

• Suppose that . . .
– f(β

(m)
|m, y) is available for all models m ∈ M,

– f(y|m) is also known.
• Consider MCC (or RJ) with

q(β
(m)

|β′
(m′)

,m,m′) = f(β
(m)

|m, y),

• If
(
β

(m)
,m

)
is the current state, then

– Generate β
(m)

from f(β
(m)

|y,m) (optional).
– Propose a new model m′ with probability j(m,m′).
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– Generate β′
(m′)

from the posterior f(β′
(m′)

|m, y).

– Accept the proposed model m′ with probability

α = min

(
1,

f(y|m′)f(m′)j(m′,m)
f(y|m)f(m)j(m,m′)

)

= min

(
1, Bm′m

f(m′)j(m′,m)
f(m)j(m,m′)

)
.
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2.2 Variable Selection Algorithms

2.2.1 Stochastic Search Variable Selection

• Originally for Normal models (1993) and then applied in other
GLM type models.

• The dimension of the model is constant.
• The model likelihood is given by f(y|β) for all models.
• The model indicator m is substituted by γT = (γ1, . . . , γp).

• For specified kj and Σj , the indicator variables γj are involved in
the model through the prior

β
j
|γj ∼ γjN(0,Σj) + (1− γj)N(0, k−2

j Σj).

• Generally SSVS results differ from usual model selection (tend to
be close for large kj).
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The Procedure
Suppose that the current state is (β, γ), then, for j = 1, . . . , p,

• Generate β
j
from

f(β
j
|β\j , γ, y) ∝ f(y|β, γ)f(β

j
|γj)

β
j
: vector of parameters of j term.

• Generate γj ∼ Bernoulli
(

Oj

1+Oj

)
with

Oj =
f(γj = 1|β, γ\j , y)

f(γj = 0|β, γ\j , y)
=

f(β|γj = 1, γ\j)

f(β|γj = 0, γ\j)︸ ︷︷ ︸
Prior Ratio

f(γj = 1, γ\j)

f(γj = 0, γ\j)︸ ︷︷ ︸
Prior Odds

γ\j : all components of γ except γj .

Variable selection step does not (directly) depend on the model
likelihood!
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2.2.2 Kuo and Mallick Sampler

Characteristics:

• Originally for Normal models (1993) but can be applied in other
GLM type models.

• Likelihood is given by f(y|β, γ).
• Model indicator m is substituted by γ.

• Indicator variables γj are involved in the model by substituting
β
j
by γjβj in the linear predictor.

• Prior is given by f(β) for all models.

• Generally KM results differ than other model selection methods
due to the fact that the underlying priors are automatically
defined by f(β).
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The Procedure
If the current state is (β, γ), then, for j = 1, . . . , p,

• Generate β
j
from

– f(y|β, γ)f(β
j
|β\j) if γj = 1

– f(β
j
|β\j) if γj = 0

• Generate γj ∼ Bernoulli
(

Oj

1+Oj

)
with

Oj =
f(y|β, γj = 1, γ\j)

f(y|β, γj = 0, γ\j)︸ ︷︷ ︸
Likelihood Ratio

f(γj = 1, γ\j)

f(γj = 0, γ\j)︸ ︷︷ ︸
Prior Odds

.

Advantage: extremely straightforward.
Disadvantage: There is no flexibility to improve efficiency.
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2.2.3 Gibbs Variable Selection

Characteristics

• Natural hybrid of SSVS and the Kuo and Mallick (1998) sampler.
• Same likelihood as in Kuo and Mallick Sampler.
• Specify prior as f(β|γ)f(γ).
Consider the partition of β =

{
β

(γ)
, β

(\γ)

}
into

– β
(γ)

: parameters in model (γj = 1)

– β
(\γ)

: parameters not in model (γj = 0)

then f(β|γ) may be partitioned into
– Prior: f(β

(γ)
|γ) and Pseudoprior: f(β

(\γ)
|β

(γ)
, γ).
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The Procedure
If the current state is (β, γ), then

• Generate parameters β
(γ)

from

f(β
(γ)

|β
(\γ)

, γ, y) ∝ f(y|β, γ)f(β
(γ)

|γ)f(β
(\γ)

|β
(γ)

, γ)

• Generate pseudo-parameters β
(\γ)

from f(β
(\γ)

|β
(γ)

, γ)

• Generate γj ∼ Bernoulli
(

Oj

1+Oj

)
with

Oj =
f(y|β, γj = 1, γ\j)

f(y|β, γj = 0, γ\j)︸ ︷︷ ︸
Likelihood Ratio

f(β|γj = 1, γ\j)

f(β|γj = 0, γ\j)︸ ︷︷ ︸
Prior/Pseudoprior Ratio

f(γj = 1, γ\j)

f(γj = 0, γ\j)︸ ︷︷ ︸
Prior Odds
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Simpler Approach

• Assume prior: f(β
j
|γ
j
) = γjN(0,Σj) + (1− γj)N(µ̄j , Sj),

µ̄
j
and Sj : are pseudoprior parameters (tuned to achieve optimal

convergence).

• The full conditional posterior distribution is now given by

f(β
j
|β\j , γ, y) ∝

{
f(y|β, γ)N(0,Σj) γj = 1

N(µ̄
j
, Sj) γj = 0

This approach is . . .

– Simple to apply

– Efficient when covariates are not highly correlated.

– Easy to specify pseudopriors
Get µ̄

j
and Sj : from a pilot run of the full model; see

Dellaportas and Forster (1999).
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2.3 Proposal Distributions

• Proposal Distributions for Model Parameters
– Independent distributions for each term j: N(µ̄

j
, Sj).

– SSVS type proposal: N(0dj ,Σj/k
2
j ).

– Maximum likelihood based: N
(
β̂

(m)
, Σ̂(m)

)
.

– Alternative easy-to-use choice: N(β̂
(m)

,Σ(m)/k
2).

– Using conditional maximised likelihood.

– Giudici and Roberts (1998) automatic choice.

– Brooks, Giudici and Roberts (2001): Optimal Proposals

– Green and Mira (2001): Delayed rejection algorithm.
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• Proposal Distributions on Model Space
– Common proposal: Uniform distribution.

– ‘Local’ and ‘Global’ proposals.

– j(m,m) = 0 better than j(m,m) > 0 (Liu 1996a,b).

– Set j(m,m′) using Laplace or BIC approximations.

– Use an MC3 when size of M is large.
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2.3.1 Proposal Distributions for Model Parameters

• Independent distributions for each term j: N(µ̄
j
, Sj).

Get pseudoparameters from pilot run of the full model.

• SSVS type proposal: N(0dj
,Σj/k

2
j ),

with Σj the prior covariance matrix.

• Maximum likelihood based: N
(
β̂

(m)
, Σ̂(m)

)
;

where β̂
(m)

and Σ̂(m) are the MLE of model m.

• Alternative easy-to-use choice: N(β̂
(m)

,Σ(m)/k
2).
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• Using conditional maximised likelihood:
q(β

j
|β

(γj=0,γ\j
)
, γj = 1, γj = 0, γ\j) =

N

((
XT
j ĤXj

)−1

XT
j Ĥη∗

j
,
(
XT
j ĤXj

)−1
)
,

where

– Ĥ is the weight matrix used in observed information matrix of the
‘saturated’ model and

– η∗
j
is a vector with elements given by

{η∗
j
}i = g(yi)−

∑
l∈V\{j}

γlxilβl.

Alternatively, for simplicity, we may substitute the covariance
matrix by Σj/k

2.
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• Giudici and Roberts (1998) automatic choice.
Scale parameter varies according to proposed values maximizing
the acceptance probability when proposed parameters are zero.

• Brooks, Giudici and Roberts (2001) proposals by maximising
acceptance ratio.
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2.3.2 Proposal Distributions on Model Space

• Common proposal: Uniform distribution.

• ‘Local’ and ‘Global’ proposals.
– Global proposals result in low acceptance rates

– Local proposals are preferred (in structured M).

– Generally, RJ with local proposals perform well.
May exhibit difficulties in some ill-posed problems.
In such cases combination may be optimal.

• j(m,m) = 0 is more efficient than j(m,m) > 0 (Liu 1996a,b).

• Set j(m,m′) using Laplace or BIC approximations.

• When size of M is large:
Use an MC3 based on approximations to get rough estimates of
posterior weights.
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3 Prior Specification

3.1 Jeffreys-Lindley Paradox

Consider two models m0 and m1;

• d(m) dimension of model m,

• d(m0) < d(m1); model m0 is simpler.

1. If sample size n → ∞: B10 → 0
Bayes factor supports simpler models in contradiction to
significance tests (Lindley, 1957, Bk).

2. If prior variance of additional parameters → ∞: B10 → 0
(Bartlett, 1957, Bk).
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(1) and/or (2) are referred in literature as

• ‘Lindley’s paradox’ → for any case where Bayesian and
significance tests result in contradictive evidence (Shafer, 1982,
JASA).

• ‘Bartlett’ paradox → Kass and Raftery (1995, JASA)

• ‘Jeffreys’ paradox → Lindley (1980, An.Stat.), Berger and
Delampady (1987, St.Science)

• ‘Jeffreys-Lindley’s paradox’ → Robert (1993, St.Sinica).

• ‘Bartlett - Lindley’ paradox → Chipman et al. (2000, Tec.Rep.).

• For detailed discussion → Shafer (1982, JASA).
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We focus on Variable Selection Problems for GLM.

Let us consider a GLM with n× 1 vector of linear predictors given by

η = X(m)β(m)

• X(m) = design matrix of model m

• β
(m)

= vector of parameters involved in the linear predictors.
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3.2 Prior Distributions for the parameters of the

linear predictor

f
(
β

(m)
|m

)
∼ N

(
µ
β(m)

,Σ(m)

)
Low Information Prior Distributions proposed in literature:

• µ
βm

= 0: prior centered against alternative hypothesis.

• Σ(m) = c2V (m) or Σ(m) = c2V (m)σ
2 in regression.

The choice of Σ(m) remains difficult. Two types of prior distributions

• Block Diagonal Covariance Matrix (independent priors)
• Non-diagonal Covariance Matrix
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Normal Independent priors, V (m) = Diagonal(v2
i ):

• George and McCullogh (1993, JASA) in SSVS
• Geweke (1996, B.Stat.): Independent truncated normal
distributions in regression.

Non-diagonal Covariance Matrix

• REGRESSION: Σ(m) = c2V (m)σ
2

∗ V −1
(m) = XT

(m)X(m) → Zellner’s g-priors (Zellner, 1980).
∗ c2 ∈ [10, 100] proposed by Smith and Kohn (1996, J.Econ.).
∗ c2 = n → Unit Information priors (Kass and Wasserman,
1995, JASA).
∗ Fernandez et al. (2001, J.Econ.) used various values for c2;
proposed c2 = max{d(m)2, n}.
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• Contingency tables: Σ(m) = c2V (m)

∗ Albert (1996, Can.J.St.): based on prior beliefs on odds ratios.
∗ Dellaportas and Forster (1999,Bk) based on Knuinman and
Speed (1988, Bc); V −1

(m) = XT
(m)X(m), c

2 = 2×#cells.
∗ Ntzoufras et al. (2000, JSCS): combination of the above for
SSVS.

• GLM → Raftery (1996, Bk):
∗ diagonal covariance matrix and mean zero for covariates
based on sample variances.
∗ Nonzero mean and correlation of intercept with the rest of
parameters.
∗ c2 = 2.852 based on mathematical arguments.

• Ntzoufras et al. (2001): Constructed ‘equivalent’ priors across
GLM with different link function based on Taylor expansion.
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• Unit Information Prior Σ(m) = n(−H(m))
−1 (Kass and

Wasserman, 1995, JASA); H(m) is the Hessian matrix.

• Kuo and Mallick (1998, Sankya): Define prior only on full model.
• Using Imaginary data to construct an informative prior: Chen
et al. (1999, JRSSB).

• George and Foster (2000, Bk): Empirical Bayes Approach.
• Expected Posterior Prior Distributions (Perez and Berger, 2000)

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection 47

3.3 Prior Distributions on Model Space

– Usual naive prior: Uniform prior on model space M
p(m) = 1/|M|. Informative in terms of dimension (Chipman
et al. , 2000, Tec.Rep.).

– Alternative: Use prior on dimension (Chipman et al. , 2000,
Tec.Rep.).

– Use Beta prior on common inclusion probability (George and
McCullogh, 1997, St.Sin., Kohn et al. , 2001 St.Comp.).

– Elicit imaginary data: Chen et al. (1999, JRSSB)

– Use Empirical Bayes Approach (George and Foster, 2000, Bk).

– Prior distribution based on Dilution of models (George, 1999,
B.Stat).
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3.4 What Prior in BUGS

• Standardize variables or use STZ constraints
• Use unit information priors (may incorporate data)
• Empirical approach: Estimate posterior variance and set

prior variance = c2 × posterior variance.

For c2 = 1 (approx) posterior Bayes factor.
For c2 = n (approx) unit information prior (BIC)

• Use Σm = (XT
mXm)

−2σ2 for Normal models

• For logistic regression models and/or poisson log-linear models
may use priors of Dellaportas et al. (2000,2002).

• Generally use a range of prior distribution base inference.
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4 Bayesian Model and Variable Selection

Using Bugs

• Carlin and Chib Method
• Variable Selection Methods (SSVS, KM, GVS)
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4.1 Carlin and Chib Method Using BUGS

• BUGS Examples vol.2, page 47, example 13: Pines dataset.
• Data originally used by Williams (1959, Regression Analysis) and
re-analyzed by Carlin and Chib (1995, JRSS,B).

– 42 speciments of radiata pine.

– yi: maximum comprehensive strength.

– xi: density.

– zi: density adjusted for resin content.
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• Two competing models:
– Model 1: yi ∼ Normal(α+ βxi, τ1)

– Model 2: yi ∼ Normal(γ + δzi, τ2)

• Data originally used by Williams (1959, Regression Analysis) and
re-analyzed by Carlin and Chib (1995, JRSS,B).

– 42 speciments of radiata pine.

– yi: maximum comprehensive strength.

– xi: density.

– zi: density adjusted for resin content.

Alternative we could have written
µi = I(m = 1)(α+ βxi) + [1− I(m = 1)](γ + δzi)
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Model 1 Model 2

Model Structure Yi ∼ N(0, τ1) Yi ∼ N(0, τ2)

µi = α+ βxi µi = γ + δzi

Prior f(α, β, τ1|m = 1) f(γ, δ, τ2|m = 2)

Pseudoprior f(α, β, τ1|m = 2) f(γ, δ, τ2|m = 1)
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• MODEL 1
– f(α|m) = N(µα[m], τα[m])

– f(β|m) = N(µβ [m], τβ [m])

– f(τ1|m) = Γ(r1[m], l1[m])
– for m = 1: Prior

– for m = 2: Pseudo-Prior

• MODEL 2
– f(γ|m) = N(µγ [m], τγ [m])

– f(δ|m) = N(µδ[m], τδ[m])

– f(τ2|m) = Γ(r2[m], l2[m])
– for m = 2: Prior

– for m = 1: Pseudo-Prior
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Procedure:

1. Pilot Run 1: Run MCMC for Model 1

2. Estimate parameters of Model 1

3. Pilot Run 2: Run MCMC for Model 2

4. Estimate parameters of Model 2

5. Run CC algorithm with pseudoparameters specified by 2 and 4

Comment 1: The Effect of Lindley’s Paradox is not direct since the
two models have the same dimension.

Comment 2: We may change prior model probabilities to achieve
mobility across models and estimate posterior or Bayes factors more
accurately.
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BUGS CODE

model
{
# standardise values

for (i in 1:n){
xs[i]<-(x[i]-mean(x[]))/sd(x[]);
ys[i]<-(y[i]-mean(y[]))/sd(y[]);
zs[i]<-(z[i]-mean(z[]))/sd(z[]);

}
# model likelihoods

for (i in 1:n){
ys[i]~dnorm( mu[i,m], tau[m] );
mu[i,1]<-alpha +beta *xs[i];
mu[i,2]<-gamma +delta*zs[i];

}
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# priors
m~dcat(p[]); # categorical 1/2
p[1]<-0.5; # "non-informative"
p[2]<-1-p[1];
mdl<-m-1

#
# alternative prior (bernoulli)
# m<-mdl+1
# mdl~dbern(p)
# p<-0.5
#
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# priors for model parameters
alpha~dnorm(mu.alpha[m], tau.alpha[m]);
beta ~dnorm(mu.beta[m] , tau.beta[m] );
gamma~dnorm(mu.gamma[m], tau.gamma[m]);
delta~dnorm(mu.delta[m], tau.delta[m]);
tau[1]~dgamma( r1[m], l1[m] );
tau[2]~dgamma( r2[m], l2[m] );

#
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# prior parameters
mu.alpha[1]<-0.0;
mu.beta[1] <-0.0;
mu.gamma[2]<-0.0;
mu.delta[2]<-0.0;
tau.alpha[1]<-1.0E-06
tau.beta[1] <-1.0E-04;
tau.gamma[2]<-1.0E-06;
tau.delta[2]<-1.0E-04;
r1[1]<-0.0001;
l1[1]<-0.0001;
r2[2]<-0.0001;
l2[2]<-0.0001;
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# pseudoparameters
mu.alpha[2]<-???;
mu.beta[2] <-???;
mu.gamma[1]<-???;
mu.delta[1]<-???;
tau.alpha[2]<-???;
tau.beta[2] <-???;
tau.gamma[1]<-???;
tau.delta[1]<-???;
r1[2]<-???;
l1[2]<-???;
r2[1]<-???;
l2[1]<-???;

}

Use as initial pseudopriors N(0, 1) and Γ(1, 1)
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PILOT RUN RESULTS

Model 1: p[1]<-1.0

node mean sd MC error 2.5% median 97.5% start sample

mdl 0.0 0.0 3.162E-12 0.0 0.0 0.0 1001 1000

alpha 7.834E-4 0.06047 0.00168 -0.1231 -9.51E-4 0.1172 1001 1000

beta 0.9275 0.05988 0.002036 0.8124 0.9279 1.047 1001 1000

tau[1] 6.92 1.551 0.05284 4.267 6.823 10.3 1001 1000

-----------------------------------------------------------------------

gamma -0.005343 1.001 0.03553 -1.999 -0.01715 1.999 1001 1000

delta 0.01607 0.9835 0.03815 -1.885 0.03026 1.876 1001 1000

tau[2] 1.013 1.041 0.03457 0.02281 0.6726 3.838 1001 1000
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PILOT RUN RESULTS

Model 2: p[1]<-0.0

node mean sd MC error 2.5% median 97.5% start sample

mdl 1.0 0.0 3.162E-12 1.0 1.0 1.0 1001 1000

alpha 0.01448 1.005 0.03181 -1.988 0.02122 2.062 1001 1000

beta 0.0384 0.989 0.02649 -1.842 0.0685 2.036 1001 1000

tau[1] 1.04 1.03 0.02945 0.02231 0.696 4.056 1001 1000

-----------------------------------------------------------------------

gamma 7.021E-4 0.04908 0.001408 -0.09903 0.001332 0.098 1001 1000

delta 0.9522 0.0498 0.001652 0.8541 0.9513 1.05 1001 1000

tau[2] 10.41 2.369 0.07938 6.239 10.18 15.39 1001 1000
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Estimate Pseudopriors:

1. Estimate N(µ, τ) pseudopriors by

(a) µ = posterior mean from pilot run

(b) τ = (posterior s.d. from pilot run)−2

2. Estimate Γ(a, b) pseudopriors by

(a) E(X) = a/b, V (X) = a/b2 ⇒ b = E(X)/V (X) and
a = [E(X)]2/V (X)

(b) a = (posterior mean)2/(posterior s.d.)2

(c) b = (posterior mean) /(posterior s.d.)2
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m = 1 m=2

Model 1 (prior) (pseudoprior) (Pilot Run)

µα[m] 0.0 0.0 0.0008

τα[m] 10−6 256 (0.06047)−2 = 273.5

µβ [m] 0.0 1.0 0.9275

τβ [m] 10−4 256 (0.05988)−2= 278.9

r1[m] 10−3 30 6.922/(1.55)2 = 19.9

l1[m] 10−3 4.5 6.92/(1.55)2 = 2.88

Model 2 (pseudoprior) (prior) (Pilot Run)

µγ [m] 0.0 0.0 0.0007

τγ [m] 400 10−6 0.04908−2 = 415.13

µδ[m] 0.0 0.0 0.9522

τδ[m] 400 10−4 0.0498−2 = 403.22

r2[m] 46 10−3 (10.41/2.369)2 = 19.93

l2[m] 4.5 10−3 10.41/(2.369)2 = 1.85
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Model 1 Model 2

Model Yi ∼ N(0, τ1) Yi ∼ N(0, τ2)

Structure µi = α+ βxi µi = γ + δzi

Prior f(α|m = 1) f(β|m = 1) f(γ|m = 2) f(δ|m = 2)

N(0, 10−6) N(0, 10−4) N(0, 10−6) N(0, 10−4)

f(τ1|m = 1) = Γ(10−3, 10−3) f(τ2|m = 2) = Γ(10−3, 10−3)

Pseudoprior f(α|m = 2) f(β|m = 2) f(γ|m = 1) f(δ|m = 1)

N(0, 256) N(1, 256) N(0, 400) N(1, 400)

f(τ1|m = 2) = Γ(30, 4.5) f(τ2|m = 1) = Γ(46, 4.5)
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# pseudoparameters

mu.alpha[2]<-0.0;

mu.beta[2] <-1.0;

mu.gamma[1]<-0.0;

mu.delta[1]<-1.0;

tau.alpha[2]<-256;

tau.beta[2] <-256;

tau.gamma[1]<-400;

tau.delta[1]<-400;

r1[2]<-30;

l1[2]<-4.5;

r2[1]<-46;

l2[1]<-4.5;

}
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ESTIMATING BAYES FACTOR

Pseudopriors P (m = 1) P (m = 1|y) PO Bayes Factor

1 BUGS 0.5 0.9992 1249 1249

2 PILOT 0.5 0.9996 2499 2499

3 BUGS 0.9995 0.6140 1.591 3180

4 PILOT 0.9995 0.6175 1.614 3227

5 Manual 0.9995 0.6290 1.695 3389

6 CC 0.9995 0.6890 2.215 4420
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4.2 Bayesian Variable Selection in BUGS

4.2.1 Illustrative Example: 2× 2× 2 Contingency Table

• Data taken from Healy (1988).

• 3-way table

• Factor A =condition of the patient (more or less severe),

• Factor B =if the patient was accepting antitoxin medication

• Factor C (response) = whether the patient survived or not.

• Use a Logistic Regression Model
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Survival(C)

Condition (A) Antitoxin (B) No Yes

More Severe Yes 15 6

No 22 4

Less Severe Yes 5 15

No 7 5

Table 3: Example Dataset.
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• RESPONSE: Factor C (response) = Survival

• EXPLANATORY TERMS:

– Factor A =Condition

– Factor B =Antitoxin

– Interaction AB = Condition*Antitoxin

• MODELS
– MODEL 1: AB = A+B+AB

– MODEL 2: A+B = A+B

– MODEL 3: A = A

– MODEL 4: B = B

– MODEL 5: null= constant
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PRIOR DISTRIBUTIONS

• prior variance = 4× 2

• prior probability of each model 1/5:

– γAB ∼ Bernoulli(1/5)

– γi|γAB ∼ Bernoulli(π), with π = 0.5(1− γAB) + γAB for
i ∈ {A,B}.
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DATA IN BUGS

r[] n[] x[,1] x[,2] x[,3] x[,4]

5 12 1 -1 -1 1

4 26 1 1 -1 -1

15 20 1 -1 1 -1

6 21 1 1 1 1
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BUGS CODE FOR SSVS

The Model

for (i in 1:N) {

r[i]~dbin(p[i],n[i]);

logit(p[i])<-b[1]+ x[,2]* b[2]+ x[,3]*b[3]+ x[,4]*b[4];

}

The Prior on Model Parameters

for (i in 2:N) {

c[i]<-1000.0

tau[i]<-pow(c[i],2-2*g[i])/8;

bpriorm[i]<-0.0;

b[i]~dnorm(bpriorm[i],tau[i]);

b[i]~dnorm(bpriorm[i],tau[i]);

}
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The Prior on constant Model Parameters (we may use
”non-informative”)

tau[1]<-0.1;

bpriorm[1]<-0.0;

b[1]~dnorm(bpriorm[1],tau[1]);

The Model Prior (common for all approaches)

g[4]~dbern(0.2);

include<-(1-g[4])*0.5+g[4]*1.0

g[2]~dbern(include);

g[3]~dbern(include);

g[1]~dbern(1.0);
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BUGS CODE FOR KM

The Model

for (i in 1:N) {

r[i]~dbin(p[i],n[i]);

logit(p[i])<-b[1] + x[,2]* g[2]* b[2]

+ x[,3]* g[3]* b[3]

+ x[,4]* g[4]* b[4];

}

The Prior on Model Parameters

for (i in 2:N) {

tau[i]<-1/8;

bpriorm[i]<-0.0;

b[i]~dnorm(bpriorm[i],tau[i]); }
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BUGS CODE FOR GVS

The Model

for (i in 1:N) {

r[i]~dbin(p[i],n[i]);

logit(p[i])<-b[1] + x[,2]* g[2]* b[2]

+ x[,3]* g[3]* b[3]

+ x[,4]* g[4]* b[4]; }

The Prior on Model Parameters

for (i in 2:N) {

# tau[i]<-pow(100,1-g[i])/8;

# bpriorm[i]<-0.0;

tau[i]<-g[i]/8+(1-g[i])/(se[i]*se[i]);

bpriorm[i]<-mean[i]*(1-g[i]);

b[i]~dnorm(bpriorm[i],tau[i]); }
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In model specification we may use

for (i in 1:N) {for (j in 1:N) {

z[i,j]<-x[i,j]*b[j]*g[j]

}}

for (i in 1:N) {

r[i]~dbin(p[i],n[i]);

logit(p[i])<-sum(z[i,]);

}
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ESTIMATING POSTERIOR PROBABILITIES IN BUGS

# defining model code

# 0 for constant, 1 for [A], 2 for [B], 3 for [A][B],

# 6 for [AB]

#

mdl<-g[2]+2*g[3]+3*g[4];

pmdl[1]<-equals(mdl,0)

pmdl[2]<-equals(mdl,1)

pmdl[3]<-equals(mdl,2)

pmdl[4]<-equals(mdl,3)

pmdl[5]<-equals(mdl,6)

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection 78

burn-in period: 10,000 iterations.

SSVS -> 500,000 iterations

Kuo and Mallick’s method ->500,000 iterations

GVS -> and 100,000 iterations
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Models SSVS KM GVS

1 0.2 0.5 0.5

A 48.0 49.2 49.3

B 1.0 1.2 1.2

A+B 45.3 44.0 43.9

AB 5.5 5.2 5.1

Table 4: Posterior model probabilities (%) for logistic regression.
SSVS: Stochastic Search Variable Selection; KM: Kuo and Mallick’s
Unconditional Priors approach; GVS: Gibbs Variable Selection.
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5 Bayesian Model Diagnostics in BUGS

[BUGS manual: page 40]

1. Residuals

2. Model Comparison

3. Goodness of fit
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EXAMPLE: line.bug

model
{

for( i in 1 : N ) {
Y[i] ~ dnorm(mu[i],tau)
mu[i] <- alpha + beta * (x[i] - xbar)

}
tau ~ dgamma(0.001,0.001) sigma <- 1 / sqrt(tau)

alpha ~ dnorm(0.0,1.0E-6)

beta ~ dnorm(0.0,1.0E-6)
}

Data: list(x = c(1, 2, 3, 4, 5),
Y= c(1, 3, 3, 3, 5), xbar = 3, N = 5)

Inits: list(alpha = 0, beta = 0, tau = 1)
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5.1 Checking Residuals

Assess the predictive distribution of residual functions:

1. Residual: ri = yi − E(yi)
resid[i]<-y[i]-mu[i];

2. Standardized Residual: sri = ri/
√
V (yi) = (yi − E(yi))/

√
V (yi)

sresid[i]<-r[i]*sqrt(tau);

3. Chance of more extreme observation: min(P (Yi < yi), P (Yi > yi))
Y.rep[i]<-dnorm(mu[i],tau);

p.smaller[i]<-step(y[i],Y.rep[i]);

4. Chance of more surprising observation: P (Yi : P (Yi) < P (yi))

5. Predictive ordinate of yi: P (yi)
like[i]<-sqrt(tau/(2*PI))*exp(-0.5*pow(sresid[i],2));

p.inv[i]<-1/like[i];
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5.2 Model Comparison

1. Bayes Factor: we have already done some examples

2. Cross-Validatory Measures:

• sum of squares of residuals

• Negative cross-validatory log-likelihood:

NCV = −
n∑
i=1

log f(yi|yi) = −
n∑
i=1

log(1/mean(p.inv[i]))

[pseudo-Bayes factor].

3. Deviance: Calculate D = −2 log f(y|θ) and consider the
minimum (non-hierarchical) and/or mean (hierarchical).
like[i]<-sqrt(tau/(2*PI))*exp(-0.5*pow(sresid[i],2));
log.like[i]<-log(like[i]);
deviance<- -2*sum(log.like[])
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5.3 Goodness of Fit

BAYESIAN p-values

1. Consider a statistic d(y)

2. Find the predictive distribution of d(y)

3. Estimate the probability P (d(Y ) < d(y)).

IN BUGS

1. Generate predictive sample yrep

2. Calculate drep = d(yrep)

3. Set p.d=1 if drep > d

4. Estimate p-value by posterior mean of p.d
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5.4 Goodness of Fit

BUGS CODE: P-value for Skewness

for (i in 1:N) {

Y.rep[i]<-dnorm(mu[i],tau);

m3[i]<-power(sresid[i],3);

m3.rep[i]<-power( (Y.rep[i]-mu[i])*sqrt(tau),3); }

skew.obs<-sum(m3[])/N ;

skew.rep<-sum(m3.rep[])/N ;

p.skew<-step(skew.rep-skew.obs);

BUGS CODE: P-value for Kurtosis

for (i in 1:N) {

Y.rep[i]<-dnorm(mu[i],tau);

m4[i]<-power(sresid[i],4);

m4.rep[i]<-power( (Y.rep[i]-mu[i])*sqrt(tau),4); }

kur.obs<-sum(m4[])/N ;

ku.rep<-sum(m4.rep[])/N ;

p.kur<-step(kur.rep-kur.obs);
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RESULTS (1000 burnin, 10000 iterations)

Original With Outlier

deviance 12.92 25.34

p.skew 0.498 0.43

p.kur 0.733 0.70

1/mean(p.in[i])

p.inv[1] 5.32 25.83 0.188 0.039

p.inv[2] 6.82 136.20 0.147 0.007

p.inv[3] 2.85 10.35 0.351 0.097

p.inv[4] 6.89 11.85 0.145 0.084

p.inv[5] 5.12 14.44 0.195 0.069

--------------------------------------------------

NCV 8.20 15.69

min(p.smaller, 1-p.smaller)

p.smaller[1] 0.356 0.300 0.356 0.300

p.smaller[2] 0.799 0.853 0.201 0.147

p.smaller[3] 0.502 0.400 0.488 0.400

p.smaller[4] 0.202 0.352 0.202 0.352

p.smaller[5] 0.659 0.552 0.341 0.448
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resid[1] -0.40 -2.00

resid[2] 0.80 3.59

resid[3] -0.00 -0.81

resid[4] -0.80 -1.22

resid[5] 0.39 0.37

sresid[1] -0.51 -0.73

sresid[2] 1.00 1.30

sresid[3] -0.00 -0.29

sresid[4] -1.01 -0.44

sresid[5] 0.50 0.14
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END OF TUTORIAL


