Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection	1	Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection
Tutorial on Bayesian Model and Variable Selection Ioannis Ntzoufras Department of Business Administration University of the Aegean (c) 2002, Athens, Greece		Contents 1. Introduction to Model Selection. 2. Bayesian Model Selection via MCMC. (a) General Model Selection Algorithms (RJ, CC, MCC) (b) Variable Selection Algorithms (KM, SSVS, GVS) (c) Proposal Selection 3. Prior Specification. 4. Bayesian Model and Variable Selection Using BUGS 5. Model Diagnostics. 6. Model Diagnostics in BUGS.
Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection	3	Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection
1 Introduction to Model Selection What is Model Selection? - Evaluation of performance of scientific scenarios and - Selection of the 'best'. 'Best' Model? - The 'best' performed model is totally subjective - Different procedures (or scientists) support different scientific theories, scenarios and models.		Two MAJOR principles: 1. Goodness of Fit How close is theory [model] to reality [data]. 2. Parsimony Simplicity of theory; In stats: Economy in parameters.
Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection	5	Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection
Available Methods - Classical Model Selection: Significance Tests and Stepwise Methods: (Forward Strategy, Backward Elimination, Stepwise Procedures). - Bayesian Model Selection - Posterior odds and posterior model probabilities. - Utility measures. - Predictive criteria. - Model Selection Criteria - Akaike Information Criterion (AIC). - Bayes Information Criterion (BIC). - Other criteria.		Disadvantages of Classical Stepwise Procedures - Large datasets we observe small p-values even if the hypothesized model is plausible. - Exact significance level cannot be calculated since stepwise methods are sequential application of simple significance tests (Freedman, 1983). - The maximum F-to-enter statistic is not even remotely like an F-distribution' (Miller, 1984). - The selection of a single model ignores model uncertainty. - We can compare only nested models. - Different models are selected if we use different procedures or start from different models.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

Bayesian Model Selection

Bayesian model selection is based on

1. Posterior odds of model m_{0} versus model m_{1} given by

$$
P O_{01}=\frac{f\left(m_{0} \mid \underline{y}\right)}{f\left(m_{1} \mid \underline{y}\right)}=\underbrace{\frac{f\left(\underline{y} \mid m_{0}\right)}{f\left(\underline{y} \mid m_{1}\right)}}_{\text {Bayes Factor }} \times \underbrace{\frac{f\left(m_{0}\right)}{f\left(m_{1}\right)}}_{\text {Prior Odds }}
$$

2. Posterior probabilities given by

$$
f(m \mid \underline{y})=\frac{f(\underline{y} \mid m) f(m)}{\sum_{m_{l} \in \mathcal{M}} f\left(\underline{y} \mid m_{l}\right) f\left(m_{l}\right)}=\left(\sum_{m_{l} \in \mathcal{M}} P O_{m_{l}, m}\right)^{-1}
$$

- \mathcal{M} : set of models under consideration,
- $\sum_{m^{\prime} \in \mathcal{M}} f(m \mid \underline{y})=1$.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

$\log _{10}\left(B_{10}\right)$	B_{10}	Evidence against H_{0}
0.0 to 0.5	1.0 to 3.2	Not worth than a bare mention
0.5 to 1.0	3.2 to 10	Substantial
1.0 to 2.0	10 to 100	Strong
greater than 2	greater than 100	Decisive

Table 1: Bayes Factor Interpretation according to Kass and Raftery (\log of 10).

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

$\ln \left(B_{10}\right)$	B_{10}	Evidence against H_{0}
0 to 2	1 to 3	Not worth than a bare mention
2 to 5	3 to 12	Positive
5 to 10	12 to 150	Strong
greater than 10	greater than 150	Decisive

Table 2: Bayes Factor Interpretation according to Kass and Raftery (Natural logarithm).

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

Bayesian Model Averaging

- Adjust predictions (and inference) according to the observed model uncertainty.
- Average over all conditional model specific posterior distributions. weighted by their posterior model probabilities.
- Base predictions on all models under consideration and therefore account for model uncertainty.
- Predictive distribution of a quantity Δ

$$
f(\Delta \mid \underline{y})=\sum_{m \in \mathcal{M}} f(\Delta \mid m, \underline{y}) f(m \mid \underline{y})
$$

2 Model Selection via Markov Chain

Monte Carlo Methods

$\underline{\text { Problems in Bayesian model selection: }}$

- Integrals involved in $f(m \mid \underline{y})$ and
- Size of \mathcal{M}.

Hence, MCMC methods become an extremely attractive alternative.

Descriprion:

- Generate sample $\left(m^{\left(t^{\prime}\right)}, \underline{\beta}^{\left(t^{\prime}\right)}, t^{\prime}=1, \ldots, t\right)$
- Estimate posterior model probabilities by

$$
\hat{f}(m)=\frac{1}{t} \sum_{t^{\prime}=1}^{t} I\left(m^{\left(t^{\prime}\right)}=m\right) \quad m \in \mathcal{M}
$$

$I(\cdot)$: Indicator function.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

Why use MCMC in Model selection:

- Automatic after defining the prior distribution,
- Cannot explore the model space otherwise,
- Integrals involved are intractable.
- Bayesian model averaging is straightforward.
- Get samples from $f\left(\underline{\beta}_{(m)} \mid m, \underline{y}\right)$ (automatically available).

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

- General Model Selection Algorithms
- Reversible jump (Green, 1995, Bk).
- Carlin and Chib (1995, JRSS B) Gibbs sampler.
- Markov chain Monte Carlo model composition [MC ${ }^{3}$] (Madigan and York, 1995, I.S.R.).
- Metropolised Carlin and Chib Algorithm (Dellaportas et al. , 2002, Stats \& Comp.)
- Variable selection samplers
- Stochastic Search Variable Selection [SSVS] (George and McCulloch, 1993, JASA).
- Kuo and Mallick (1998, Sank, B) Gibbs sampler.
- Gibbs Variable Selection (Dellaportas et al., 2000,2002).

15
Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

- Fast variable selection algorithms for normal models
- Clyde et al. (1996).
- Smith and Kohn (1996).
- Clyde (1998).

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

2.1 General Model Selection Methods

2.1.1 Reversible Jump

The Procedure
If the current state of the Markov chain is $\left(\underline{\beta}_{(m)}, m\right)$, then

- Generate $\underline{\beta}_{(m)}$ from $f\left(\underline{\beta}_{(m)} \underline{\mid}, m\right)$ (optional).
- Propose a new model m^{\prime} with probability $j\left(m, m^{\prime}\right)$.
- Generate \underline{u} from proposal $q\left(\underline{u} \mid \underline{\beta}_{(m)}, m, m^{\prime}\right)$.
- $\operatorname{Set}\left(\underline{\beta}_{\left(m^{\prime}\right)}^{\prime}, \underline{u}^{\prime}\right)=h_{m, m^{\prime}}\left(\underline{\beta}_{(m)}, \underline{u}\right)$.
$-d(m)+d(\underline{u})=d\left(m^{\prime}\right)+d\left(\underline{u}^{\prime}\right)$ and
$-h_{m^{\prime}, m}=h_{m, m^{\prime}}^{-1}$
- Accept the proposed move to model m^{\prime} with probability $\alpha=\min (1, A)$
$A=\frac{f\left(\underline{y} \mid \underline{\beta}_{\left(m^{\prime}\right)}^{\prime}, m^{\prime}\right) f\left(\underline{\beta}_{\left(m^{\prime}\right)}^{\prime} \mid m^{\prime}\right) f\left(m^{\prime}\right) j\left(m^{\prime}, m\right) q\left(\underline{u}^{\prime} \mid \underline{\mid}_{\left(m^{\prime}\right)}^{\prime}, m^{\prime}, m\right)}{f\left(\underline{\beta} \mid \underline{\beta}_{(m)}, m\right) f\left(\underline{\beta}_{(m)} \mid m\right) f(m) j\left(m, m^{\prime}\right) q\left(\underline{u} \mid \underline{\beta}_{(m)}, m, m^{\prime}\right)}\left|\frac{\partial h\left(\underline{\beta}_{(m)}, \underline{u}\right)}{\left.\partial \underline{\beta}_{(m)}, \underline{u}\right)}\right|$

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

2.1.2 Carlin and Chib Gibbs Sampler

Characteristic:
Requires realisations of $\left\{\underline{\beta}_{\left(m_{k}\right)}: m_{k} \in \mathcal{M}, m\right\}$.

- The model indicator m is generated by

The Procedure
Suppose that the current state is $\left(\left\{\underline{\beta}_{\left(m_{k}\right)}: m_{k} \in \mathcal{M}, m\right\}\right)$, then

- Generate $\underline{\beta}_{(m)}$ from $f\left(\underline{\beta}_{(m)} \underline{y}, m\right)$.
- Generate $\underline{\beta}_{\left(m_{l}\right)}$ from $f\left(\underline{\beta}_{\left(m_{l}\right)} \mid m_{l} \neq m\right)$.
- Pseudo-parameters: $\underline{\beta}_{\left(m_{l}\right)}$ are called,
- Pseudopriors or linking densities: $f\left(\underline{\beta}_{\left(m_{l}\right)} \mid m_{l} \neq m\right)$.
- No need to specify different $f\left(\underline{\beta}_{\left(m_{l}\right)} \mid m_{l} \neq m\right)$ for different m.

$$
\begin{gathered}
f\left(m \mid\left\{\underline{\beta}_{\left(m_{k}\right)}: m_{k} \in \mathcal{M}\right\}, \underline{y}\right)=\frac{A_{m}}{\sum_{m_{k} \in \mathcal{M}} A_{m_{k}}} \\
A_{m}=f\left(\underline{y} \mid \underline{\beta}_{(m)}, m\right) \prod_{m_{l} \in \mathcal{M}}\left\{f\left(\underline{\beta}_{\left(m_{l}\right)} \mid m\right)\right\} f(m) .
\end{gathered}
$$

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection
21

Drawback:
Specification and generation from many pseudopriors (at least
$|\mathcal{M}|-1)$

- computationally demanding (time, memory and hard disk limitations)
- procedure is impracticable for large problems.

Important Features

- Requires (only) $\underline{\beta}_{(m)}$ and $\underline{\beta}_{\left(m^{\prime}\right)}^{\prime}$ to calculate α.
- Model m^{\prime} is proposed with probability $j\left(m, m^{\prime}\right)$, independently of the values of any model parameters.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection
$\underline{\text { Only need }}$ to sample from pseudoprior $f\left(\underline{\beta}_{\left(m^{\prime}\right)}^{\prime} \mid m^{\prime} \neq m\right)!!!$

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

2.1.3 Metropolised Carlin and Chib Algorithm

The Procedure
Suppose that the current state is $\left(\underline{\beta}_{(m)}, m\right)$, then

- Generate $\underline{\beta}_{(m)}$ from $f\left(\underline{\beta}_{(m)} \mid \underline{y}, m\right)$.
- Propose a new model m^{\prime} with probability $j\left(m, m^{\prime}\right)$.
- Generate $\underline{\beta}_{\left(m^{\prime}\right)}^{\prime}$ from the proposal $f\left(\underline{\beta}_{\left(m^{\prime}\right)}^{\prime} \mid m^{\prime} \neq m\right)$.
- Accept the proposed move with probability $\alpha=\min (1, A)$

$$
A=\frac{f\left(\underline{y} \mid \underline{\beta}_{\left(m^{\prime}\right)}^{\prime}, m^{\prime}\right) f\left(\underline{\beta}_{\left(m^{\prime}\right)}^{\prime} \mid m^{\prime}\right) f\left(\underline{\beta}_{(m)} \mid m^{\prime}\right) f\left(m^{\prime}\right) j\left(m^{\prime}, m\right)}{f\left(\underline{\underline{\beta}} \underline{\underline{\beta}}_{(m)}, m\right) f\left(\underline{\beta}_{(m)} \mid m\right) f\left(\underline{\beta}_{\left(m^{\prime}\right)}^{\prime} \mid m\right) f(m) j\left(m, m^{\prime}\right)} .
$$

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

RJ and MCC

- MCC is a reversible jump with ...
$-\left(\underline{\beta}_{\left(m^{\prime}\right)}^{\prime}, \underline{u}^{\prime}\right)=(\underline{u}, \underline{\beta}(m))$,

$$
\underline{u}^{\prime}=\left\{\underline{\beta}_{\left(m_{l}\right)}: m_{l} \neq m^{\prime}\right\}, \underline{u}=\left\{\underline{\beta}_{\left(m_{l}\right)}: m_{l} \neq m\right\}
$$

- proposal densities are replaced by $\left.q\left(\underline{u} \mid \underline{\beta}_{(m)}, m, m^{\prime}\right)=\prod_{m_{l} \in \mathcal{M} \backslash\left\{m^{\prime}\right\}}\left\{f{\underline{(\underline{\beta}}\left(m_{l}\right)} \mid m^{\prime}\right)\right\}$ and $q\left(\underline{u}^{\prime} \mid \underline{\beta}_{\left(m^{\prime}\right)}^{\prime}, m^{\prime}, m\right)=\prod_{m_{l} \in \mathcal{M} \backslash\{m\}}\left\{f\left(\underline{\beta}_{\left(m_{l}\right)} \mid m\right)\right\}$.
- MCC also coincides to the simpler RJ with:
$-\left(\underline{\beta}_{\left(m^{\prime}\right)}^{\prime}, \underline{u}^{\prime}\right)=\left(\underline{u}, \underline{\beta}_{(m)}\right), \underline{u}^{\prime}=\underline{\beta}_{(m)}$ and $\underline{u}=\underline{\beta}_{\left(m^{\prime}\right)}^{\prime}$,
- proposal densities are replaced by

$$
q\left(\underline{u} \mid \underline{\beta}_{(m)}, m, m^{\prime}\right)=f\left(\underline{\beta}_{\left(m^{\prime}\right)}^{\prime} \mid m^{\prime} \neq m\right) \text { and }
$$

$$
q\left(\underline{u}^{\prime} \mid \underline{\beta}_{\left(m^{\prime}\right)}^{\prime}, m, m^{\prime}\right)=f\left(\underline{\beta}_{(m)} \mid m \neq m^{\prime}\right)
$$

2.1.4 Markov chain Monte Carlo model composition (MC ${ }^{3}$)

The Procedure

- Suppose that ...
- $f\left(\underline{\beta}_{(m)} \mid m, \underline{y}\right)$ is available for all models $m \in \mathcal{M}$,
$-f(\underline{y} \mid m)$ is also known.
- Consider MCC (or RJ) with

$$
\left.q\left(\underline{\beta}_{(m)} \mid \underline{\beta}_{\left(m^{\prime}\right)}^{\prime}, m, m^{\prime}\right)=f \underline{\beta}_{(m)} \mid m, \underline{y}\right)
$$

- If $\left(\underline{\beta}_{(m)}, m\right)$ is the current state, then
- Generate $\underline{\beta}_{(m)}$ from $f\left(\underline{\beta}_{(m)} \mid \underline{y}, m\right)$ (optional).
- Propose a new model m^{\prime} with probability $j\left(m, m^{\prime}\right)$.
- Generate $\underline{\beta}_{\left(m^{\prime}\right)}^{\prime}$ from the posterior $f\left(\underline{\beta}_{\left(m^{\prime}\right)}^{\prime} \mid m, \underline{y}\right)$.
- Accept the proposed model m^{\prime} with probability

$$
\begin{aligned}
\alpha & =\min \left(1, \frac{f\left(\underline{y} \mid m^{\prime}\right) f\left(m^{\prime}\right) j\left(m^{\prime}, m\right)}{f(\underline{y} \mid m) f(m) j\left(m, m^{\prime}\right)}\right) \\
& =\min \left(1, B_{m^{\prime} m} \frac{f\left(m^{\prime}\right) j\left(m^{\prime}, m\right)}{f(m) j\left(m, m^{\prime}\right)}\right)
\end{aligned}
$$

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

2.2 Variable Selection Algorithms

2.2.1 Stochastic Search Variable Selection

- Originally for Normal models (1993) and then applied in other GLM type models.
- The dimension of the model is constant.
- The model likelihood is given by $f(\underline{y} \mid \underline{\beta})$ for all models.
- The model indicator m is substituted by $\underline{\gamma}^{T}=\left(\gamma_{1}, \ldots, \gamma_{p}\right)$.
- For specified k_{j} and $\underline{\Sigma}_{j}$, the indicator variables γ_{j} are involved in the model through the prior

$$
\underline{\beta}_{j} \mid \gamma_{j} \sim \gamma_{j} N\left(0, \underline{\Sigma}_{j}\right)+\left(1-\gamma_{j}\right) N\left(0, k_{j}^{-2} \underline{\underline{ }}_{j}\right)
$$

- Generally SSVS results differ from usual model selection (tend to be close for large k_{j}).

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

The Procedure
Suppose that the current state is $(\underline{\beta}, \underline{\gamma})$, then, for $j=1, \ldots, p$,

- Generate $\underline{\beta}_{j}$ from

$$
f\left(\underline{\beta}_{j} \mid \underline{\beta}_{\backslash j}, \underline{\gamma}, \underline{y}\right) \propto f(\underline{y} \mid \underline{\beta}, \underline{\gamma}) f\left(\underline{\beta}_{j} \mid \gamma_{j}\right)
$$

$\underline{\beta}_{j}$: vector of parameters of j term.

- Generate $\gamma_{j} \sim \operatorname{Bernoulli}\left(\frac{O_{j}}{1+O_{j}}\right)$ with

$$
O_{j}=\frac{f\left(\gamma_{j}=1 \mid \underline{\beta}, \underline{\gamma}_{\backslash j}, \underline{y}\right)}{f\left(\gamma_{j}=0 \mid \underline{\beta}, \underline{\gamma}_{\backslash j}, \underline{y}\right)}=\underbrace{\frac{f\left(\underline{\beta} \mid \gamma_{j}=1, \underline{\gamma}_{\backslash j}\right)}{f\left(\underline{\beta} \mid \gamma_{j}=0, \underline{\gamma}_{\backslash j}\right)}}_{\text {Prior Ratio }} \underbrace{\frac{f\left(\gamma_{j}=1, \underline{\gamma}_{\backslash j}\right)}{f\left(\gamma_{j}=0, \underline{\gamma}_{\backslash j}\right)}}_{\text {Prior Odds }}
$$

$\underline{\gamma}_{\backslash j}$: all components of $\underline{\gamma}$ except γ_{j}.
Variable selection step does not (directly) depend on the model likelihood!

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

2.2.2 Kuo and Mallick Sampler

Characteristics:

- Originally for Normal models (1993) but can be applied in other GLM type models.
- Likelihood is given by $f(\underline{y} \mid \underline{\beta}, \underline{\gamma})$.
- Model indicator m is substituted by $\underline{\gamma}$.
- Indicator variables γ_{j} are involved in the model by substituting $\underline{\beta}_{j}$ by $\gamma_{j} \underline{\beta}_{j}$ in the linear predictor.
- Prior is given by $f(\underline{\beta})$ for all models.
- Generally KM results differ than other model selection methods due to the fact that the underlying priors are automatically defined by $f(\beta)$.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

The Procedure
If the current state is $(\underline{\beta}, \underline{\gamma})$, then, for $j=1, \ldots, p$,

- Generate $\underline{\beta}_{j}$ from
$-f(\underline{y} \mid \underline{\beta}, \underline{\gamma}) f\left(\underline{\beta}_{j} \mid \underline{\beta}_{\backslash j}\right)$ if $\gamma_{j}=1$
$-f\left(\underline{\beta}_{j} \mid \underline{\beta}_{\backslash j}\right)$ if $\gamma_{j}=0$
- Generate $\gamma_{j} \sim \operatorname{Bernoulli}\left(\frac{O_{j}}{1+O_{j}}\right)$ with

$$
O_{j}=\underbrace{\frac{f\left(\underline{y} \mid \underline{\beta}, \gamma_{j}=1, \underline{\gamma}_{\backslash j}\right)}{f\left(\underline{y} \mid \underline{\beta}, \gamma_{j}=0, \underline{\gamma}_{\backslash j}\right)}}_{\text {Likelihood Ratio }} \underbrace{\frac{f\left(\gamma_{j}=1, \underline{\gamma}_{\backslash j}\right)}{f\left(\gamma_{j}=0, \underline{\gamma}_{\backslash j}\right)}}_{\text {Prior Odds }} .
$$

Advantage: extremely straightforward.
Disadvantage: There is no flexibility to improve efficiency.

2.2.3 Gibbs Variable Selection

Characteristics

- Natural hybrid of SSVS and the Kuo and Mallick (1998) sampler
- Same likelihood as in Kuo and Mallick Sampler.
- Specify prior as $f(\underline{\beta} \mid \underline{\gamma}) f(\underline{\gamma})$.

Consider the partition of $\underline{\beta}=\left\{\underline{\beta}_{(\underline{\gamma})}, \underline{\beta}_{(\backslash \underline{\gamma})}\right\}$ into
$-\underline{\beta}_{(\underline{\gamma})}:$ parameters in model $\left(\gamma_{j}=1\right)$
$-\underline{\beta}_{(\backslash \underline{\gamma})}:$ parameters not in model $\left(\gamma_{j}=0\right)$
then $f(\underline{\beta} \mid \underline{\gamma})$ may be partitioned into

- Prior: $f\left(\underline{\beta}_{(\underline{\gamma})} \mid \underline{\gamma}\right)$ and Pseudoprior: $f\left(\underline{\beta}_{(\backslash \gamma)} \mid \underline{\beta}_{(\underline{\gamma})}, \underline{\gamma}\right)$.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection
The Procedure
If the current state is $(\underline{\beta}, \underline{\gamma})$, then

- Generate parameters $\underline{\beta}_{(\underline{\gamma})}$ from

$$
f\left(\underline{\beta}_{(\underline{\gamma})} \mid \underline{\beta}_{(\underline{\gamma})}, \gamma, \underline{\gamma}\right) \propto f(\underline{y} \mid \underline{\beta}, \underline{\gamma}) f\left(\underline{\beta}_{(\underline{\gamma})} \mid \underline{\gamma}\right) f\left(\underline{\beta}_{(\gamma \underline{\gamma})} \underline{\beta}_{(\gamma)}, \underline{\gamma}\right)
$$

- Generate pseudo-parameters $\underline{\beta}_{(\backslash \underline{\gamma})}$ from $f\left(\underline{\beta}_{(\backslash \underline{\gamma})} \underline{\beta}_{(\underline{\gamma})}, \underline{\gamma}^{\prime}\right)$
- Generate $\gamma_{j} \sim \operatorname{Bernoulli}\left(\frac{O_{j}}{1+O_{j}}\right)$ with

$$
O_{j}=\underbrace{\frac{f\left(\underline{y} \mid \underline{\beta}, \gamma_{j}=1, \underline{\gamma}_{\backslash j}\right)}{f\left(\underline{y} \mid \underline{\beta}, \gamma_{j}=0, \underline{\gamma}_{\backslash j}\right)}}_{\text {Likelihood Ratio }} \underbrace{\frac{f\left(\underline{\beta} \mid \gamma_{j}=1, \underline{\gamma}_{\backslash j}\right)}{f\left(\underline{\beta} \mid \gamma_{j}=0, \underline{\gamma}_{\backslash j}\right)}}_{\text {Prior/Pseudoprior Ratio }} \underbrace{\frac{f\left(\gamma_{j}=1, \underline{\gamma}_{\backslash j}\right)}{f\left(\gamma_{j}=0, \underline{\gamma}_{\backslash j}\right)}}_{\text {Prior Odds }}
$$

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

$\underline{\text { Simpler Approach }}$

- Assume prior: $f\left(\underline{\beta}_{j} \mid \underline{\gamma}_{j}\right)=\gamma_{j} N\left(\mathbf{0}, \underline{\Sigma}_{j}\right)+\left(1-\gamma_{j}\right) N\left(\underline{\bar{\mu}}_{j}, \underline{S}_{j}\right)$, $\underline{\bar{\mu}}_{j}$ and \underline{S}_{j} : are pseudoprior parameters (tuned to achieve optimal convergence).
- The full conditional posterior distribution is now given by

$$
f\left(\underline{\beta}_{j} \mid \underline{\beta}_{\backslash j}, \underline{\gamma}, \underline{y}\right) \propto\left\{\begin{array}{cc}
f(\underline{y} \mid \underline{\beta}, \underline{\gamma}) N\left(0, \underline{\Sigma}_{j}\right) & \gamma_{j}=1 \\
N\left(\underline{\bar{\mu}}_{j}, \underline{S}_{j}\right) & \gamma_{j}=0
\end{array}\right.
$$

This approach is ...

- Simple to apply
- Efficient when covariates are not highly correlated.
- Easy to specify pseudopriors Get $\underline{\bar{\mu}}_{j}$ and \underline{S}_{j} : from a pilot run of the full model; see

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

2.3 Proposal Distributions

- Proposal Distributions for Model Parameters
- Independent distributions for each term $j: N\left(\underline{\bar{\mu}}_{j}, \underline{S}_{j}\right)$.
- SSVS type proposal: $N\left(\mathbf{0}_{d_{j}}, \underline{\Sigma}_{j} / k_{j}^{2}\right)$.
- Maximum likelihood based: $N\left(\underline{\hat{\beta}}_{(m)}, \underline{\hat{\Sigma}}_{(m)}\right)$.
- Alternative easy-to-use choice: $N\left(\underline{\hat{\beta}}_{(m)}, \underline{\underline{\Sigma}}_{(m)} / k^{2}\right)$.
- Using conditional maximised likelihood.
- Giudici and Roberts (1998) automatic choice.
- Brooks, Giudici and Roberts (2001): Optimal Proposals
- Green and Mira (2001): Delayed rejection algorithm. Dellaportas and Forster (1999).

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

- Proposal Distributions on Model Space
- Common proposal: Uniform distribution.
- 'Local' and 'Global' proposals.
$-j(m, m)=0$ better than $j(m, m)>0$ (Liu 1996a,b).
- Set $j\left(m, m^{\prime}\right)$ using Laplace or BIC approximations.
- Use an $M C^{3}$ when size of \mathcal{M} is large.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

2.3.1 Proposal Distributions for Model Parameters

- Independent distributions for each term $j: N\left(\underline{\bar{\mu}}_{j}, \underline{S}_{j}\right)$. Get pseudoparameters from pilot run of the full model.
- SSVS type proposal: $N\left(\mathbf{0}_{d_{j}}, \underline{\Sigma}_{j} / k_{j}^{2}\right)$, with $\underline{\Sigma}_{j}$ the prior covariance matrix.
- Maximum likelihood based: $N\left(\underline{\hat{\beta}}_{(m)}, \underline{\underline{\hat{\Sigma}}}_{(m)}\right)$; where $\underline{\hat{\beta}}_{(m)}$ and $\underline{\hat{\Sigma}}_{(m)}$ are the MLE of model m.
- Alternative easy-to-use choice: $N\left(\underline{\underline{\beta}}_{(m)}, \underline{\Sigma}_{(m)} / k^{2}\right)$.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection	
- Using conditional maximised likelihood: $\begin{gathered} q\left(\underline{\beta}_{j} \mid \underline{\beta}_{\left(\gamma_{j}=0, \underline{\gamma}_{\backslash j}\right)}, \gamma_{j}=1, \gamma_{j}=0, \underline{\gamma}_{\backslash j}\right)= \\ N\left(\left(\underline{X}_{j}^{T} \underline{\hat{H} X}_{j}\right)^{-1} \underline{X}_{j}^{T} \underline{\hat{H}} \underline{\eta}_{j}^{*},\left(\underline{X}_{j}^{T} \underline{\hat{H} X}_{j}\right)^{-1}\right), \end{gathered}$ where - $\underline{\hat{H}}$ is the weight matrix used in observed information matrix of t e 'saturated' model and - $\underline{\eta}_{j}^{*}$ is a vector with elements given by $\left\{\underline{\eta}_{j}^{*}\right\}_{i}=g\left(y_{i}\right)-\sum_{l \in \mathcal{V} \backslash\{j\}} \gamma_{l} \underline{x}_{i l} \underline{\beta}_{l} .$ Alternatively, for simplicity, we may substitute the covariance matrix by $\underline{\Sigma}_{j} / k^{2}$.	

- Giudici and Roberts (1998) automatic choice. Scale parameter varies according to proposed values maximizing the acceptance probability when proposed parameters are zero.
- Brooks, Giudici and Roberts (2001) proposals by maximising acceptance ratio.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

2.3.2 Proposal Distributions on Model Space

- Common proposal: Uniform distribution.
- 'Local' and 'Global' proposals.
- Global proposals result in low acceptance rates
- Local proposals are preferred (in structured \mathcal{M}).
- Generally, RJ with local proposals perform well. May exhibit difficulties in some ill-posed problems. In such cases combination may be optimal.
- $j(m, m)=0$ is more efficient than $j(m, m)>0$ (Liu 1996a,b).
- Set $j\left(m, m^{\prime}\right)$ using Laplace or BIC approximations.
- When size of \mathcal{M} is large:

Use an $M C^{3}$ based on approximations to get rough estimates of posterior weights.

Alternatively, for simplicity, we may substitute the covariance matrix by $\underline{\Sigma}_{j} / k^{2}$.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

3 Prior Specification

3.1 Jeffreys-Lindley Paradox

Consider two models m_{0} and m_{1};

- $d(m)$ dimension of model m,
- $d\left(m_{0}\right)<d\left(m_{1}\right) ;$ model m_{0} is simpler.

1. If sample size $n \rightarrow \infty$: $B_{10} \rightarrow 0$

Bayes factor supports simpler models in contradiction to significance tests (Lindley, 1957, Bk).
2. If prior variance of additional parameters $\rightarrow \infty: B_{10} \rightarrow 0$ (Bartlett, 1957, Bk).

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection
(1) and/or (2) are referred in literature as

We focus on Variable Selection Problems for GLM.
Let us consider a GLM with $n \times 1$ vector of linear predictors given by

$$
\underline{\eta}=\underline{X}_{(m)} \underline{\beta}_{(m)}
$$

- $\underline{X}_{(m)}=$ design matrix of model m
- $\underline{\beta}_{(m)}=$ vector of parameters involved in the linear predictors.

3.2 Prior Distributions for the parameters of the

 linear predictor$$
f\left(\underline{\beta}_{(m)} \mid m\right) \sim N\left(\underline{\mu}_{\beta_{(m)}}, \underline{\Sigma}_{(m)}\right)
$$

Low Information Prior Distributions proposed in literature:
Normal Independent priors, $\underline{V}_{(m)}=\operatorname{Diagonal}\left(v_{i}^{2}\right)$:

- George and McCullogh (1993, JASA) in SSVS
- Geweke (1996, B.Stat.): Independent truncated normal distributions in regression.
- $\underline{\mu}_{\beta_{m}}=\mathbf{0}$: prior centered against alternative hypothesis.
- $\underline{\Sigma}_{(m)}=c^{2} \underline{V}_{(m)}$ or $\underline{\Sigma}_{(m)}=c^{2} \underline{V}_{(m)} \sigma^{2}$ in regression.

The choice of $\underline{\underline{\Sigma}}_{(m)}$ remains difficult. Two types of prior distributions
Non-diagonal Covariance Matrix

- REGRESSION: $\underline{\Sigma}_{(m)}=c^{2} \underline{V}_{(m)} \sigma^{2}$
* $\quad \underline{V}_{(m)}^{-1}=\underline{X}_{(m)}^{T} \underline{X}_{(m)} \rightarrow$ Zellner's g-priors (Zellner, 1980).
* $\quad c^{2} \in[10,100]$ proposed by Smith and Kohn (1996, J.Econ.).
* $\quad c^{2}=n \rightarrow$ Unit Information priors (Kass and Wasserman,

1995, JASA).

* Fernandez et al. (2001, J.Econ.) used various values for c^{2}; proposed $c^{2}=\max \left\{d(m)^{2}, n\right\}$.
proposed $c^{2}=\max \left\{d(m)^{2}, n\right\}$.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

- Contingency tables: $\underline{\Sigma}_{(m)}=c^{2} \underline{V}_{(m)}$
* Albert (1996, Can.J.St.): based on prior beliefs on odds ratios.
* Dellaportas and Forster (1999,Bk) based on Knuinman and Speed $(1988, B c) ; \underline{V}_{(m)}^{-1}=\underline{X}_{(m)}^{T} \underline{X}_{(m)}, c^{2}=2 \times \#$ cells.
* Ntzoufras et al. (2000, JSCS): combination of the above for SSVS.
- GLM \rightarrow Raftery (1996, Bk):
* diagonal covariance matrix and mean zero for covariates based on sample variances.
* Nonzero mean and correlation of intercept with the rest of parameters.
* $c^{2}=2.85^{2}$ based on mathematical arguments.
- Ntzoufras et al. (2001): Constructed 'equivalent' priors across GLM with different link function based on Taylor expansion.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

- Unit Information Prior $\underline{\Sigma}_{(m)}=n\left(-\underline{H}_{(m)}\right)^{-1}$ (Kass and Wasserman, 1995, JASA); $\underline{H}_{(m)}$ is the Hessian matrix.
- Kuo and Mallick (1998, Sankya): Define prior only on full model.
- Using Imaginary data to construct an informative prior: Chen et al. (1999, JRSSB).
- George and Foster (2000, Bk): Empirical Bayes Approach.
- Expected Posterior Prior Distributions (Perez and Berger, 2000)

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

3.3 Prior Distributions on Model Space

- Usual naive prior: Uniform prior on model space \mathcal{M} $p(m)=1 /|\mathcal{M}|$. Informative in terms of dimension (Chipman et al., 2000, Tec.Rep.).
- Alternative: Use prior on dimension (Chipman et al. , 2000, Tec.Rep.).
- Use Beta prior on common inclusion probability (George and McCullogh, 1997, St.Sin., Kohn et al., 2001 St.Comp.).
- Elicit imaginary data: Chen et al. (1999, JRSSB)
- Use Empirical Bayes Approach (George and Foster, 2000, Bk)
- Prior distribution based on Dilution of models (George, 1999, B.Stat).

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

3.4 What Prior in BUGS

- Standardize variables or use STZ constraints
- Use unit information priors (may incorporate data)
- Empirical approach: Estimate posterior variance and set prior variance $=c^{2} \times$ posterior variance.
For $c^{2}=1$ (approx) posterior Bayes factor.
For $c^{2}=n$ (approx) unit information prior (BIC)
- Use $\underline{\Sigma}_{m}=\left(\underline{X}_{m}^{T} \underline{X}_{m}\right)^{-2} \sigma^{2}$ for Normal models
- For logistic regression models and/or poisson log-linear models may use priors of Dellaportas et al. $(2000,2002)$.
- Generally use a range of prior distribution base inference.

4.1 Carlin and Chib Method Using BUGS

4 Bayesian Model and Variable Selection

- BUGS Examples vol.2, page 47, example 13: Pines dataset.
- Data originally used by Williams (1959, Regression Analysis) and Using Bugs re-analyzed by Carlin and Chib (1995, JRSS,B).
- 42 speciments of radiata pine.
$-y_{i}$: maximum comprehensive strength.
$-x_{i}$: density.
$-z_{i}$: density adjusted for resin content.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

- Two competing models:
- Model 1: $y_{i} \sim \operatorname{Normal}\left(\alpha+\beta x_{i}, \tau_{1}\right)$
- Model 2: $y_{i} \sim \operatorname{Normal}\left(\gamma+\delta z_{i}, \tau_{2}\right)$
- Data originally used by Williams (1959, Regression Analysis) and re-analyzed by Carlin and Chib (1995, JRSS,B).
- 42 speciments of radiata pine.
$-y_{i}$: maximum comprehensive strength.
$-x_{i}$: density.
$-z_{i}$: density adjusted for resin content.
Alternative we could have written $\mu_{i}=I(m=1)\left(\alpha+\beta x_{i}\right)+[1-I(m=1)]\left(\gamma+\delta z_{i}\right)$

51
Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

	Model 1	Model 2
Model Structure	$Y_{i} \sim N\left(0, \tau_{1}\right)$	$Y_{i} \sim N\left(0, \tau_{2}\right)$
Prior	$\mu_{i}=\alpha+\beta x_{i}$	$\mu_{i}=\gamma+\delta z_{i}$
Pseudoprior	$f\left(\alpha, \beta, \tau_{1} \mid m=1\right)$	$f\left(\gamma, \delta, \tau_{2} \mid m=2\right)$

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

Procedure:

$-f(\alpha \mid m)=N\left(\mu_{\alpha}[m], \tau_{\alpha}[m]\right)$
$-f(\beta \mid m)=N\left(\mu_{\beta}[m], \tau_{\beta}[m]\right)$
$-f\left(\tau_{1} \mid m\right)=\Gamma(r 1[m], l 1[m])$

- for $m=1$: Prior
- for $m=2$: Pseudo-Prior
- MODEL 2

1. Pilot Run 1: Run MCMC for Model 1
2. Estimate parameters of Model 1
3. Pilot Run 2: Run MCMC for Model 2
4. Estimate parameters of Model 2
5. Run CC algorithm with pseudoparameters specified by 2 and 4
$-f(\gamma \mid m)=N\left(\mu_{\gamma}[m], \tau_{\gamma}[m]\right)$
$-f(\delta \mid m)=N\left(\mu_{\delta}[m], \tau_{\delta}[m]\right)$
Comment 1: The Effect of Lindley's Paradox is not direct since the two models have the same dimension.
$-f\left(\tau_{2} \mid m\right)=\Gamma(r 2[m], l 2[m])$
Comment 2: We may change prior model probabilities to achieve

- for $m=2$: Prior mobility across models and estimate posterior or Bayes factors more accurately.

4.2 Bayesian Variable Selection in BUGS

4.2.1 Illustrative Example: $2 \times 2 \times 2$ Contingency Table

- Data taken from Healy (1988).
- 3-way table
- Factor $\mathrm{A}=$ condition of the patient (more or less severe),
- Factor $\mathrm{B}=$ if the patient was accepting antitoxin medication
- Factor C (response) $=$ whether the patient survived or not.
- Use a Logistic Regression Model

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

- RESPONSE: Factor C (response) $=$ Survival
- EXPLANATORY TERMS:
- Factor A =Condition
- Factor B =Antitoxin
- Interaction $\mathrm{AB}=$ Condition*Antitoxin
- MODELS
- MODEL 1: $\mathrm{AB}=\mathrm{A}+\mathrm{B}+\mathrm{AB}$
- MODEL 2: $\mathrm{A}+\mathrm{B}=\mathrm{A}+\mathrm{B}$
- MODEL 3: A = A
- MODEL 4: $\mathrm{B}=\mathrm{B}$
- MODEL 5: null= constant

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

Condition (A)	Antitoxin (B)	Survival(C)	
		No	Yes
More Severe	Yes	15	6
	No	22	4
Less Severe	Yes	5	15
	No	7	5

Table 3: Example Dataset

Tampe Dast

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

PRIOR DISTRIBUTIONS

- prior variance $=4 \times 2$
- prior probability of each model $1 / 5$:
$-\gamma_{A B} \sim \operatorname{Bernoulli}(1 / 5)$
$-\gamma_{i} \mid \gamma_{A B} \sim \operatorname{Bernoulli}(\pi)$, with $\pi=0.5\left(1-\gamma_{A B}\right)+\gamma_{A B}$ for $i \in\{A, B\}$.

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

BUGS CODE FOR SSVS
The Model
for (i in 1:N) \{
r [i] ~dbin(p[i],n[i]);
$\operatorname{logit}(\mathrm{p}[\mathrm{i}])<-\mathrm{b}[1]+\mathrm{x}[, 2] * \mathrm{~b}[2]+\mathrm{x}[, 3] * \mathrm{~b}[3]+\mathrm{x}[, 4] * \mathrm{~b}[4]$; \}
The Prior on Model Parameters
for (i in $2: N$) \{
c[i]<-1000.0
tau[i]<-pow(c[i] , $2-2 * g[i]) / 8$; bpriorm[i]<-0.0;
b[i]~dnorm(bpriorm[i], tau[i]); b[i]~dnorm(bpriorm[i],tau[i]);
\}

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection	73	Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection	74
The Prior on constant Model Parameters (we may use "non-informative") ```tau[1]<-0.1; bpriorm[1]<-0.0; b[1] ~dnorm(bpriorm[1],tau[1]);``` The Model Prior (common for all approaches) ```g[4] ~ dbern(0.2); include<-(1-g[4])*0.5+g[4]*1.0 g[2] ~ dbern(include); g[3] ~ dbern(include); g[1] ~dbern(1.0);```		BUGS CODE FOR KM The Model ```for (i in 1:N) { r[i] ~dbin(p[i],n[i]); logit(p[i])<-b[1] + x[,2]* g[2]* b[2] + x[,3]* g[3]* b[3] + x[,4]* g[4]* b[4]; }``` The Prior on Model Parameters ```for (i in 2:N) { tau[i]<-1/8; bpriorm[i]<-0.0; b[i]~dnorm(bpriorm[i],tau[i]); }```	
Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection	75	Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection	76
BUGS CODE FOR GVS The Model ```for (i in 1:N) { r[i]~dbin(p[i],n[i]); logit(p[i])<-b[1] + x[,2]* g[2]* b[2] + x[,3]* g[3]* b[3] + x[,4]* g[4]* b[4]; }``` The Prior on Model Parameters ```for (i in 2:N) { # tau[i]<-pow(100,1-g[i])/8; # bpriorm[i]<-0.0; tau[i]<-g[i]/8+(1-g[i])/(se[i]*se[i]); bpriorm[i]<-mean[i]*(1-g[i]); b[i]~dnorm(bpriorm[i],tau[i]); }```		In model specification we may use ```for (i in 1:N) {for (j in 1:N) { z[i,j]<-x[i,j]*b[j]*g[j] }} for (i in 1:N) { r[i]~ dbin(p[i],n[i]); logit(p[i])<-sum(z[i,]); }```	
Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection	77	Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection	78
ESTIMATING POSTERIOR PROBABILITIES IN BUGS \# defining model code \# 0 for constant, 1 for [A], 2 for [B], 3 for [A] [B], \# 6 for [AB] \# $\mathrm{mdl}<-\mathrm{g}[2]+2 * \mathrm{~g}[3]+3 * \mathrm{~g}[4]$; pmdl[1]<-equals(mdl,0) pmdl[2]<-equals(mdl,1) pmdl[3]<-equals(mdl,2) pmdl[4]<-equals(mdl,3) pmdl[5]<-equals(mdl,6)		burn-in period: 10,000 iterations. SSVS -> 500,000 iterations Kuo and Mallick's method ->500,000 iterations GVS -> and 100,000 iterations	

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection 85

5.4 Goodness of Fit

BUGS CODE: P-value for Skewness
for (i in $1: N$) \{
Y.rep[i]<-dnorm(mu[i],tau);
m3[i]<-power(sresid[i],3);
m3.rep[i]<-power((Y.rep[i]-mu[i])*sqrt(tau),3); \}
skew.obs<-sum (m3[])/N ;
skew.rep<-sum(m3.rep[])/N
p.skew<-step(skew.rep-skew.obs);

BUGS CODE: P-value for Kurtosis
for (i in $1: N$) \{
Y.rep[i]<-dnorm(mu[i],tau);
m4[i]<-power(sresid[i],4);
m4.rep[i]<-power((Y.rep[i]-mu[i])*sqrt(tau),4); \}
kur.obs<-sum (m4[])/N ;
ku.rep<-sum (m4.rep[])/N ;
p.kur<-step(kur.rep-kur.obs);

Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection

RESULTS (1000 burnin, 10000 iterations)				
Original With Outlier				
deviance	12.92	25.34		
p.skew	0.498	0.43		
p.kur	0.733	0.70		
	1/mean(p.in[i])			
p.inv [1]	5.32	25.83	0.188	0.039
p.inv [2]	6.82	136.20	0.147	0.007
p.inv [3]	2.85	10.35	0.351	0.097
p.inv [4]	6.89	11.85	0.145	0.084
p.inv [5]	5.12	14.44	0.195	0.069
NCV			8.20	15.69
		min(p.smaller, 1-p.smaller)		
p.smaller [1]	0.356	0.300	0.356	0.300
p.smaller [2]	0.799	0.853	0.201	0.147
p.smaller [3]	0.502	0.400	0.488	0.400
p.smaller [4]	0.202	0.352	0.202	0.352
p.smaller [5]	0.659	0.552	0.341	0.448

