		Contents
Tutorial on Bayesian Model and Variable Selection		1. Introduction to Model Selection.
·		2. Bayesian Model Selection via MCMC.
Ioannis Ntzoufras Department of Business Administration		(a) General Model Selection Algorithms (RJ, CC, MCC)(b) Variable Selection Algorithms (KM, SSVS, GVS)(c) Proposal Selection
University of the Aegean		3. Prior Specification.
		4. Bayesian Model and Variable Selection Using BUGS
(c) 2002, Athens, Greece		5. Model Diagnostics.
		6. Model Diagnostics in BUGS.
transform Tutavial on MCMC Baussian Model and Variable Selection	2	Januaria Manufana, Tutazial an MCMC Baussian Madal and Vasiable Solution
Izourras: 1 utorial on MCMC Dayesian Model and variable Selection	3	toannis wizoutras: Eutoriai on MCMC bayesian Model and Variable Selection
1 Introduction to Model Selection What is Model Selection?		Two MAJOR principles:
• Evaluation of performance of scientific scenarios and		1. Goodness of Fit
• Selection of the 'best'.		How close is theory [model] to reality [data].
'Best' Model?		2. Parsimony
• The 'best' performed model is totally subjective		Simplicity of theory;
• Different procedures (or scientists) support different scientific theories, scenarios and models.		In stats: Economy in parameters.
tzoufras: Tutorial on MCMC Bavesian Model and Variable Selection	5	Ioannis Ntzoufras: Tutorial on MCMC Bayesian Model and Variable Selection
Available Mathads		Disadvantages of Classical Stanuisa Procedures
Classical Model Selection: Significance Tests and Stepwise Methods:		 Large datasets we observe small p-values even if the hypothesized model is plausible.
(Forward Strategy, Backward Elimination, Stepwise Procedures).Bayesian Model Selection		• Exact significance level cannot be calculated since stepwise methods are sequential application of simple significance tests (Transform 1022)
 Posterior odds and posterior model probabilities. Utility measures. 		 (rreedman, 1983). The maximum F-to-enter statistic 'is not even remotely like an F-distribution' (Miller, 1984).
 rreactive criteria. Model Selection Criteria 		• The selection of a single model ignores model uncertainty
Alaike Information Criterion (AIC)		• We can compare only nested models.
- Bayes Information Criterion (BIC).		Different models are selected if we use different procedures or

					Estim	ate Pseud	lopriors:				
PILOT RUN	RESULTS				1. E	stimate N	(μ, τ) pseudopri	ors by			
Model 2: p[:	1]<-0.0	0.5%	07.5%		(a)	$\mu = pos$	terior mean from	n pilot run			
dl 1.0	sd MC error 0.0 3.1	2.5% media 62E-12 1.0 1	n 97.5% start sample .0 1.0 1001 1000		(b)	$\tau = (pos$	sterior s.d. from	pilot run) $^{-2}$			
lpha 0.0144 eta 0.0384	8 1.005 0.0 0.989 0.0	3181 -1.988 0 2649 -1.842 0	.02122 2.062 1001 1000 .0685 2.036 1001 1000		2. E	stimate Γ	(a, b) pseudoprio	rs by			
au[1] 1.04	1.03 0.0	2945 0.02231 0	.696 4.056 1001 1000		(a)	E(X) =	a/b, V(X) = a/b	$b^2 \Rightarrow b = E($	(X)/V(X)) and	
amma 7.021E elta 0.9522	-4 0.04908 0.0 0.0498 0.0	01408 -0.09903 0 01652 0.8541 0	.001332 0.098 1001 1000 .9513 1.05 1001 1000		(1)	a = [E(L	$[X]^{2}/V(X)$		1.9		
au[2] 10.41	2.369 0.0	7938 6.239 10	0.18 15.39 1001 1000		(b)	a = (pos	sterior mean) $^{2}/(2$	posterior s.d	.) ²		
					(0)	v = (pos	sterior mean) / (I	Josterior s.u.)		
zoufras: Tutorial	on MCMC Bayesi	an Model and Variab	le Selection	63	Ioannis Ntzoufra	s: Tutorial or	1 MCMC Bayesian Mc	del and Variable	Selection		
1	1	0	11								
Model 1	m = 1 (prior)	m=2 (pseudoprior)	(Pilot Run)				Model 1			Model 2	
$\mu_{\alpha}[m]$	0.0	0.0	0.0008		Mod	al	V		V	N(0 -)	
$\tau_{\alpha}[m]$	10^{-6}	256	$(0.06047)^{-2} = 273.5$		Mod	ei	$Y_i \sim N(0,$	<i>τ</i> 1)	Ŷ	$\sim N(0, \tau_2)$	
$\mu_{\beta}[m]$ $\tau_{\alpha}[m]$	$0.0 \\ 10^{-4}$	1.0 256	$(0.05988)^{-2}$ - 278.9		Stru	cture	$\mu_i = \alpha + \mu$	βx_i	μ	$\gamma_i = \gamma + \delta z_i$	
r1[m]	10^{-3}	30	$6.92^2/(1.55)^2 = 19.9$		Prior		$f(\alpha m=1)$ $f(\alpha m=1)$	$\beta m = 1)$	$f(\gamma m =$	2) $f(\delta m$	i = 2)
l1[m]	10^{-3}	4.5	$6.92/(1.55)^2 = 2.88$				$N(0, 10^{-6})$ N	$(0, 10^{-4})$	$N(0, 10^{-1})$	$^{3}) N(0, 1)$	10^{-4})
Model 2	(pseudoprior)	(prior)	(Pilot Run)				$f(\tau_1 m=1) = \Gamma(1)$	$(0^{-3}, 10^{-3})$	$f(\tau_2 m =$	$2) = \Gamma(10^{-3})$	$^{3}, 10^{-}$
$\mu_{\gamma}[m]$ $\tau_{\gamma}[m]$	0.0 400	0.0 10^{-6}	0.0007 $0.04908^{-2} = 415.13$		Peou	doprior	$f(\alpha m-2) = f(\alpha m-2)$	$\beta m = 2$	$f(\alpha m -$	1) $f(\delta m$	(-1)
$\mu_{\delta}[m]$	0.0	0.0	0.9522		1 300	doprior	$f(\alpha m=2) = f(\alpha)$	p(m = 2)	J (// // / / / / / / / / / / / / / / /	1) J(0 m	<i>i</i> = 1)
$\tau_{\delta}[m]$	400	10^{-4}	$0.0498^{-2} = 403.22$				N(0, 256) 1	v(1,256)	N(0, 400)) $N(1,$,400)
r2[m]	46	10^{-3} 10^{-3}	$(10.41/2.369)^2 = 19.93$ 10.41/(2.369)^2 = 1.85				$f(\tau_1 m=2) = \mathbf{I}$	$\Gamma(30, 4.5)$	$f(\tau_2 m$	$= 1) = \Gamma(46)$	5, 4.5)
l2[m]	4.0	10	10.41/(2.309) = 1.85								
				-							
zoufras: Tutorial	on MCMC Bayesi	an Model and Variab	le Selection	65	Ioannis Ntzoufra	s: Tutorial or	MCMC Bayesian Mc	del and Variable	Selection		
				-							
pseud	loparameters										
mu.al	lpha[2]<-0.0;				ESTIN	MATING E	BAYES FACTOR				
mu. De	amma[1] < -0.0										
mu.ge mu.de	alta[1]<-1.0:					Pseudopr	iors $P(m=1)$	P(m=1 y)	РО	Bayes Fact	or
tau.a	alpha[2]<-256	•			1	BUGS	0.5	0.9992	1249	1249	
tau.1	peta[2] <-256	;			2	PILOT	0.5	0.9996	2499	2499	
tau.g	gamma[1]<-400	•			3	BUGS	0.9995	0.6140	1.591	3180	
tau.c	delta[1]<-400	;			4	PILOT	0 0005	0.6175	1.614	3007	
r1[2]	<-30;				** _	1 ILUI	0.0000	0.0110	1.014	0441	
	<-4.5;				5	Manual	0.9995	0.6290	1.695	3389	
11[2]					6	$\mathbf{C}\mathbf{C}$	0.9995	0.6890	2.215	4420	
11[2] r2[1]	<-46;						1				
11[2] r2[1] 12[1]	<-46; <-4.5;						ļ.				

6.4 Go	odness of	Fit				RESULTS (1000 burnin	, 10000 iterati	ons)	
BUGS COD	E: P-value fo	r Skewness				dowionas	Original	With Outli	er	
for (i in 1	·N) {					p.skew	0.498	∠5.34 0.43		
Y.rep[i	.]<-dnorm(mu	ı[i].tau):				p.kur	0.733	0.70		
m3[i]<-	power(sresi	d[i],3);				·			1/mear	n(p.in[i])
m3.rep	i]<-power((Y.rep[i]-mu[i])*sqrt(tau),3);			p.inv[1]	5.32	25.83	0.188	0.039
skew.ob	os<-sum(m3[])/N ;				p.inv[2]	6.82	136.20	0.147	0.007
skew.re	p<-sum(m3.r	rep[])/N ;				p.inv[3]	2.85	10.35	0.351	0.097
p.skew<	-step(skew.	rep-skew.obs);				p.inv[4]	6.89	11.85	0.145	0.084
BUGS COD	E: P-value fo	r Kurtosis				p.inv[5]	5.12	14.44	0.195	0.069
or (i in 1	:N) {					NCV			8.20	15.69
Y.repli	.]<-dnorm(mu	<pre>i[i],tau);</pre>							min(p.sm	maller, 1-p.smalle
m4[1]<-	power(sresi	(V rep[i]-mu[i])*sort(tau) 4) · }			p.smaller[1	.J 0.356	0.300	0.356	0.300
kur obs		(N ·	/*aq±0(0au/,4/; }			p.smailer[2	1 0.799	0.853	0.201	0.147
ku.rep<	-sum(m4.rep	DD)/N;				p.smaller[4	0.202	0.352	0.202	0.352
p.kur<-	step(kur.re	ep-kur.obs);				p.smaller[0.659	0.552	0.341	0.448
zoufras: Tutor	ial on MCMC B	Bayesian Model and Va	riable Selection	8	7 Ioar	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model a	and Variable	Selection
zoufras: Tutor	ial on MCMC B	Bayesian Model and Va	riable Selection	8	7 Ioai	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model a	and Variable ;	Selection
zoufras: Tutor	ial on MCMC B	ayesian Model and Va	riable Selection	8	7 Ioa	nnis Ntzoufras: Tutoi	ial on MCMC	Bayesian Model i	and Variable :	Selection
zoufras: Tutor	ial on MCMC B	ayesian Model and Va -2.00	riable Selection	8	7 Ioan	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model i	and Variable :	Selection
zoufras: Tutor resid[1] resid[2]	ial on MCMC B -0.40 0.80	ayesian Model and Va -2.00 3.59	riable Selection	8	7 Ioa	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model i	and Variable :	Selection
zoufras: Tutor resid[1] resid[2] resid[3]	-0.40 0.80 -0.00	Payesian Model and Va -2.00 3.59 -0.81	riable Selection	8	7 Ioa	nnis Ntzoufras: Tutoi	ial on MCMC	Bayesian Model a	and Variable :	Selection
zoufras: Tutor resid[1] resid[2] resid[3] resid[4]	-0.40 0.80 -0.00 -0.80	Payesian Model and Va -2.00 3.59 -0.81 -1.22	riable Selection	8	7 Ioa	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model t	and Variable :	Selection
zoufras: Tutor resid[1] resid[2] resid[3] resid[4] resid[5]	-0.40 0.80 -0.00 -0.80 0.39	Payesian Model and Va -2.00 3.59 -0.81 -1.22 0.37	riable Selection	8	7 Ioa	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model t	and Variable :	Selection
zoufras: Tutor resid[1] resid[2] resid[3] resid[4] resid[5] sresid[1]	-0.40 0.80 -0.00 -0.80 0.39 -0.51	-2.00 3.59 -0.81 -1.22 0.37 -0.73	viable Selection	8	7 Ioa	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model i	and Variable : VUTC	Selection
resid[1] resid[2] resid[3] resid[4] resid[5] presid[1] presid[2]	-0.40 -0.40 0.80 -0.00 -0.80 0.39 -0.51 1.00	-2.00 3.59 -0.81 -1.22 0.37 -0.73 1.30	riable Selection	8	7 Ioa	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model i	and Variable :	Selection
resid[1] resid[2] resid[3] resid[4] resid[5] sresid[1] sresid[2] sresid[2]	-0.40 0.80 -0.00 -0.80 0.39 -0.51 1.00 -0.00	Ayesian Model and Va -2.00 3.59 -0.81 -1.22 0.37 -0.73 1.30 -0.29	riable Selection	8	7 Іоал	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model i	and Variable : TUTC	Selection
zoufras: Tutor resid[1] resid[2] resid[3] resid[4] resid[5] sresid[1] sresid[2] sresid[3] sresid[4]	-0.40 0.80 -0.00 -0.80 0.39 -0.51 1.00 -0.00 -1.01	Ayesian Model and Va -2.00 3.59 -0.81 -1.22 0.37 -0.73 1.30 -0.29 -0.44	viable Selection	8	7 Ioau	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model i	and Variable : `UTC	Selection
zoufras: Tutor resid[1] resid[2] resid[3] resid[4] resid[5] rresid[1] rresid[2] rresid[3] rresid[3] rresid[4] rresid[5]	-0.40 0.80 -0.00 -0.80 0.39 -0.51 1.00 -0.00 -1.01 0.50	-2.00 3.59 -0.81 -1.22 0.37 -0.73 1.30 -0.29 -0.44 0.14	riable Selection	8	7 Ioa	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model i	and Variable : YUTC	Selection
zoufras: Tutor essid[1] essid[2] essid[3] essid[4] ressid[5] rressid[5] rressid[2] rressid[3] rressid[4] rressid[5]	-0.40 0.80 -0.00 -0.80 0.39 -0.51 1.00 -0.00 -1.01 0.50	-2.00 3.59 -0.81 -1.22 0.37 -0.73 1.30 -0.29 -0.44 0.14	viable Selection	8	7 Ioa	nnis Ntzoufras: Tutor	ial on MCMC	Bayesian Model i	and Variable : `UTC	Selection