WinBUGS Demo

Saghir A. Bashir

Amgen Ltd, Cambridge, U.K. Email: saghir_bashir@hotmail.com

4th January 2001

Outline

- Introduction
- BUGS and WinBUGS
- Graphical Models
- DoodleBUGS
- Example Simulation
- Power calculation
- Summary

Introduction

- Bayesian Inference Using Gibbs Sampling
 BUGS
- Analysis of Complex Models
- Bayesian Methods
- Markov Chain Monte Carlo Integration
 Useful when no closed form exists

Classic BUGS

- Declarative Language • Similar to Splus
- Complex Statistical Models
 - Missing data
 - Measurement Error
 No closed form for Likelihood
 - • • • • • •
- Graphical Modelling
- Flexible compared to approximations

WinBUGS

- Similar to Classic BUGS
 Plus new methodological developments
- Graphical representation of model
 DoodleBUGS
- Menu Control of session
- Cut and paste to other packages

BUGS and WinBUGS

- No data management facility
 Why reinvent the wheel?
- "Easy" interface with other packages
 - R and Splus
 - Stata (S. Bashir)
- Simple analysis of output

Graphical Models

- Complex multivariate probability models
 - Representation
 - Visualisation

• Graphs...

- simplify complex models
- $\boldsymbol{\cdot}$ communicate structure of the problem
- \cdot provide basis for computation

- Menu bar Model Gen inits
- Bottom left hand side

initial values generated

Plates

- Allow more complex structure, e.g.,
 - Repeated measures
 - Hierarchical models
- Extend our example to calculate power
 - r1 and r2 from Binomial distribution
 - Simulte r1 and r2 100 times per "update"
 - Calculate test statistic
 - Count number of times it falls in critical region

Test Statistic

- H₀: p1 = p2 = p vs H₁: p1 < p2
 - p1 = r1/size1 & p2 = r2/size2
- Test statistic (<u>p2 p1)</u> s.d.(p)

s.d.(p) = $\sqrt{(p(1-p)(1/size1 + 1/size2))}$

			Po	we	r			
•	• Data • lii si alj	st(pr ze1=2 pha.v	op1=.: 50,si al=1.	25, ze2= 96)	prop2= 150, N	=.35, J=100	,	
•	Resu	lts						
Node s	tatistics		MC orror	2.5%	median	97.5%	start	sample

Summary

- BUGS is a power tool
 - Bayesian AnalysisSimulation Tool
- Graphical Models
 - Doodle BUGS
 - Simple representation of model
- Easy to use!