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In the context of accident theory, the bivariate ge-
neralized Waring distribution (Xekalaki,1984) is known to
offer the possibility of obtaining distinguishable estima-
tes of the "contribution" of chance, risk exposure and pro-
neness to an accident situation. In this paper an estima-
tion procedure based on the first and second order facto-
rial mcments is discugsed for fittina the distribution to
data. Expressions for the asymptotic standard errors of
the estimators of the distribution parameters as well as of
the resulting estimators of the variance components that
represent the roles of the above mentioned factors are given.
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1. INTRODUCTION

Accidents, being a social problem, have been the object
of a number of studies aiming at preventing their occurrence
by enhancing our knowledge of the underlying mechanisms.Re-
cently, Xekalaki (1984) introduced a bivariate discrete di-
stribution, the bivariate generalized Waring distribution
(BGWD) , for the study of the accident experience of a popu-
lation in two successive time periods in the context of an
accident-proneness accident-liability model. The prcbabili-

ty function (p.f.) of this distribution is given by
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r=0,1,2,¢¢e.; 2=0,1,2,...; a,k,m,p >0

with h for "(h+s)/r(h}), h>o, s € R. Here X and Y denote

(s)
the numbers of accidents in the first and second period re-
spectively,

The accident model considered was based on the assump-
tion that, apart from chance, non-random factors contribute
to the happening of an accident and that these can be dis-
tinguished into factors related to the person's idiosyncracy
predisposition to accidents (accident proneness) and factors
related to the person's exposure to external accident risk
(accident liability). The BGWD then arises from a double
Poisson distribution of accidents with probhability-genera—
ting function exp {(A1|v)(s—1)+(A2|v)(t-1)} for individuals
with proneness v and liability Ai|v for period i of obser-
vation (i=1,2}) when 11!v and Azlv have independent gamma
distributions and v has a beta distribution of the second
kind.

It was shown by Xekalaki (1984) that in an accident
situation that can be described adequately by the BGWD the
effects of the threetypes of factors can be "measured" se-
parately, That was achieved by splitting the total variance
of the observations into three additive components cor-
responding to the effects of the three types of factors

i.e.

2 2 2 2
C_OA.+0V+OR (1.2)

2

where oi ’ ov and 02 represent the liability, proneness

R
and random components respectively. These can be expressed

in terms of the parameters a,k,m and p thus

alictm) (a+1) | ;2 a(k+m)§(a+p—1) , of = alem
(p=1) (p-2) (p=1) " (p=2) p-1

0'2=
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Therefore, any method of estimation of a,k,m and p will
lead to estimators for the above variance components and
hence for the effects of the causing factors. This fact is
of significant practical value as it throws some light onto
the mechanisms that may cause individuals to have accidents
and it can possibly lead to what is the ultimate objective:
a way to reduce the incidence of accidents. This oproblem
was originally tackled by Irwin (1968) who used the univa-
riate version of the generalized Waring distribution (UGWD).
However , he was led to indistinguishable estimates for the
proneness and liabilitv variance components.

To illustrate the bivariate approach, Xekalaki (1984)
fitted the BGWD to two sets of accident data using the
first and second order factorial moments of the distribu-
tion. She then used the resulting parameter estimates to
estimate the three variance camponents and assess the ef-
fects of the three causing factors.

In this vaver a greater insight will be given into the
principle of the estimation procedure used by Xekalaki (1984)
In particular, in section 3 explicit formulae for the dis-
tribution parameter estimators will be given as well as for
their variance-covariance matrix in terms of the parameters
of the distribution. Moreover, the asymptotic standard er-
rors of the estimators of the variance components are obtain-
ed through expressions involving the parameters of the BGWD
Some background information is first given in section 2.

2, SOME PRELIMINARY REMARKS
The univariate version of the distribution described

in the previous section (UGWD) has p.f. given by

° (k) Ay Ky 1
(a+p) (k) (a+k+o) () r!

P(X=r) = I r= 0,1,2,..- K]

For more information about the structure, properties and
applications of this distribution see Xekalaki (1981,1983
a,b).

It was shown by Xekalaki (1984) that the marginal dis-
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eributions of (1.1) as well as their convolution and the
conditional distributions of one margin given the other
are of the above form. Specifically, if

(X,Y) ~ BGWD(a;k,m;p) then X~UGWD(a,k;p), VY~ UGWD (a,m;p),
X+Y ~UGWD (a, k+m;p), X|(¥Y=y) ~UGWD (a+y, k;p+m) and

Y| (X=x) ~ UGWD (a+x, m; p+k). Beyond the general interest
that these properties have (bearing an analogy to those of
the bivariate normal distribution in the continuous case),
their practical importance should be noted . In an
accident situation , for example, one would naturally re-
quire the marginal accident distributions and the distribu-
tion of accidents over the entire period to be of the same
form. Moreover, the first three properties imply the.possi-
bility of infering about the contribution of proneness, li-
ability and chance in each of the two subperiods. This pos-
sibilitv stems from the fact that the marginal variances
oi and 03 can be split into estimable components in a man—
ner analogous to that exhibited by (1.2). Table 1 summari-

zes the estimating potential of the model.

TABLE 1

Estimators of tbe components of the variance of the
generalized Waring distribution,

Component Marginal Marginal Variance

due to variance of X |variance of Y of X+Y

Random ak i f 3 (R+h)

factors o1 -1 -1
k2a(a+p-1) m2a (a+p-1) (k+m) 23 (a+p-1)

Proneness = 5 = = 5= = 5=
(p=1) " (p=2) (p=1)“{p=-2) (p=1)° (p-2)

Liability | 8K @¥1) | anm @) ak+m) (a+1)
(o-1) (p~2) (p=1) (p=2) (p=1) (p~2)

Total a k(o) (ora-b)| a mipim1) (pra=1) | a(kdm) (ptk4m1) (ora-1)
(o-1%(0-2) (0=1)%(e-2) 122
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Here © represents an estimator of a parameter 9.
The factorial moments of the BGWD (a;k,m;p) are given

by the formula

_ 3G+ Fa) ™G ,
(.9-1)(0"2)--0(0"5-‘:‘]) i=0,1,2,...

Vi,

(2.1)

from which one can obtain for the moments of the BCGWD

. ak . am akm(a+p-1)
TR T U T e R e e
1,0 "X o= 1 0,1 Y p-1 1,1 XY (0_1)2(0_2)

_ 2 _ am(p+m-1) {p+a-1)
_O'Y = -

(o-1)2(p~2)

2_ ak(p+k-1) (pta-1)
(0-1)2(0-2)

0,2

3. ASYMPTOTIC STANDARD ERRORS

As mentioned before, Xekalaki (1984) fitted the BGWD
to accident data by a method that employs the first and se-~
cond order factorial moments of the distribution. In parti-
cular, if X,Y denote the numbers of accidents durina the
first and second period respectively, the associated estima-

ting equations are

X = ? k 7 = ? m
p-1 p-1
W—+§=a(a+1)A[k(k+1)+m(m+1)] 7 = afa+1) {cm (3.1)
(p=-1) (p-2) (p-1) (p-2)
where
T=1 3 50G-1f T =1 35 i(i-1) £,.
n o J j J'.. r n . . iJ ’



=_ 1 . - .
T = o .E_ i3 £.. , n .E. fij and fij is the observed
1,3 i,]

joint frequency. As a solution, we get

Rl

- XT (X+Y) ~ kY
k= ——= == <2, ' ==
XY (W+Z) = T(X“+Y ) X
(3.2)
A KXY+TX ~  ak+¥
a T e—— — — ’ o = — .
(T - XY) X

The asymptotic variance-covariance matrix V of these
parameter estimators can be obtained as follows:
Let 6 = (61, 65, 83, 94) denote the parameter vector

~

(a,k,m,p), é 2 (04, 6,, 04, 8,) denote the vector (4,K,&,0)
and let T = (t1, Tyr Ta T4) and t = (t1, t2, t3, t4) de—~

note the vectors (uX, e “(2,0) + ”(0,2)' u(1,1))and

(X, ¥, W+Z, T) respectively.
(r)

(Here = E(X(r)Y(l)) where X = X(X-1)...{(X-r+1),

Hir, )
X(O) = 1).
The parameter estimators ei are functions of the sample fac-
torial moments ti' say

6i=¢i(t1, t2, tas t4) , i=1,2,3,4.

Then, from the general theory we have

v=J 8 J°, {(3.3)
where
a6, T\ T 30, _
J=(J..)= i _ i i=1,2,3,4
= L) = = A = —t- ’ .
1) BGJ 8=8 ? ] t=T J=11213I4
and - (3.4)

S = (5;4) = (Cov(ty, t5)) , §=1,2,3,4

3.5
j=112I3I4 ( )



where

partial derivatives in (3.4) from (3.1)

J-
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is the transpose of J. Substituting for the

(or (3.2)) and

replacing 0, by 8y (or t, by Ti) we obtain
_ -1
J = (p=-1) X
r -1
ak
k a 0 - o1
am
m 0 a - -1
(2a+1) (k2 +m > +k+m) a(a+l) (2k+1) a(arl) (2m+l)  _ ala+l) (2p-3) (k2+m’ +kim)
o-2 o-2 b2 (0-1) (p-2)
(2a+l)km maf{a+l) ka{a+l) - akm{a+l) (2p-3)
p-2 p=2 p-2 (p=1) (p=2)

Inverting the matrix on the right hand side of the above
formula yields after much algebra the following expression

for

r
(a+1) [ (k4m) (m-k+p=1) ~k]

J:

1

%

J = (p=1) (k+m)

(a+1) [ (k4m) (k-mép-1) -m)

k{a+p=-1) m(a+p-1)
x2-m+k k (m%-x2-x) .
a am
13
m(k?-m’-m) m -k 4m -
ak a

} (-2} [k+(k+m) (k-m+a) ] {p-1) (p-2) {m+ (k+m) (m-k+a) ]

.

£6-2) {tor1) goom 1xPem?]

22
a+p-1 km{a+p=1)
2, 2
k{p-2) 1p-2) (k%+m" +k+m)
a{atl) ma(a+l)
m(p-2) (e-2) (x*+m 4k em)
ala+l) ka(a+l)

-~

~ (-1 tp-2?  (p=1)(p-2) X[k 3n-a k]

(o1

ak (a+p-1) am(atp=1)

alatl) (a+p-1)

akm{a+l) (a+p-1) J
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Also the matrix S is given by

/ / N/ )
1 00 0 0 o 1 0 0 0
2
5 = 0 1 0 0 0] Gﬁ O'Y— 0 1 0 4]
0 ¢} 1 1 [} wa GW V_\' 0 0 1 0
2
0 0 0 0 1 %3x 9%y %%w 9% 0o 0 1 ¢
\ _ e 2] '
cr,rx O’TY I+2 057 T/ \0 g 0 1) .
(3.6)

If we let m_ _ denote the sample statistic » it §° £/,
’ i,3 3
the elements of the symmetrical matrix in (3.6) can be de-~

rived by observing that

2 _1 2 2 _1 2
" n % 9% 1%
0g vVar(m> .) + og - 2Cov{(m~ m” )
W 0,2 Y 0,2 ™ o,1
o2 = Var(m~ ) + c:v-g - 2Cov{(m~ )
Z 2,0 X ovim 4 o
2 _ . 1
oF = Var(m™y 4)  ,  O3% = 7 %y
- - - — . — — = - - Yo o2
Ox = CovimTy gr mTg )= 0 3y 4 o Covimy o/m3 o) - o
— - - . — - - — z
OFx —Cov(m1’0, m1'1) '+ Opy Cov(m0'1,m0'2) o3
o7F = Cov(m0,1, mZ,O) -~ Oxy r Oy = COV(m0,1 m1'1)
Ow = Cov(mz'o, m0,2) - COV(mZ'O, m0'1)— Cov(m1,0, m0,2)
+ O‘X—Y-
Ofw = Covimy 4, mg o) = Covimy 4, mg )
GEZ = Cov(m1’1, m2,0) - Cov(m1'1, m1'0)
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where (see Kendall and Stuart (1977, p. 250))

- - 1 - - -
Cov (m m == (i -
( r,s’ u,v) n G r+u,s+v u r,s Ly u,v)’

- r
W, ¢~ E(X ¥%), r,s =0,1,2,...

Therefore the elements of S are given by

1 2 _ _ 1
511 T 1 % r S12 7 521 T 7 Oxy
S5 = S3q == (] 5 =g (ug 5 +uj o) +uj o -0y - 02}
713 31 "n *M1,2 x'70,2 2,0 3,0 Xy X
- =1 - . 212
514 % Sq1 = x D w00 Syt oy
Sy3 = S35 = T (M3 4 = w,(ug , + u3 )+ ug 4 -0, -02)
23 32 n ‘F2,1 Y'*o,2 2,0 0,3 XY Y
S = S —_ _1_ { - -
24 42 T Wy, T My ¥y 4

— - - - - - 2 -
S33 = n Mg,0 T 10,4 = (3 o tug )"+ 2u7
-4 (n + u7 - u> - U Lu )+02 +02+ZS }
2,1 1,2 2,0 My 0,2"X' "TTx TOy TeSgy

S,,=5

=1 w4+ ul -u7 Ll ot Ul ,-ul o -uyu,)-unl
34743 n ‘3,1 1,37 "1,1'%2,0 0,2 70,2 "X Py 1,2

'“2n}

- L2
€44 75 (03,5 w3’y b

Expressions for the central moments in terms of the para-

meters a,k,m and p can be obtained using (2.1) through the
formula
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r £ i j
u=ZZSrS

. 3.7
T2 =g j=0 ), (3.7

where S; is the Stirling number of the second kind. (See

Jordan (1965), p.170). Thus finally, after some simplifi-
cation one obtains for the elements of S the following exp-
ressions

_ ak(p+k-1) (p+a-1)
" n(p-1) 2 (p-2)

akm(p+a-1)
n(p-1) 2 (p-2)

S S,,= & =

=5 - ak

813 %531 T nlo-1) (P27

w+p—1Hm-k-p+1)—a[(k+m)(a+p—1)+(k2+ mz)(a+1)]

p-1
, {a+1) [m(m+1) (a+2) +(k+1) (3prak+2at2k=5)1 | | 241)4p-2
p=-3
Si4 = Syq = a(a+1) knl(0-1) (p=3) +(a+2) (k+1) (p=1) ~ak (o-3)]
41 n(p-1)2 (p-2) (p-3)
g = am(ptm-1) (p+a-1) , S..=S.,.= am .
22 h(e-1) % (p-2) 23 732 [ (6-1) (p-2)

(a+p-1){k-m~p+1)=-a [ (k+m) (a+p—-1) + (k2+m2) (a+1)]
-1

. (a+1) [k (k+1) (a+2) +(m+1) (Bprami2as2m=5)] | 1 (o41)40-2
p=-3

S, =54, a(a+1)km[ (p=1) (p=3) +(a+2) (m+1) (p-1)—am(p-3)]
24 42 n (=112 (p-2) (p-3)

2,,2, 2 2
—Kem— a(a+1] " (k“+m”+k+m)

S =.——a—— 3
n(p-1) (p=1) (p—2)

33

-+
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(ktm) [ (a41) (p=1) + (p+k+m=1) (p—a+1) 1+ (k*+m?) (2ap-3a+p=-1)

+
(p-1) {(p-2)
. la¥1) (a+2) [k (k+1) (k+2) (ak+3a+3k+40-7))
(p—2) (p~3) (p—-4)
N (a+1) (a+2) [m(m+1) (m+2) (am+3a+3m+4p=-7) +2 (a+3) km (k+1) (m+1 )
(p=2) (p=3) (p—~4)
2.2
s =g = alatl)km 1 . _a(a+l) (m®+k +m+k)
3743 L (p-1) (p-2) (p-1) (p-2)
. (a+2)[(a+3)(m2+k2+3m+3k+4)+2(p-4)(k+m+2)]l
{(p-3) (p—-4)
s = a(a+1)km {1_ a(a+1)km
44~ T T —
n(p-1) (p-2) (p-1) (p—2)

-+

(a+2) [(a+3) (k+1) (m+1) +(p-4) (k+m+2) ] ‘
(p-3) (p-4)

Hence, for a given practical situation the estimators of
the variance components as given by Table 1 will have
asymptotic variances obtained by

=TI,V I7, . (3.8)
with i for component type, i.e., random (i=l), proneness

(i=2), liability (i=3) and j for time period, i.e., first
(j=1), second (j=2) overall (j=3}. Here

262 . 262 352 302,
= <43, 4,34, 4 (3.9)
1) da ok am :Je) ~
9=8
i=1,2,3, j=1,2,3 which substituting for the appro-

priate partial derivatives, reduce to



126

_ 1 ak
I,y = =1 (k,a,0,- B:T)
12 p—1 V<4, 0—1
= 1. _ a(k+m)
I3 = o= (k+m,a,a, —5:7——)
2
I, = -————%%————- (k(2a+o—1),2a(aﬂ0-1),0, ak [~20"+(5-3a)p+5a-3] )
{0-1)"(p—2) (0-1) (p~2)
2
I,, = --———'§—-—-—-—(m(2a+o—1), 0, 2a(ato-1), Znl=20"+(5-3a)p+5a-3) )
(o~ " (p-2) (1) (p-2)
_ k4m
I,3= *“*"1;-—_'((kﬁm)(2a+p—1), 2a(ato—-1), 2a(a+p-1),
{01} (p-2) 5
a(k+m) [=20°+(5-3a) p+5a=3] )
(0-1) (p~2)
131 = _.....1.___._ (k(2a+1)'a(a+1)' 0, - ak(a+1) (2 —3) )
(-1 {p-2) (01} (p-2)
Iy = —————(m(2a+1}, 0, a(as1), - N o3 )
(-1 (p-2) (p1) (p-2)
1 ((k-lm) (2at1) ,a(at) ,a(a+1), - 2dcm) (at1) (20-3) )
T33 = (0-1) (0~-2) .
{o-1) (p-2)

4, AN EXAMPLE

To illustrate the described procedure for the evalua-
tion of the standard errors involved in the estimation of
the parameters of the BGWD and of the variance components,
consider the motor~vehicle accident data of Table 2 (U.S.
Bureau of Public Roads, 1938) to which Xekalaki (1984)

fitted the BGWD.
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TABLE 2(*)

Accidents to Connecticut General Drivers

1931 - 1933
xN | o 1 2 3 4 MARG X
0 23881 2117 242 17 T2 i 26259
23881.17 2144.91 213.43  23.26, 2.75 ;| 26265.52
]
¢ '
1 2386 419 57 9 '3 1 2874
2374.65  422.20  62.36  8.97 , 1.31 || 2863.49
2 Fom- :
a 2 275 64 12 ‘5 1 387
, 258.90 68.33  13.32 ' 2.37 0.41 |  343.33
- P | !
[2ad r i
o 3 22 5 ¥ 2 0 a1
30.65 10.68 !2.57 0.5 0.11; 44.56
e e e mm e am =g 1 1
4 | 5 4 v 0 1 0o . 10
' 391 __ 1.68, ,0.48 _ 0.12 0.03 ! 6.22
MARG Y 26569 2609 313 34 6 29531

26549.29 2647,80 292.17 35.26 4.61 29529.13

x2= 17.9978 with 10 degrees of freedom

p(x2 > 17.9978)= .056
(*) Broken lines indicate the grouping adopted in the ap-
plication of the Pearson chi-square test,

The estimates of the distribution parameters were ob-
tained from (3.2). In particular, a = 0.9992, k = 9.2774,
= 8.3798 and p = 74.5709. Their asymptotic variance co-

variance m?trix estimated by computing and inverting the
9T
matrix( = ) comes out to be

a0,
J
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a k m o
a  0.0088
k -0.4315 68.5270
m -0.3899 61.8767 55,9126
o -2.7734 511.4730 461.9780 3852.16

yielding 0.0938, 8.2781, 7.4775 and 62.0658 for the stan-
dard errors of ;,i,ﬁ, and 5 respectively. The correspond-
ing standard errors of the estimates of the components of
the variance obtained through (3.9) and (3.10) are indica-
ted in the following table (Table 3).

TABLE 3
Estimates of the components of the variance

Time period
Camnponent 1931-1933 1934-1936 1931-1936
Randam 0.1260 + 0,0022 0.1138+ 0.0021  0.2398+ 0.0032

Proneness | 0.0163 £ 0.0015 0.0133+0.0012 0,0591 + 0,0053
Liability | 0.0035+ 0.0031 0.0031+ 0,0027 0.0066* 0,0058
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