v ———

CHANCE MECHANISMS FOR THE UNIVARIATE
GENERALIZED WARING DISTRIBUTION AND RELATED
CHARACTERIZATIONS
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SUMMARY. The intent of*this paper is to provide an anthology of
results on the subject of models (chapce mechanisms) that give
rise to the Univariate Generalized Waring Distribution. These
include results that have appeared in the statistical literature
before as well as some new ones that appear for the first time
in this paper. Some characterization problems relating to cer~
. tain genesis schemes are also considered. :
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1. INTRODUCTION

. The Univariate Generalized Waring Distribution with param-
eters a>0, k>0 and p >0 (UGWD(a,k; p)}) 1is the distri-
bution whose probability generacing function (p.g.f.) is given by

7

l '-

.A,G(s) = (+p)(k) 2 1 Fa’k é+k+p s): | : Q)

.- (3

~where a(B)-I'(cHB)/I'(a) for any complex numbers q,‘ B' and‘-

'Z 1 “is the Gauss hypergeometric series obtaxned as a speciall
 case -of - ;.:‘. -:: R T R
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for p =2, q=1. . (2)
If we write

k = ~n, a = =Np, p=N+ 1—

then (1) becomes the familiar generalized hypergeometric distri-
bution -

{(N-n)! (Ng)!

,F1(-n, -Np; Nq-o+l; s), q = 1-p

N! (Ng-n)!
-t .z (-x)!
where z! = fw e t” dt for all real =z and ?:;:;TT =

(—l)y &5%%5%%% for integer y. (See Jordam, 1927; Davies, 1933,

1934; Kemp and Kemp, 1956; Sarkadi, 1957; Kemp, 1968a; Shimizu,
1968; Dacey, 1969; Janardan and Patil, 1972; Sibuya and Shimizu,
1980a,b). : .
The name generalized Waring was given to this distribution
by Irwin (1963) who based its derivation on a generalization of
Waring's formula. In the 18%h century, Waring showed that the -~

function ;%;, x > a, can be expanded in the following way

1.7 o

.

Irvin extended this formula by showing that

1 E ‘grz k(r)

(x=2) () 20 X(r+k)

-

’ x>‘a>0, k>0.

Multiplying both sides by p = x-a he ended up with a-
" series which converged to unity. The successive terms of this
series were then considered by him as defining a discrete prob-
ability distribution which he called the generalized Waring

distribution. For certain values of the parameters the UGWD(a,k;

p) can be very long-tailed and so it was shown (Irwin, 1963,
1875) to be a suitable theoretical form for the description of
biological distributions. Actually the UGWD(a,k; p) “showed ~ =
an improvement as compared to its particular case, the simple . .
Waring' (k=1), which was also used for the same type of data
(Irwin, 1963). It is interesting that another special case of
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the distribution when a = k = 1 was obtained by Yule (1924)
also on a biological hypothesis. The latter case, i.e., the
UGWD (1,1; p) was later called the Yule discribution by Kendall
(1961) who suggested it for bibliographic and economic applica-
tions. Both, the simple Waring and the Yule distributions were
considered by variocus authors for describing word frequency data,
e.g., Simon (1955, 1960), Haight (1966), Herdan (1964). Another
very important application of the UGWD(a,k; p) was considered
by Irwin (1968, 1975) who suggested it as a theoretical model

for accident distributions in the context of accident proneness.
Compared with the negative binomial, the UGWD provided a better
f£it. But, as stressed by Irwin the importance-of this model lies
in that it enables us to partition the variance into separate
additive components due to proneness, risk exposure, and ran-
domness; thus by fitting it we can infer about the role that

each of these factors has played in a given accident situation.
One would, therefore, be interested in the underlying chance
mechanisms that lead to the UGWD. '

So, the subsequent sections attempt to draw together
various existing results concerning the genesis of this distri-
bution, suggest some new genesis schemata and prove certain
characterization theorems connected with them.

-

2. URN MODELS

[4

Consider an urn_containing 'a' white and 'b' black balls.

One ball is drawn at random and replaced along with 1 additiomal
ball of the same color before the next ball is drawm. The
process is repeated until 'k' white balls are drawn. The
number X of black balls drawn, before the kth white ball has
the UGWD(b,k; a),- L.e.,

' a b, (k.
Ca Lt PeFm 1
PX = x) (a+k)(b) (a+b+k)cx) x!

(Jordan, 1927§ Remp and Kemp, 1956; Sarkadi, 1957; Dacey, 1969;
Johnson and Kotz, 1977).

= L. - .
- s ee S - N H

- Clearly, this is a special case of Polya's inverse urn
scheme where each ball drawn is replaced with c .additiocnal
balls of the same color. Hence, when the parameters of the UGWD
are positive integers, the distribution can be considered as a
special case of the inverse Polya distributien, for ¢ = 1. - _ ...

.t

An alternative urn representatlon of the UGWD may be ob-
tagned fram the following generalization of Priedman's (1949)

inverse urn scheme. Consider an urn containing 'a' white balls

K
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and 'b' black balls. One ball is drawn at random and replaced
by 14+a balls of the same color along with 8 balls of the
opposite color. Drawings are continued until k black balls
are drawn. The number X of white balls drawn before the ktk
black ball has a frequency distribution given by '

kx &,
- - (8 q’ (x + kB/a)
P =x) = Gop) @%b —
. A+ B -
(k + x)
% ok 1’-+§xr+r-"1

) TR | aa 5

-1 20 x.=0 r=1 (C+x_ + (r-1)2)
-1 1 a r a (8/a) |

If we let 8 = 0, (3) reduces to the UGwD (k, 31 EQ. (Note
e a

that when %=1 the urn scheme considered reduces to Friedman's
inverse scheme which (Kemp, 1968a) gives rise to the UGWD(1,

a b -
3P

» X Z x. (3)

3. MIXED MODELS
3.1 The UGWD as a Mizture of Negative Binomial, Poisson and
Generalized Poisson Distributions. Let X be a random variable
(r.v.) having the negative binomial distribution with parameters
k and Q. Llet g(s) be its p.g.f., i.e., .

-

glshi= [1+QM=)1%, q>0, k> 0. @

Let Q follow a beta distribution of the second kind with param-
eters a and p, {.e., . . . :

T'(a) T (p)

f(@ - Lt o) a1 W@ 450, a0, pso.

. oo )
-Then the distribution of X has p.g.f. given by = R

‘'

. ¥

P T
. 4 (RN

T(a)r(e) ‘0

which 1is the well-known integral representation of the Gauss_:;;@”
hypergeometric function (e.g. Erdélyi et al., 1953), 1i.e.,

6() = Treay Jo &+ e-en *t Lerug @, T T
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-

P (k)

) Gy

2Fl(a,k; a+k+p; s) ~ UGWD(a,k; p)

(Irwin, 1968). By the transformation q = Q/(1HX) (4) and (5)
take the forms . )

g(s) = 1-9*Q-a*, 0<q<1, k30 (6
and .
h(o) = 70 2L (19", ap50, 0<qc1 (D)
respectively.

Then the UGWD(a,k; p) results as the mixture on q of the
negative binomial distribution as given by (6) if q is a r.v.
having the beta distribution of the first type with parameters
a and p and probability density function (p.d.f.) given by
(7) (Kemp and Kemp, 1956; Sarkadi, 1957; Irwin, 1968; Janardan,
1973). : - \

The derivation of the negative binomial as a gamma mixture
of the Poisson distribution or as a Poisson generalized by a
logarithmic series distribution indicates that the UGWD can also
arise from the following models. :

N

Poisson(AVN gamma(a; b.l)/b\ beta II (kip) ~ UGWD(a,k; p) (8)

3 vy A . .
Poisson(l)i\ gamma(a; b )b/1+b beta I (k;p) ~ UGWD(a,k: 9 (9)

Poisson(~A log(1-8))~,log serié?éelg\beta I(a;p) ~ UGWD(a,A; o) (10)

Poisson(}l log(1l+9))\slog series 2 beta II (a;p) ~ UGWD(a,A; p)
' - A RO (11
Models (8) and (9) were considered by Irwin (1968) who gave
A and b an accident 1iability and accident proneness inter-
pretation respectively to obtain the UGWD as the underlying acci-
dent distribution. .- ) . :
' flnotherfinterékting mixed Poisson model was considered by
Dacey (1969) in the context of a problem in geographical analysis.

Let X be a discrete r.v. having the Poisson distribution
with parameter A, .X > O.  Assume that A 1is itself a r.v. with
some distribution functiom F(A) such thaz ~ . . - = .

- -
>, e Mt
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_ _P(c-b)T(c-a) A2 (at+b-3)/2
dFQ) = Ty T(ematyT(ay © LRI

U= %(a+b+l)-c, v = %(a-b).

Here W v(k) denotes the Whittaker function identified by the
R :
integral equation ’ :

-A/2 V+1/2 )
wu i)(x) . : A rof' e-kr. tv-u—llz (1+c)“'+"'1/2d:
’ P(E + v - u) . .

?

v+-15>u, A >0,

Hence .
P(x-r)-fge')‘)‘

T3 darF (i)
(c-a—b)(b)>a(r) b(r) ‘L“ a,b >0, c> ath.
{(c-b) (b) c(r) ’ r!

-

But, this is the probability function (p.f.) of the UGWD(a,b; c-a-b

3.2 The UGWD as a Mized Cbnfiuént Hypergecmetric Distribution.
Bhattacharya (1966) obtained the negative binomial distribution
with parameters b and a - by compounding a distribution with
p.g.£. of the form -

F, (b;d;As) '
86 = 5
1y -

with a continuous distribution belonging to'what he called a

'generalized exponential family' with p.d.f.. .. .. ..o ]
£00 = =he aPea+) 3P4 LA £ ohiainy, Abid,a> 0.

r(d) 1 1 . e mme (13) .
|

Hefe,‘lFl” is the confluent hypergeometric series given by (1)
for P= q e Y. D » - ! ) ' 'S?.‘. ST

S R I DT RS
e

. i The class of distributions defined by (12) contains many
Known distributions such as the hyper-Poisson for b = 1 (Bard-'
~ well and Crow, 1964) and the Poisson -\ ‘tail-truncated gamma -7
distribution for a = b+l (Kemp, 1968b). On the other hand,
Bhattacharya's (13) family includes the gamma (d;a) for d=b

and consequently it, also, includes the exponential and the chi- .

square distributions as special cases.

L

A >0, - (12) s .

e

e '..'I-

- - - : . - -
- -4
. .o
- &,

1
¢
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More generally, Kemp and Kemp (1971) showed that distribu-
tions with p.g.f£.'s of the form . :

2Fl(b,c; d; s(a+1)-1)

. [ —l i

g(t) = a0, | (14)

result as the mixture on the parameter A of a_distribution of
family (12), 1 X 4is a r.v. having a distribution with p-d.£.

@) s ain)

A>0
f£(A) = , a30 (15)
c >0

T(e),Fy (b, e ds (a+1)™h)

The latter family includes the gamma(c;a) distribution as a
special case and hence the exponential and the chi-square distri-
butions.

The UGWD(b,c ; p) belongs to the family (14) for p = d-b-c,
b,e >0 and a = 0. Hence, following Kemp and Kemp's argument
we can obtain the UGWD(b,c:; d-b=c) as a mixture on A of a dis-
tribution belonging to (15) if A has a distribution with p.d.£f.

_ 4 q g Fy(bs 45 A
FE(A)Y = e Akc 111 A>0;a,b,e>0

oFy (Bacs d5 DT (e)’ . (16)

pro!&ded that d-b-e > 0. Thus,

- 1I-‘l(b; d; ls)

0 1Fl(b; d; )

Acml-.. 1F2(P5 45N
ZFl(b,c; d; 1)I(c)

e

dX ~ UGWD(b,c;
' d-b-¢).

4, CONNITIONALITY MODELS

In this section we consider certain new derivations of the
UGWD based on what we term conditionality wmodels. These are, in
fact, mixed models with discrete mixing distribution. . - T
Model 4.1. "Let X and Y be non-negative discrete r.v.'s such
that the conditional distribution of - Y given (X = x) is the
negative hypergeometric with parameters x, m and N and p.f.
given by, S E Lo -

VS LR o .. Lo - W

rky=y]x=x) -
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Let the distribution of X be the UCWD (a,N;p). Then the distri-

bution of Y is the UGWD (a,m; p). To prove this, we substitute
for P(X=x) and P(Y=y|X=x) ~in the well~known formula

P(Y=y) = I P(Y=y|X=x) P(X=x) - - .. 18)
” | , :

and obtain " e

P P 1 T T @)
(a+p)(¥) (a+N+p)(y) y! <=0 (a+N+y+o)(x)

; 1
P(Y=y) = oy

oM Ay 1 PR
(a+p)(N+y) ybo (o) g oy

P o™y
= 1
o (afp) (m) (atotp) (y)_y.

which establishes the result.

Hence, the UGWD is reproducible with respect to (w.r.t.) the
negative hypergeometric family of distributions (in Skibinsky's
(1970) terminology). Note that, for certain limiting values of-
the parameters, the UGWD tends to the negative binomial distri-
bution (Irwin, 1975) which also enjoys tRis property. It is
interesting, therefore, to observe that eproducibility w.r.t.
the negative hypergeometric family is preserved under the passage
from the UGWD to the negative binomial limit. to

It is also interesting to point out here that the converse
of this result is also true, i.e.,

if Y~ UGWD (a,m; p) then X ~ UGWD (2,N; ). 19).

To show this we use the following lemma. .
Lerma. Thelfamiiy of‘hegative“hypefgéohecric distributions with .

. -o\ ~Nm -N ) PURE
P'ff = x /la~x ajr ™ N n‘> o, x= 9’1’:.:’n is, -
complete w.r.t.' the’parameter m. .. L o

‘ffit Ean'how ie §éen'thég‘(iéfdks'avf;hétisﬁgi‘éa;atibﬁqlﬂ .:f
 P(X = x) where Y ~ UGWD(a,m; p). One solution is the UGWD(a,N;
p) which because of the lemmz is unique. ' L

" The above discussion leads us to the follbwing characteriza-
tion theorem.

o, e . > : . e
B e g - DI v e T - .- o et

L
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Theorem 1. Let X and Y be non-negative, integer-valued r.v.'s
such that the conditional distribution of Y given (X=x) is

the negative hypergeometric with parameters x, m and N as
given by (17). Then the distribution of X is the uGwD(a,N; o)
if and only if (iff) the distribution of Y 1is the UGWD(a,m; p).

Consider now the following model.

Model 4.2. let X, Y be two r.v.'s such that the conditional -
distribution of X|(Y=y) is the UGWD(a+y, n; p+m), n,m > 0
shifted y wunits to the right. Let the distribution of Y be
the UGWD(a,m; p)...Then, the distribution of X is the UGWD
(a,mm; p). To prove this let G(t) denote the p.d.f. of X.
Then

y . .
t ZFl(a+y.n, aty+n+p+m; t) a(y)m(}:l

G(t) = p )
- Pom 20 F T
| {
(340) (oim) x Y (a+p+m+n)(x+y) Xy
s Py 5t Ty &
(a+p) (m) x (a‘*.pM)(X) x!

Hence the distribution of X {s the UGWD(a,mtn; p).

The converse of this result is not true in general, It
holds, however, when a=l, i,e., if the distribution of X 1is
the UGWD(1l,m+n; o) then the distribution of Y 1s the UGWD(1,m;
p). This can be shown by an argument similar to that employed
in Theorem 1.

This provides the following characterization theorem.

Theorem 2. let X, Y be two r.v.'s such that the conditional
distribution of X|(Y=y) is the UGWD(y+l,n; p+m),p,n,m > 0
shifted y wunits to the right. Then the d{stribution of X 1is
the UGWD(1l,m#n; p) iff the distribution of Y is the UGWD(1,m:
p)%&."': - . : "o e - E L o . - .

i .

.. 5. THE IDEAL COIN-TOSSING GAME MODEL
. . P : ‘.!‘:I.","" -, f.lh'""*’ ,,_-”‘ R ) L
-In this section we suggest another new genesis schenme,
arising from a fair coin-tossing game. Consider a gambler, say
A, who at each trial wins or loses a unit amount and lat - SN
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denote A's cumulative gain in 2N independent trials. This
gambling game can be interpreted as the record of an ideal
experiment which consists of 2N successive tosses of a coin.

Let : - A
1 1if "heads™ at the jth-trial e

- Xj = o (20) ‘-

-1 1if "rails" at the jth trial. ¥

Obviously, P(XJ=1) = P(xj=-l) = lr j= lizi...!zn'

1

Then S, =X KXy F et by ko= 1,2,°+,N. %

and

k
(see Feller, 1968, p. 273).

B(S, = 0) = [2k} 272k k= 0,1,2,000 N .

Suppose now that N 1is not a fixed number. Assume, instead,.
that N 1is a.-r.v. and let its distribution be the UGWD(1l,a; p).

Then
P(SN-O|N=r)P(N=r)

§ - P(5=0|N=r)P(N=r) e
=0

P (_Nar l SNBO) -

2r, -2r ;
(r)z a(r)/(a'*'ﬂ'*'l)(r) !

~O% L 2ry -2t
rZo (r)z a(r)/(a+p+l) (r) r!

1l 1
e Goie 1 -
. (,p.+1)(a) (a4ptl)y,y ! o

. SRS S |
Hence, if N is a UGWD(I:A§;p5 r.v. then N ‘given'a.totai
gain of 0 1is a UGWD(%,a; p+%) T.v. (The case a =p =1 has ‘bee

examined by Shimizu, 1968).
The converse of the above result can easily be shown to
hold. Therefore, the following characterization theorem-can be

established. R R

Y

-
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Theorem 3. Let X,, j = 1,2,°+<,2N, be defined as in (20).

]
et N be a non—negative integer-valued r.v. and let SN denote
the random sum x1+x2+ 2N Then, the distribution of N 1is
the UGWD(1,a; p) 1ff the distribution of Nl(s =0) is the UGWD
P2 SRR §
("2"1 a; p+2)'

6. THE "STER" MODEL

Bissinger (1965) observed that in a great many inventory
decision problems, the frequency distribution defined by

1 s Px
q =5—— ! =, y=0,1,2,° (21)
y 1 Po x=y+l,x -

arises, where Py is the probability function of the demand
r.v. X. Here, the probabilities qy are defined as Sums

successively Truncated from the Expectation of the Reciprocal
of the variable X (STER). ZXekalaki (1980) showed that under
certain conditions qy may be thought of as interpreting the

fluctuations of the stock in hand, say Y and proved that the
distribution of the demandd X is the left-truncated UGWD (1,1; p)
at the point k-1 iff X 2 Y|(Y 2 k). (The case k=1 has
been examined by Krishnaji, 1970.)

-

It follows then, that (for k=0) the STER model in (21) gives
rise to the UGWD(1,1l; p) 4iff the riv.'s X and Y are iden-
tically distributed. ° K

7. MISCELLANEOUS DERIVATIONS

Consider the Kolmogorov differential equations for the
birth-and-death process:

‘dpocc)'
: -.-a—:'_—_l-l (t) + e Pl(t) . -

-
.. - - an'ea - o-'.‘\- .

. f
..4.:..,,..', P T

dP (t) :; w2 .. NS -..’_~
T = Sl ARL () X 2P e P

(t),’ '

wvhere Xﬁ and un are the birth and death rates of the nth
state, respectively. Kemp and Remp (1975) obtained a generalized

K
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hypergeometric form for the equilibrium distribution by suitably
defining the ratio An-llun' In particular, assuming that

*acl _ (avn-1) (irta-1)

,un {(c4+n-1)n

(22)

their resultant equilibrium distribution had p.g.f. given by
c 2Fl(a,b; c; s) . ) (23)

where C 1is the normalizing constant. Clearly (23) can be

the p.g.f. of the UGWD provided that ¢ > a+b. That is, if in
(22) ¢ s chosen so that a+b < ¢ then the equilibrium solu-
tion given by (23) is the UGWD(a,b: c-a-=b).

Let us now mention two further models thar geherate some
special forms of the UGWD. How these can be extended so as to
give rise to the general form of the UGWD remains an open problem.

L ]

Kemp and Kemp (1968) examined the distribution with p.g.f.

a 1 1
Ga(s) = g pa ZFl(Ea’ E(a+1); a+l; 4pgs), P 2q, a>0

(24)
vhich they termed "the lost games distribution." Clearly, for
p-qﬁ% this reduces to a UGWD(%g 5321 %- shifted 'a' units to -

"the right. They obtained (24) (1) as the distribution of the
total number of games lost by the ruined gambler-starting with
'a' monetary units against an infinitely rich adversary and (ii)

as the distribution of the number of customers served in a busy

period (starting with "a' customers) of an M/M/1 queue. .

Finally, Shimura and Takahasi (1967) discuss a genesis
scheme of the UGWD(1,1; 1) in connection with a problem in
branching processes.

B i Bl
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