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ABSTRACT

The relationship YJ RX between tvo random variables X and
Y, ‘where R is distril+|ted independently of X 1in (0,1), 15
"known to have important onsequences in different fields such as -
income distribution analysis, inventory declsion modnls, etc.

In this paper it is‘ shown that vhen X and Y are discrete
random variables, relationsh:lps of similar nature lead to Yule-type
distributions. The iupJ!lcations of the results are studied in con-
‘ nection with problems oﬂ incoue underreporting anc! inventory deci-
sion making. ) l

[

. 1'. m'fnonuc-non

The relationship betveen tvo random variables {r. v.‘s) X and

Y where Y< X is of potent:lal inportance in the context of eco~ -

nomic models in various areas ‘such as in income dlstribution analy-
sis (X = true income, reported income), productivity neasure—
ment (X = true labor input, Y = observed labor input) or in in-

ventory decision nking (x = deggpc/l,:toran item within a unit time
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interval, Y = item uni® . in stock within the ‘same time interva.l)
Krishnaji (1970b) has examined a model of multiplicative under-
reportxng of income in which the reported incone Y related to the
true income X through the relationship )

"Y = RX C o (1)
vhere R was a r.v. independent of X and with support on an in-
terval (a,b) € [0,1]. In particular, he examined the effect of
(1) on Pareto income distributions by showing that if R has the
density function (4d.f.)

n(r) =p*t, p>o0, osrs1 (@

then, xS Y| (x> xy)s X% 0 1f and only if (iff) X has a
- Pareto distribution on (x°,+°). o ‘

There are theoretical reasons for regarding the Pareto distri-
-bution as an approximation to a more general distribution defined
by Yule (192h) with probability function (p.f.) given by

' !

where ‘ :
8 = T'(a+b)/(a), a>0, b>o0.

These reasons can be traced in Irwin's (1975) derivationlof
the Pearson type VI distribution as the continuouskanalogne of the
generalized Waring distribution (vhose special case is the Yule
distribution in (3)). It is worth noticing that Simon (1955) .
shoved that dlstributzons of incomes are expressible in terms of
the Yule distrlbution. It would therefbre be 1nteresting to exam-
ine the behavior of this income distribution under a model that
Avill imply underreporting of income. The following section looksv
into this problém. ‘ - '

2. THE MAIK RESULTS

Let x and Y be defined as before and let p and q s
r=0,1,2,°°" denote their p.f.'s respectively Then, if 1ncones
are underreported (P(Y'< X) = 1), it follows that the observgd
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income distribution is
T P(Y=r | x-x)p

9, = P(r=r) - ":‘ﬂ =r| "",’7"‘.‘ xzrﬂ T P(Y=r] x=x)p
r=0 x~r+l
i.e.,
L P( =r|x=x)p . r=0,1,2,-:-. (¥)

=—— I
% 1-p5 x=r+1
An underreporting el of the mul:iplicative type as in (1),
appropriately modified ‘to account, for discrete income distribu- - -
‘tions, might possibly + ’ ’

= [Rx}, vvheneqer x>0

with R defined as ine(l) andv-[n] denoting the integral part of
a. Krishnaji {(1970a), though not. specifically refprrlng to eco-
nomic models, shoved that when R is unifornly distributed - on N
(0,1) with a.f. given by (2) for p =1, then p, hasa zero-
truncated Yule form iff] e = qr/(leqo), r21, i.e., iff

$y|@>0). 1 , ‘ _

This result, brouéht‘within.the fiamework of income undefre-
porting, impiies that uﬁcdting the observed_distribution of in-
comes at the point zerq, we can recover infbrnation‘about the true
distribution, provided !of course that it is 'OLtruncr._tted. This-
generates. the questioniof vhax happens in cases where the observed
distridbution is truncated at a point k-1, "k >1, or, more gener-
ally, in cases vhere ve can only observe the tail frequencies of
the distribution of Y beyond a point k-1 which, of course, are -
more réalisiic assumptions. Hhatvcgn‘we then ssy about the true
incone-distributiohl Any result in this direction will be in anal- "
ogy to Krishnaji's (1970b) result in the continuous case for the
Pareto distribution. The answer to:this question is given by thé
theorem given below. In the sequel, ve_hdobt Kfishnaji's (1970a)
assumption for R, li.%;,‘ve consider the model

. t
Y= [RX], X>0,iR~ uni form. in (0,1), R independent

oy of X. S o (s).
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Note that from (S5) and relationship (k) we have that
==—— T P([RX]}=r|X=x)
qr l—po x=r+l1 i l px
L T P(rsBX<r#l]X=x)
= r r+ =x
1-py x=r+1 ‘ » Py
- «©
=-1 5 pZgr<ttly, |
1—po x=r+l X X x
i.e.,
! @ Px - ) )
% " Ty x=§+1 A ‘ (6)
(An alternative consideration may be to assume that the underre-
porting chance mechanism is represented not by (5) but by the con-
ditional distribution of Y given X with p.f. P(Y=y|Xx=x)=i,
0<y<x. Then, under this model which again implies that ‘Y < X,
' we can’obtain relationship (6) using (k). In this way underreport-
_ ing can be thought of as "additive damage" in the sense of Patil
and Ratnaparkhi (1975). (See also Krishna}i (1970a) and Xekalaki
(1980).) . v : ' ‘
Theorem 1: Let X,Y be nonnegative, integer-valued r.v.'s satis-

fying (5) (or (6)). Then,

9. = cop, > r = k,k+l,--- k2 0, € >0 (1)
iff X has a "modified Yule" distribution, i.e., iff
(x+1) ' :
(x-k) -1
*P. =P -(—-——).—,'XZR,C =C(1—P)- (8)
x k (k+c+l {x-k) 0 0
Proof: ~Necessity: _Let (5) (or (6)) and (8) be true. Then
1 (k+1) ) - o (r1)(

ql‘ = l—Po ('k+C+1)(—k) (C"’l)(r) XEO (c+r+2)(x) *

(r41) :
2 (x) _ Tle+r+2)l(e)
e g (etre2) ) et (creel)

(see Erdelyi (1953)). Hence

_m e, ctr+l
% - 1-p, (k+c+l)(_k) (c+l)(r) c
: (k+l)(r-k)
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Therefore m"ecessity2 . been established.
Sufficiency: ‘Ass e that (5) (or (6)) and (7) are true.

p
. Then, for r 2 k, pr £ c—(—m r§+l —:—, whlch implies that

R ! :
- r+l .o+l =
pr'pr-l-l e T i.ei., Pral ~ Tocel Pr 0. Therefore

(e21) oy o
Pr = By mw‘ﬁj” k-

What this theora\ says 'in fact is that vhen p is untrun-
cated then we can only know its tail frequencies explicitly. How-
ever, as the following corollary shows, 1if is (¥-1)-tvimnataa
the constant p_ in (8) can be determined from the condition

xgkp" 1. and hence, 'full knowledge of the form of P, is,’attain-

able. . ‘ ‘ l v S

Corollary 1: Let X be an integer-valued r.v. defined on the set
[k,k+1,-f-}, k2 0. i}l,et Y be another integer-valued r.v. de-
fined on' {0,1,2 ‘---] ! and such that q, relates to p_ = through
relation (5) (or (6)). ; men x3y|(rak) 1rr x has a (k-1)-
truncated Yule distribution with p.f. given by

» r=k,k+l,--- vhere p = %I(l-%). (9)

Clearly, Krishnad-i's result tollovs from thls corollary., for
k = 1. Another 1ntere!st1ng special case of Theorem 1 arises when
Y 1is.also truncated 9"1’. k-1, k = 0. This can be stated in the

form of the following .corollary ,
Corollary 2: Let X,Y be r.v.'s on [k,k+1,--~}, k20 and
assume that (5) (or (6)) holds. fThen, xqy irr x~ (k-l)-trun- :
cated Yule distribution with paremeter p as in (9).

Hence, under (5) l(or (6)), the true income distribution is
identical to the observed income distribution only when the fomer
has a Yule form. ] ' , '

It could be argued that the results of Corollaries 1 and 2
would be more useful i.,n practice if they vere obtainéd ‘in terms of
+he distribution of Y which, after all, is vhat we observe.

e o
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Indeed, this ié possible when k > 0 by virtue of the following

theoren. .

K - . ) L B
Theorem 2: Let X,Y be r.v.'s defined on §31.2..:-}..ond --fo. s ?d 0 0w

2,---} respectively and” ssume that (5) (or (6)) Holds. Then X
has a (k-1)-truncated Yule distribution (k > 0) with parameter
p>0 as in (9) iff Y has a distribution with p.f.

T—E-r r=0,1,-",k-1 : )
= ] lp*lk : : (10)

-
p+l r A .
where u_ is given by the right-hand side of (9).

Proof: The "necessity" part is tedicus but straightforward. For
sufficiency assume that (10) holds and observe that from (5) (or

(6)) we have

L

r = k,k+l, -

Prey
r+l

Then, for r = 1,2,---,k-1, (11) implies that P =0, ie., P
is truncated at the point k-1. On the other hmfd, for r > k-1

Poyis o (k+1)
we obtain (from (10) amd (11)) —t= _L_(_-§_1‘:_ki’l~_L’ i.e.,
: R N (TS ) P
(k+1) r-k)

P.=9 oo+ (D) imy :

==, T =0,1,2,00. ' (11)

r = k+l,k42,---. o (x2)
P

‘Notice now that q, = qk!'pk/k, i.e., p =—k5+ ) (F )" Hence,

P, = p/(p+l;+1) which implies that p. 1is given by (12) for
r = k,k+1,++-. This completes the proof of the theorem.

What has just been shown is that, under (5) (or (6)) the ac-
tual income distribution is a Yule truncated at k-1 if and only
if the observed income distribution has probabilities proportional
to a (k-1)-truncated Yule, for r‘é k with the. first k proba-~
bilities proportional to 1l/k. ‘ ,

Clearly, Theorems 1 and 2 imply the folldwing corollaries.
Corollary 3: Let X,Y be defined as in Corolia.ry 1l with k>0
and assume that (5) (or (6)) holds. Then X S ¥Y](Yzx) iff Y
has a distribution given by (10).

Corollary 4: Let X,Y be defined as.in Corollary 2 with k>0
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and assume that (5) (or ¥6):) holds. Then x 9 v iff Y is dis-
tributed as in (10). ‘ '

Hence, according to thé latter result, an observed ineome'dis-
tribution of the form (10) identifies (under (5) or (6)) the true
income distribution as bfin’g a Yule truncated at.r k~1.

3. SOME FURTHER APPLICATIONS

So far, we have restricted ourselves to income distribution
problems. However, the pethod of analysis may be applied to a num- -
ber of other models. Th¢ distribution in (6), for instance, often
arises in connection with various inventory decis;lon wodels (see,
e;g., Prichard and Eaglel! (1965), foster at al. ‘(.1971)). As an
exa.mple, consider a reorder point system in vhich additional items
are ordered whenever the|stock Y falls to a particular level Yo-
Prichard and Eagle (1'9655 imposed a decision function on the ex-
pected fraction of lead time out of stock vhich amounted to select-
ing the reorder point to'be the value y,. of Y for vhich

E(T]Y= =¥, ) = p(x>y0) ¥0 x=y£+l P /x first becomes less than an
0

administmtively set conltant 7. Here 'I' is the fraction of lead
time for which the demand X exceeds the stock in hand. Unless Py /x
becomes small fairly raptdly, the algorithn for the detemination

of the value ¥, cen be'tedious as it involves summation to infin-
ity of such terms. ‘

Theorem 1, however,,can offer some help in cases of a Yule
distributed demand. A nédel that can give rise to a Yule demand
distribution may be the following. : _

Assume that in a warehouse, demands for an item occur at ran-
dom and let their d.istril%ution be the Poisson with paremeter A4 > 0.
Suppose that each demand is for a number of units which may be con-
sidered as a r.v. ta.king nonnegative and integer values according
to a . log series distrﬁmtion with proba.bility generating function
(p.g-£.) given by aa(s) =1- log[e —(e -1)s]/A, 8 >0, vhere L
refers to the buyer's behavior. Then, if the numbers of units
ordered by different denands are independent, the overall distribu-
tion of demsnd will haveip.g. f. given by Gy (s) = exp[l(ga(a)-l)]

-
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= [ee-(ee-l)s]-l (i.e., geometric with parameter e-a). Assume
further that 6 varies from buyer to buyer and let its distribu-
tion be the exponential with parameter p > 0. Thén, the final
resulting demand distribution is G(s) = p jo s¥ J; 16P(1-6)%a0

=p B _,.T )
=p rgorls /(p+l)(r+l)’ i.e., X~ Yule(p). Consider now an in-

ventory situation where the Yule (p) distribution may be appro-
priate for describing the demand fluctuations. Then Prichard and
Eagle's decision rule becomes: choosé as a reorder point the value
Yo Of the stock Y for which P(X>y,) -3o(1-py) Plx=y ) = T,
or, after some simplification, choose Y, 80 that
P(y0+p+1)/r(yo+1) = T'(p+1)/1(p+1). This 1s clearly a much simpler

expression in terms of ¥y
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