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SUMMARY

The univariate generalized Waring distribution (UGWD) was derived by Irwin “966‘ 1975, Journu /of
the Royal Statisiical 8 Society, Serxes A 131, 205225 and 138, 8-31 (Mrl ), 204-227 (Part 11), 374-384
(Part [11)] as the distribution of accidents of an ‘accident prone’ population exposed to variable risk.

This paper considers two [urther derivations of th: UGWD in the context of accidents: these are bascd
on a ‘contagion’ hypothesis and a 'spells® hypothesis, respectively. Both models assume that individuals
are exposed io0 varying environmental risk. The problem of distinguishing between the three modeis is

_ considered and some examples are given.
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1. Introduction

_ The field of accident studies has received much attention, and various theories have been
dcvclop"d concerning the interpretation of the underlying factors. In 1919, Greenwood and
Woods put forward three hypotheses which have formed the basis of su bsequent investigations
into the occurrence of accidents:

 . " (i) Pure chance, which gives rise to the Poisson distribution.
.- (i) True contagion, i.c. the hypothesis that initially all individuals have the same
+ 7 " probability-of incurring an accident but that this probability is modificd by each.
accident sustained. Thxs leads to what Greenwood and Wmds called the ‘biased
distribution’. -
(i) Apparent contagion, i.e. the hvpoth sis that individuals have constant but unequal
probabilitizs of having an accident—the resultant distribution being a compound
- Poisson distribution. This model is known in the literature as the ‘accident
proneness’ model. e

~

.Under the third hypothesis, and assuming that the varying probabilities have 2 gamma
distribution, Greenwood and Woods obtained the negative binomial distribution as the
distribution of accidents. A good fit of the negative bmomml distribution was then regarded
as an indication of heterogeneity in the accident proneness of a whole group, until Invin
(1941) showed that this was not necessarily the case. Using a result by McKendrick (1926),

_ he derived the negative binomial distribution for a contagion modci based on the assumption

that the probability of a person having an accident increases with the number of previously
sustained accidents. :

A fourth model that describes the occurrence-of accidents rejects both the concept of
accident preneness and the concept of contagion. It was formulated by Cresswell and Froggatt
(1963), and is based on the a.ssumption that each person is Hable to spells i.e. to periods of |
time during which the person’s performance is weak. All of the person’s accidents occur
within Lhosc spells. The numbers of accidents within different speils are independent and are
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independent of the number of spells Obviously, the negative binomial distribution can be
given a ‘spells’ interpretation in the coatext of accident theory in terms of a Poisson
distribution generalized by a logarithmic distribution (Kemp, 1967). Therefore, a good fit of
the negative binomial is no help at all in distinguishing among the ‘proneness’, ‘contagion
and ‘spells” hypotheses. This is known as the discrimination problem between the com-
pounded, contagion and generalized models for the negative binomial distribution and has
been discussed by Arbous and Kerrich (1951), Bates and Neyman (1952), Gurland (1959)
and Cane (1974, 1977). For an extensive bibliography on the accident hypotheses mentioned,
sec Kemp (1970).

As is well-known, in all three of these models the individuals under observation are
assumed to be under equal environmental risk, a fact criticized by Irwin (1968). He suggested
a three;parameter distribution which he called the ‘generalized Waring distribution’
(UGWD); he derived this on the basis of a hypothesis that allows separately for random
factors, differences in exposure to external risk of accident, as well as for differences in
proneness.

This paper demonstrates that, while the UGWD is a plausible model if accident proneness
is accepted as an established fact, a satisfactory fit of this model is not to be regarded as
evidence for the validity of the proneness hypothesis. Section 2 gives a brief description of
Irwin's proneness model. Sections 3 and 4 retain Irwin's assumption on unequal accident-risk
exposure and provide two different derivations of the UGWD in the context of the ‘contagion’
and ‘spells’ theories. Finally, in §5 the possibility of distinguishing among the three modcls is
_explored and some illustrative examples are provided.

"~
-~

2. Irwin’s ‘Proneness’ Model

As mentioned above, this model assumes that 2 population is not homogeneous with respect
to personal and environmental attributes which affect the occurrence of accidents.
Let the distribution of the number, X, of accidents for individuals of equal proneness (say
_.¥), and of equal exposure to external risk of accident (say A|w, i.e. A for given »), have
probability generating function (pgf)

Gxjaa(s) = exp{(A [¥)(s = 1))}

in a unit time interval (0, 1). If the distributions of A | » and » in the population at risk can be
described by the probability density functions (pdf)

{v~*exp(=A/¥\*""}/T(k), » k> (;, )
and
(T(a + o)~ '(1 + »)™**}/(T(p)T(a)), a.p>0, 2
respectively, the pgf of the resulting distribution of accidents will be
{ounFi(a kia + k + pi5)}/(a+ pl.

i.e. the univariate generalized Waring distribution with parameters a. k and p which will be
deno(ed by UGWD (q, k; p). Here »Fi(a, b; c; z) denotes the Gauss hypergeometric function ’

Sree {@inbinz"}/ {cnr},~where Ay = T'(h + 1)/T(h), h > 0, | € R. For more information .
about the UGWD the reader is referred to the work of Irwin (1963, 1968, 1975), Xekalaki
(1981) and the references therein, and Xekalaki (1983).

3. The ‘Contagion® Model

In this section the assumptions of the classical contagion model developed by Greenwood
and Yule (1520) are extended by considering a populauon of individuals exposed to varying
accident risk.
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Assume that at time ¢ = 0 none of the individuals has had an accident. This will be true if
we are concerned, for example, with a population who are just beginning a new type of work.
Suppose that during the time period from ¢ to ¢ + df a person Who has had x accidents by
Time ¢ can have another accident with a probability of {(k + x)/(1 + Af)}Adt (independent
of the times of the previous accidents), where k is 2 positive constant and A refers to the
individual’s risk exposure. At ¢ = 0, since x = 0 the probability of an accident is kAd:. Hence
what the model basically assumes is that, initially, the probability of having an accident is not
the same for each individual but depends on the external conditions; later, the probability is
also affected by the number of preceding accidents. Under these assumptions and if differences
in the exposure to accident risk can be thought of as governed by a distribution with pdf
given by (2), the final distribution of accidents over a unit period of time turns out to be
UGWD(a, k; p). So two different hypotheses lead to the same distribution.

4. The ‘Spells’ Model

Let us now consider a variant cf the ‘spells’ model due to Cresswell and Froggatt (1963), that
rejects the presence of proneness and contagior. .-

Assume that every individual is liable to spells and that the number of spells in a given
time period (0, 1) is a Poisson variable with parameter 61, 8 > 0. Suppose that no accidents
can occur outside spells and that the probability of an accident occurring within a spell is
dependent on the risk exposure of the particular individual. In particular, suppose that within
a spell a person can have

0 accidents with probability 1 —m log(l +A)
or S 3)
n accidents (n = 1) with probability m (A/(1 +A)}"/n, m> 0, A>0,

where A is the external risk parameter for the given individual. Assume further that the
numbers of accidents arising out of different spells are independent and are also independent
of the number of spells. Then, if differences in the risk exposure can be described by a
distribution with pdf given by (2), the resulting accident distribution will have pgf

{piazFr(a, mt; a + 8mt + p; 5)}/(p + Omt)a.

Hence, in a unit time period the distribution of accidents is UGWD(a, 8m; p). So, as seen
from §§2, 3 and 4, three completely different sets of hypotheses give rise to exactly the same
form of distribution. T T

It is worth noticing that the form of the distribution of X in the models of §§3 and 4 is more
general than that considered in §2. It is, however, 2 reasonable choice as it implies a beta
distribution of the first kind (Pearson Type I) for the parameter q = A/(1 + A) of the negative
binomial distribution of X|A. :

i

5. Deciding about the Underlying Model ——— -

Statisticians have always been tempted to look for ways of discriminating among different
models that give rise to the same -listribution. With regard to the negative bipomial .
distribution as an accident distribution, most attempts seem to have been concentrated on
distinguishing between the proneness and contagion models. The papers by Bates and
Neyman (1952) and Bates (1955) cover part of the work that has been done on the subject,
although they particularly focus on distinguishing between different forms of contagion.
Shaw and Sichel (1971) tried to prove or disprove proneness by ranking individuals on an
accident performance scale based on their average interval between successive accidents.
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Cane’s (1974) paper seems to be the first instance in the literature of a systematic attempt to
discrimiriate between the proneness and contagion models of the negative binomial distri-
bution. The basic idea presented by Cane was that one might be able to decide between the
two possibilities if complete information about the accidents were available. What is meant
by complete information is best described in the author’s words: ‘by this I mean that the time
of each accident for each person in the sample is known’. She showed, however, that one
cannot distinguish between the two models, even with complete information. In particular,
she showed that, for both models, the conditional distribution of the times, #;, i=1,2,...,n,
at which accidents have occurred in a time period from 0 to Tis the same, namely that of an
ordered sample from a uniform distribution on (0, T) with pdf n! T~ In fact, this is the case
for any compound Poisson accident distribution whose compounding distribution has finite
moments (Cane, 1977); a corresponding process, indistinguishable from it, can always be
defined to describe the accident experience of the population.
_ Suppose now that we have the detailed records of the accidents suffered by individuals
subject to varying risks and that the observed distribution of the total number of accidents is
UGWD(a, k; p). Then, following Cane (1974), we have that, for individuals exposed to
different accident risks within the time interval (0, 1), the probability of n accidents at times
hi=12 ..., 6=20<n<.--<hL<lis

J exp{~QA[»)(1 = )} ‘[:Il exp(—=(A| )i = ti=1)}(A | ¥) dr.dF (A | v)

0
in the case of the proneness model, and is

A TS VALV S VIR T T e
L(H—A) ,gl(lnz.- Trag )N didH
in the case of the contagion model. Here, F(A|») and H(A) represent the distribution functions
of the distributions defined by the densities (1) and (2), respectively. On integration the above
expressions reduce to -

A kin » V(LY
(n!dlx»wd‘")(_,:T!)(l +V) (1 +v>

Pty akiny b
(- dtﬂ){(“ + P }{(d +k+p)a }(}F ) ’

and

respectively. Hence, in both cases the £;, i =1, 2, .. ., n, conditional on n accidents in the time ’

interval (0, 1), have a joint pdf given by , ]
L S, .. ) =nl, @

i.c. they form an ordered sample of size n from a uniform distribution on (0, 1). This implies
that the availability of information on the times of the occurrence of accidents is not sufficient
to guide one’s choice between the proneness and contagion models.

Let us now consider the problem of finding the joint distribution of t;,;i=1,2,..., n, for
individuals who have n accidents in a unit period of time under the spells model. For fixcd
A, accidents occur as events in a generalized Poisson process:

Nioy
X(@)= Y Yi N()~ Poisson(ft),
i=1

e

where 8> 0,12 0 and Y; iid. with probability function given by (3). Consequently, the

V-

AW b
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requircd probability is
J’-(l + A) "= [H {Xﬁm(l 4 A)Omtti = ) = dt;)]dH(P\).
o -1

where H(A) is defined as before, i.c. the probability is

A (G"T)"P(u)a(m }
——e—— } dly . . . dl,.
{(0”! + P)(¢+n) !

‘Hence, conditional on n accidents during a time period from 0 to l., the joint pdf of #,
i=l,29-~-v’,lvis .

n{(ﬂm )2/ (Gm)iny . )

The form of this différs from that arising under the proneness and contagion models. This
fact in itself is very interesting as far as establishing the presence of spells is concerned, as it
implies the following: if an observed accident distribution of the UGWD type has arisen
from the spells model, the time intervals ©, ), i=1,2,..., n, given a total of n accidents,
will be jointly distributed with pdf given by (5). Any departure from this distribution is, then,
evidence against the spells model -

Of course, if on the available evidence one has to reject (5) in favor of (4), then one is faced
again with the question: ‘proneness or contagion?’ This cannot be answered by studying the
distribution of ¢. In such cases, a promising way to tackle the problem would appear to be to
study the distribution of » among persons who have had x accidents in the period 0 to 1. This
may enable one to ‘estimate’ a person’s proneness on the basis of the incurred number of
accidents. A

1t can be shown that the pdf of v* = »| (X' = x} is given by

T(a+ k+p + x)
T+ k)I@+x)
This implies that {(k + p)/(a + x)}»* has'the:F distribution with 2(a + x) and 2(k + p)
degrees of freedom and hence, if fi -, denotes the 100(1 — }a) percentile of this distribution,
({(a + x)/(k + p)}fiar ((@ + x)/(k + p)}fi-4a] is 2 100(1 ~ )% confidence interval for

»|(X=1x),x=0,1,2,.... This approach is illustrated in what follows.
Table 1 presents the distribution of accidents that occurred to 414 machinists in a

} ycx-oc—l(l + pt)—(c#k*‘p-&x). .

. Table1
Distribution of accidents to 414 machinists over a period
" _of three months (Greenwood and Yule, 1920)

Number Observed Expected
of accidents -frequency frequency
0 296 292.951
1 74 77.701
z 26 25.461
3 . 9.683
4 4 4.119
5 4 1912
6. 10 0.953 ~8.204
7 0 0.503
8 1 0.717
Total . 414 414000 -

G=286%x093 k=15 =691 % 195, x* = 0.9054,
— df = 2, pr(x3 = 0.9054) = .65
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Table 2
90% confidence limits for v|(X = x),
corresponding to d = 2.86, k = 1,
p = 6.91 for accidents to machinists

Lower Upper

* limit limit

0 . 0.092 0.990

1 0.152 1.263

2 0.217 1.530 ____
3 0.285 1.795

4 0.355 2.057

5 0.426 2.317

6 0.498 2.576-

7 0.570 2.835

8 0.644 3.095

period of three months (Greenwood and Yule, 1920). To this observed distribution,
UGWD(a, 1; p) was fitted by equating the first two factorial moments to their observed
values. The UGWD fits the data satisfactorily (P = .65). From Table 2 one cannot really
establish that proneness is the underlying factor. There is a great deal of overlap between the
confidence intervals for different values of x so one, for example, cannot assert that persons
with eight accidents are more prone than persons with three accidents. One would, therefore;
be tempted to conclude that proneness does not seem to be present in this particular accident
situation. However, as demonstrated below, this can be a dangerous conclusion as there are
cases where, even when the presence of proneness has been established from prior information
on the group of people under investigation, the confidence intervals for »|(X = x) may
indicate otherwise. .

"This seems to be the case with the distribution of accidents in which workers in a soap
factory were involved over a five-month period; see Table 3 (Newbold, 1927). Irwin (1975)

~

Table 3
Distribution of accidents 1o 447 men in a soap factory
over a period of five months (Irwin, 1975)

Number Observed Expected
of accidents - frequency frequency
0 239 237
1 - 98 108
2 57 50 *
3 33 24
-4 9 12 N
] 2 7
6 2 4
7 1
8 0
9 4 ’
10 17 S
1 0
12 0
- 13 1
Total 447 447

G= 431 & 161, k= 133 + 081, 5 = 6.92 + 2.23,
x* = 106, df = 4, pr(x3 = 10.6) = .032

-
- —— . -

-

c b aearae e b .
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c Table 4
90% confidence limits for
-»|(X = x), corresponding to
d=431, k=133, p=692
for accidents to soap factory

workers
x Lower Upper

limit limit

0 0.163 1.354 —_—
1 0.228 1.605
2 0.294 1.855
3 0.363 2.103
4 0.432 2.351
5 0.502 2.597
6 0.572 2.844
7 0.643 3.092
8 0.715 3.335
9 0.786 3.584
) 0.858 3.829
11 0.930 4,071
. 12 1.003 4.320
13 1.075 4.567

fitted these data with the UGWD by the method of maximum likelibood on his accident
proneness hypothesis. Newbold (1927) found a correlation of 0.36 between the number. of
accidents, X, and the various departments in the factory; this indicated little (if any) variation_
in the external risk. Hence, as Irwin (1968) demonstrated, any heterogeneity in the population
reflected mostly proneness. However, from Table 4 one cannot obviously assert the presence
of proneness. One should probably note at this point that the UGWD is symmetrical in a and
k. So in each of the exadtples mentioned it is possible to obtain a second set of confidence
intervals for »| (X = x) by reversing the roles of a and k. But, again any attempt to establish
proneness on the basis of these confidence intervals (Tables S and 6) proves inconclusive. It
seems, therefore, that ‘estimating’ proneness conditional on the number of incurred accidents
is not a promising approach. ‘ .

It appears from the foregoing analysis that the problem of discriminating among the three
models that give rise to the UGWD has not been solved completely. Some light has been
shed, however, as it seems possible to determine whether the spells model is the underlying

.

.
¥

’ Table 5
90% confidence limits for v} (X = x),
corresponding to a = 1, k= 2.86,
- p = 6.91 for accidents to machinists

Lower Upper
.. Hmi

"

) limit
0 0005 . 024
1 0.035 0.715
Sz 0019 0.880
3 0.130 1.064
4 0185 1252 )
5 0.242 1.442 '
.6 0200 1.983
- 7 0343 1.822
_ g8 0405 2012
¥
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Table 6
90% confidence limits for v| (X = x),
corresponding to a=133, k=431,
p = 6.92 for accidents to soap
Jactory workers

Lower Upper

x Timit limit
0 0.006 0.408
1 0.036 0.584
2 0.077 0756 —
3 0.123 0.924
4 0.172 1.090
5 0.223 1.255 -
6 0.276 1.418
7 0.329 1.581
8 0.383 1.743
9 0.437 1.905
10 0.492 2.068
3 0.548 2.227
12 0.603 2.390
13 0.659 2.551

model or not, provided complete records of an accident situation are available. Otherwise,
distinguishing between proneness and contagion does not seem to be feasible with the current
statistical approaches.
T~
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REsuME

La distribution univariée de Waring généralisée (UGWD) fut introduite par Irwin [1968, 1975, Journal
of the Royal Statistical Society, Series A 131, 205-225 et 138, 18-31 (Partie 1), 204-227 (Pantie 1), 374-
384 (Partie 111)] comme la distribution des accidents dans une population ‘prédisposée’ soumise a des
risques variables. Cet article présente deux prolongements de la UGWD pour I'étude des accidents
basés soit sur une hypothése de contagion, soit sur une hypothése de relais. Ces deux modéles supposent
que les individus sont soumis 2 des risques environnementaux variables. On considére alors le probleme
de 1a distinction entre ces troix modéles et on donne quelques exemples.
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