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An Extension of the Damage Model

By J. Panaretos, lowa City')

1. Introduction

Let X be an original observation subjected to a destructive process. Then, what is
observed is the undamaged part of X, say Y. This is usually called the resulting random
variable (r.v.). The destruction process (or the survival distribution) can be represen-
ted by the conditional distribution of ¥ given X (Y | X). Th1s modet first considered
by Rao [1963] is called a damage model.

In the simple case where the distribution of Y| X is Binomial with parameters n, p

we have
Gy (1)
Gy =Gy @+p0, Cyiay® =G Gy

0<p<l,g=1— p

where Gy (£), Gy (1), Gy y=y (£) are the probability generatmg functions (p.g.f.’s)
of the original r.v., the resulting r.v. and the resulting r.v. when no damage has occurred.

In section 2 of th.1s paper we consider the problem of obtaining the p.g.f. of the
resulting distribution when the parameter p of the Binomial survival is a r.v. with
d.f. F5(p). Section 3 deals with the same problem when the parameter A of the original
distribution is a r.v. with d.f. F;()), and the survival distribution is Binomial. Several
known distributions are derived for various forms of F,()\) and F, (p). In section 4 the
relation between the p.g.f.’s of the resulting distribution in general and the resulting
distribution when no damage has occurred is studied. Using this relation we obtain a
characterization of the Poisson distribution which gives Rao/Rubin’s [1964] result
as a special case. . .
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2. The Damage Model with the Survival Distribution Mixed Binomial

Let us consider the more general form of the damage model in which the para-
meter p of the Binomial survival distribution is not a fixed number. Instead, suppose
that p is a r.v. with d.f. F, (p). In this case

P(Y=rIX=my=1 M0 ""dF,@), r=0,1,...,n
0 n=0,1,... (2.1)
and hence '
1
Gy (D)= é Gy (q +p?)dF,(p), q=1—p (2.2)
and | | ‘ o
i
[ Gy(pr) dF @) |
Gy|x=y(’) = L . ' (2.3)
{)GX(P) dF,(p)

If we now assume that X is Poisson with parameter A, (2.2) and (2.3) respectively
become : 5

Gy =M, (\r—1)) | - (2.4)
Gyy=y® %00 @5)
e O, i

where M, (¢) denotes the moment generating function of the r.v. Z.

Different forms of the mixing distribution F, (p) give rise to various distributions
representing the resulting distribution when the original distribution is Poisson and the
survival distribution is Binomial (n, p) A F,(p). Here are some examples

) p

a) (Y | X) ~ Binomial (n, p)'A Beta (e, ) (Negative Hypergeometric).
# ; P ,
Gy(®)=1F (a+BA(E—1), «>06>0 (26)
where | Fy (a; b, t) is the conﬂue"nt hyp’crg‘eom‘etric fuﬁqtion given by

Fi(a; b; = ___Hl_’)__ tuua-l ( _y)b-'a-ldu. . N (27)

T@ TG0

The distribution with p.g.f (2.6) was first examined by Gurlend [1958].
b) (Y | X) ~ Binomial (1, p) A Gamma (a, B), truncated to the right at the point 1.
p .



An Extension of the Damage Model 191

Gy(r)=c1F1(a;a+i';zx(r%i)—é-), a>0,6>0 @8

where ¢ is the normalizing constant.
The distribution with p.g.f. (2.8) has been studied by Kemp [1968] as a limited risk
Compound Poisson Process. ,

3. The Damage Model with the Original Distribution Mixed Poisson

Let us now turn to the situation where the parameter A of the original distribution
is a r.v. with d.f. F1 () A\ > 0). Denote by Gy, () the p.g.f. of the conditional distri-
bution of X | A, i.e. of X for given A. Then on the assumption that the conditional
distribution Y | X (i.e. the survival dlstnbutlon) is Bmomlal with parameters n, p we
have

Gy (=] Gy, (@ +POdF, (9 | €RY
and :
T Gy @ dFy ) |
Gm,_,,(z)- (3.2)
— Gy @VaF, O el

(We use the notation G}"; () to indicate that this time, the mixing is taking place in the
original distribution.) If, in particular X | X is Poisson (A) (3.1), (3.2) become respect-
ively

G3O=M, (o (¢ — 1)) | (3.3)

and
M, pr—1)

GYx-y ()= M——(p_l) : (3.4

By making use of (3.3) one can obtain the form of the p.g.f of the resulting distribu-
tion for dlfferent forms of F, ). Here are two interesting examples.

a) X~ Poisson (7\) A Beta (o, f).

Gy (t) =1F (at ﬁ;p (t—1) - ' (3.5)

b) X ~ Poisson (\) A Gamma (a, §) (Negative Binomial)
A ‘ ,

G;(t)=(1_:pﬁ)a (1—‘1%5;—5)"", @, §>0. (36)

Clearly (3.6) is again the p.g.f. of a Negative Binomial distribution.
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Remark 1.1t is obvious that one can obtain the p.g.f of the resulting distribution
when no damage has occurred for the examples given in sections 2 and 3 by using
formulae (2.5) and (3.4) respectively.

Remark 2. Results similar to those obtained in sections 2 and 3 can be denved for
discrete forms of F; (A) and F, (p).

4. Relations Between G, (f) and GY| x=y () in the Extended Damage Model

As Rao [1963] pointed out, in the simple damage model where the original distri-
bution is Poisson and the survival distribution is Binomial the following relation holds.

PY=ry=P¥=rlX=Y), r=0,1,...
which, in terms 'of‘p.g.f.’s can be written as

Gy (V=G oy @ | (4.1)

(This condition has come to be known as the Rao-Rubin condition.)
For our extended form of the damage model the following two theorems can be
established.

Theorem 1.1f X is Poisson with parameter A and ¥ | X is Mixed Binomial then
Gy(+t1)= y1x=y (t) . : _ - (42)
where ™! =G 4 (0) is a constant.
Theorem 2. If X is mixed Poisson and Y | X is Binomial then
G (D) =c*G;IX=Y( t +§) (4.3)

where (¢*)™! = G§y-y(1/p) is a constant.

The proof of these theorems can be easily obtained using relations (2.4), (2 5) for
theorem 1 and (3.3), (3.4) for theorem 2.

Rao/Rubin [1964] used a Binomial survival distribution to show that (4 1) holds
if and only if (iff) the distribution of X is Poisson.

In the sequel we extend the Rao-Rubin characterization of the Poisson distribu-
tion to the case where the survival distribution is mixed Binomial.

Theorem 3. Let us consider the random vector (X, ¥) with non-negative real compo-
nents such that P(X = n) =P ,n=0,1,...,with P, #0and

Y | X ~ Binomial (n, p) A F,(p),p €(0,1),r=0,1,...,n. 44)
>

Then condition (4.2) holds iff P, is Poisson.
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Proof. Necessity follows by theorem 1 To prove sufﬁclency we first observe that 22)
can be written as - , ;

Gy(r+1)={Gx<pr+1)dF2cp). - )
We also have '
16y ©)dF0) | |
Y|_X— (t) - . : - ’. : (4.6)
fG (p)sz(p) TR R |

Substituting (4.5), (4.6) in (4.2) gives

Gy 01+ 1) dFs(0) = o | G G dF20), (€5 =] G @) (P,
Hence

{1) b B, (ot + 1" dFa(@) = } b5 ., (pt)"ng(p)=> :
n=0 n=0

3 (2P, f(")p aFsp) 1 =co TP, {fp dFy(p)} 1" =
n=0 r=0

w oo 1 o
Z{ZP J(; (;‘)Pr dF,(p)}t" =¢o rEOP' {{;Prsz(P)} ¢

r=0 n=r

Consequently
F P, [0 dFap)=co B[P dFp) e
n% P, (})=coP,. | (4.7)
Taking the p.g.f.’s for both sides of (4.7) we find that
Gy (t +1)=coGy () 0<t<l. (4.8)

But Shanbhag [1974] using an elefnentary approach showed that the unique solution
of the functional equation

G(q +pt G (p1) <1 49
(@ +p)= G @) |2 : | (4.9
where G (¢)isap.gf.,is
G (t) = M1 for some A > 0.

Since our functional equation (4.8) is a particular case of (4.9) the result is established.
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Remark 3. Clearly if the survival distribution is Binomial, i.e. if F,(p) is degenerate,
then condition (4.2) reduces to (4.1) and hence theorem 3 reduces to the Rao-Rubin
characterization of the Poisson distribution.
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